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In the present paper we review some recent progresses in the study of the dynamics
of cooling granular gases, obtained using idealized models to address different issues of
their kinetics. The inelastic Maxwell gas is studied as an introductory mean field model
that has the major advantage of being exactly resoluble in the case of scalar velocities,
showing an asymptotic velocity distribution with power law tails |v|−4. More realistic
models can be obtained placing the same process on a spatial lattice. Two regimes
are observed: an uncorrelated transient followed by a dynamical stage characterized by
correlations in the velocity field in the form of shocks and vortices. The lattice models,
in one and two dimensions, account for different numerical measurements: some of them
agree with the already known results, while others have never been efficiently measured
and shed light on the deviation from homogeneity. In particular in the velocity-correlated
regime the computation of structure factors gives indication of a dynamics similar to
that of a diffusion process on large scales with a more complex behavior at shorter scales.
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1. Introduction

Granular materials, a term often employed in physics, mathematics and engineering

to classify collections of inelastic objects, subject to the laws of Newtonian Mechan-

ics, have recently attracted the vivid attention of the scientific community and the

field has been extensively studied. In fact, they not only pose novel questions to

scientists, but also are of great technological and industrial importance.

These systems show rather peculiar and intriguing features both with respect to

their static and dynamical properties. A dilute granular system, subject to tapping,

shaking or some other kind of external driving, which supplies the energy dissipated

by the inelastic collisions, may behave similarly to a fluid. On the contrary, in the
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absence of external forces it loses gradually its kinetic energy and comes to rest.

In addition, it may become spontaneously inhomogeneous and form patterns. Such

a behavior during the free cooling process displays interesting analogies and con-

nections with other areas of non-equilibrium statistical mechanics such as ordering

kinetics,1 decaying turbulence2 and diffusion.1

The statistical approach to the study of such subject seems to be one of the

most promising tools to its comprehension. In fact, one deals with very large as-

semblies of particles so that it makes sense to measure only average properties

and their fluctuations. On the other hand, it is not possible to apply the standard

Gibbs Equilibrium Ensemble method, because these systems are intrinsically out

of equilibrium. Hence, one is led to employ alternative statistical approaches such

as kinetic theory or numerical simulations.

The Boltzmann equation plays a central role in non-equilibrium statistical me-

chanics of rarefied fluids and it has been applied to describe the behavior of di-

lute granular systems.18 It governs the evolution of the one-particle distribution

function taking into account only binary collisions. However, the solutions of the

Boltzmann equation, being a nonlinear integro-differential equation, are not known

for an arbitrary choice of the inter-particle potential and of the boundary condi-

tions. Therefore, it is tempting to consider simplified models for which in some

cases it is possible to obtain the solutions or at least the numerical effort is greatly

reduced.

The first example of such an attitude is represented by the attention dedicated

to the so-called Maxwell molecules. By an appropriate choice of the intermolec-

ular potential the collision rate becomes a simple function of the energy and the

resulting Boltzmann equation greatly simplifies. Several important studies have

dealt, at the end of the 70s, with the treatment of the Boltzmann equation for

Maxwell molecules (see review Ref. 4), i.e. of energy conserving systems. Among

these perhaps the most influential has been the work of Bobylev and independently

of Krook and Wu, who found exact similarity solutions for the model. After a period

of relative calm, the advent of granular systems has revived the interest towards

Maxwell models.13 In the case of inelastic systems, in order to justify the major

simplicity of the Boltzmann equation, one cannot invoke a particular form of the

inter-particle potential, but has to assume its form as a definition. Nevertheless, the

model displays a behavior which parallel that of more realistic systems, but also

shows statistical features of great interest.

The present paper is organized as follows: in Sec. 2 we discuss the general issue of

granular gas models, Sec. 3 describes the behavior of systems of particles mutually

colliding with an energy-independent collision rate and disregarding their relative

position: this system can be viewed as a Mean Field Model for granular gases, in the

sense that all possible pairs may interact. In Sec. 4, instead, we place the particles

on a regular lattice and assume that each particle can interact with its nearest

neighbor only.
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2. Granular Gases

Granular gases are defined, in the present paper, as assemblies of inelastic hard

objects, i.e. particles that interact by means of instantaneous binary collisions. The

inelasticity is accounted through the so-called normal restitution coefficient, α. If

we model the grains as smooth spheres a collision between two particles i and j

with precollisional velocities vi and vj and positions ri and rj has the effect of

reversing and reducing the component of the relative velocity along the direction

σ̂ = (ri − rj)/|ri − rj | by a factor (1 − α). This corresponds to the following

relation between post-collisional velocities (primed) and pre-collisional velocities

(not primed):

v′j = vj + Θ(−(vi − vj) · σ̂)
1 + α

2
((vi − vj) · σ̂)σ̂ , (2.1a)

v′i = vi −Θ(−(vi − vj) · σ̂)
1 + α

2
((vi − vj) · σ̂)σ̂ . (2.1b)

The Heaviside function Θ here represents the condition that colliding particles

move against each other, a “kinematic constraint” to be satisfied at each collision.

The restitution coefficient α ∈ [0, 1] is usually considered not dependent on the

relative velocity of the colliding particles. This is an important simplification which

can lead to a dramatic instability in numerical simulations, called “inelastic col-

lapse”: the collision rate regarding a group of few particles may diverge; this can

be avoided using velocity dependent restitution coefficients, in such a way that

collisions among particles with a lower relative velocity have an higher restitution

coefficient (i.e. are more elastic).

In the following we shall discuss the physics of cooling granular fluids by illus-

trating its rich phenomenology by means of a series of minimal models based on

the simplest rule (2.1a) which ensures momentum conservation during inelastic col-

lisions. We start from a mean field version with no positional degrees of freedom for

the grains and successively we release such a constraint to consider one-dimensional

and two-dimensional systems.

3. Mean Field Model

3.1. Elastic models

To appreciate the difference between an ordinary and a granular gas one can start

with the following minimal model constituted by N particles without positional

degrees of freedom and characterized only by d-dimensional velocities. The evolu-

tion of the system is driven by random selection of pairs of velocities (vi,vj) which

are updated according to Eq. (2.1). Since there is no true movement of the grains,

the center-to-center direction σ̂ is randomly chosen with a uniform distribution

in the d-dimensional sphere (the “kinematic constraint” can be equivalently disre-

garded, as it would just randomly avoid half of the collisions to happen). A unit
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time corresponds to N collisions. This model, for two-dimensional velocities, has

been put forward by Ulam3 for elastic gases (α = 1). He showed how the velocity

distribution asymptotically converges to the Maxwell distribution, independently

from the starting distribution.

The Master Equation for this stochastic model (including the “kinematic con-

straint”) can be easily written down:

∂

∂τ
P (v, τ) =

∫
dv2

∫
(v−v2)·n̂>0

dn̂[P(v′, τ)P(v′2, τ)−P(v, τ)P(v2, τ)] , (3.2)

where the primed velocities are the pre-collisional velocity of an elastic collision and

v2 is a generic post-collisional velocity vector.

Equation (3.2) is also well known in kinetic theory, as it belongs to the family

of the nonlinear Model-Boltzmann equations4: in this context it can be justified in

different ways, starting from the Boltzmann equation, e.g. in the following form:(
∂

∂t
+ vi

∂

∂ri

)
P (r,v, t) =

∫
dv2

∫
dn̂gI(g, χ)[P(r,v′, t)P(r,v′2, t)

−P(r,v, t)P(r,v2, t)] (3.3)

being g = |v − v2| and I(g, χ) the scattering cross-section which, for central in-

teraction potentials, depends only upon the relative velocity g and the scattering

angle χ.

If the particles of the gas interact via a power-law potential V (r) ∝ r−s, where

s = 2(d − 1) and d is the space dimension, then the term gI(g, χ) becomes a

function of only the scattering angle, obtaining the so-called Maxwell model kinetic

equation; if the collisional kernel gI(g, χ) is approximated to not depend upon the

scattering angle [eventually including the constraint (v − v2) · n̂ > 0], then, in the

spatially homogeneous case, Eq. (3.2) is obtained. This is sometimes referred to as

Krook–Wu model.4

Another way to justify Eq. (3.2) is in the context of hard spheres: for hard

spheres, in fact, gI(g, χ) ≡ |(v−v′) · n̂| and Eq. (3.2) can be immediately obtained,

as an approximation, with the assumption:

|(v− v′) · n̂| ∝
√

T(r, t) , (3.4)

i.e. the relative velocities of the colliding particles are assumed to be of the order of

the square-root of the local temperature of the gas. This leads to rewrite Eq. (3.3)

as: (
∂

∂t
+ vi

∂

∂ri

)
P (r,v, t) = S(r, t)

∫
dv2

∫
(v−v2)·n̂>0

dn̂[P(r,v′, t)P(r,v′2, t)

−P(r,v, t)P(r,v2, t)] . (3.5)

The pre-factor S(r, t) is proportional to
√
T (r, t). This derivation has been recently

proposed by Bobylev et al.17 The assumption of homogeneity changes the above
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equation in the following way:

∂P (v, t)

∂t
= S(t)

∫
dv2

∫
(v−v2)·n̂>0

dn̂[P(v′, t)P(v′2, t)−P(v, t)P(v2, t)] (3.6)

which reduces to (3.2) since the S(t) dependence (e.g. the time dependence of the

temperature) can be absorbed by a time reparametrization t→ τ .

Note that the main physical property that distinguishes the nonlinear equa-

tion (3.2) among the family of nonlinear Boltzmann equations (3.3) is the fact

that the collision rate is independent of the energy of the colliding particles. This

introduces a dramatic simplification.

3.2. Bobylev Fourier transforms and scaling solutions

Equation (3.2) can be recast in a more convenient way by employing the charac-

teristic function:

P̃ (k, τ) =

∫
dv exp{−ikv}P(v, τ) , (3.7)

that is the Fourier transform of P (v), obtaining

∂P̃ (k, τ)

∂τ
= −P̃ (k, τ) +

1

Ωd

∫
dn̂P̃

(
k

2
(k̂− n̂), τ

)
P̃

(
k

2
(k̂ + n̂), τ

)
. (3.8)

Here n̂ is a unit vector, and Ωd is the d-dimensional solid angle. In the derivation

of the last equation, we use the normalization condition, which reads for the char-

acteristic function P̃ (0, τ) = 1. The conservatin laws to be imposed to the solutions

are:

∇kP̃ (k, τ) |k=0 ≡ −i〈v〉 = 0 , (3.9a)

∇2
kP̃ (k, τ) |k=0 ≡ −〈v2〉 = −d , (3.9b)

where we choose, without loss of generality, solutions with zero momentum and

energy equal to d. Several studies have focused on the finding of families of self-

similar solutions of this equation of the kind

φ(exp(−λτ)k) . (3.10)

In fact such an expression violates the conservation law (3.9b). However

exploiting the “Bobylev symmetry”4 of the equation which makes Φs(k, τ) =

exp(−sk2/2)Φ(k, τ) a solution whenever Φ(k, τ) is a solution, then a similarity

solution can be found of the form

Φ(k, τ) = exp(−k2)φ(k exp(−λτ)) (3.11)

with a proper choice of λ. Coming back to the velocity distribution, this accounts

to finding a solution of the form

P (v, τ) =
1

(2π)d/2

∫
dw̃ exp(λτ)f(w exp(λτ)) exp

[
− (v−w)2

2

]
, (3.12)



May 20, 2002 12:0 WSPC/103-M3AS 00198

6 A. Baldassarri, A. Puglisi & U. Marini Bettolo Marconi

(where f is the inverse Fourier transform of φ) which gives the correct asymptotics

lim
τ→∞

P (v, τ) = (2π)−d/2 exp(−v2/2) , (3.13)

as expected from the H-theorem.

The problems with this techniques are due to the positivity of the final solution

which is not guaranteed or, given φ(x), not even easy to prove. A complete review

of methods and results is given in Ref. 4, together with a discussion on the so-called

Krook–Wu conjecture about the relevance of the scaling solutions.

3.3. Inelastic Maxwell models

An interesting inelastic version of the Ulam model has recently been proposed by

Ben Naim and Krapivsky (BK).13 As before, random pairs of particles are selected,

but now their velocities are updated accordingly with the collision rule (2.1a),

where the inelasticity is modeled through a restitution coefficient α. The Boltzmann

equation of the corresponding Maxwell model (3.2) is modified as follows:

∂P (v, τ)

∂t
=

∫
dv2

∫
(v−v2)·n̂>0

dn̂

[
1

α
P(v′, τ)P(v′2, τ)−P(v, τ)P(v2, τ)

]
. (3.14)

The inelasticity has several major consequences:

(1) In the absence of external energy injection the total kinetic energy of the fluid

decreases, i.e. the velocity distribution becomes narrower with time, i.e. the

granular temperature ε(τ) = 〈v2〉 decreases.

(2) While in the elastic case for d = 1 any initial distribution is left unchanged

by the dynamics since the particles upon colliding merely exchange their state,

when the collisions are inelastic the model becomes nontrivial and the equation

reads, setting β = 2/(1 + α):

∂tP (v, t) = β

∫
duP (u, t)P (βv + (1− β)u, t)− P (v, t) . (3.15)

The first term on the R.H.S. represents the average gain and the second the average

loss in the collision process.

Multiplying both sides of the equation by v2 and integrating, a closed equation

for the evolution of the energy can be obtained which gives:

ε(τ) = ε0 exp(−λτ) , (3.16)

where ε0 is the initial energy of the system, which can arbitrarily be chosen equal

to 1 without loss of generality, and λ depends on the restitution coefficient α

λ =
1− α2

2
. (3.17)

(The exponential decay of the energy can be simply proved for any dimension, with

λ = (1 − α2)/(2d).) The same result can be obtained starting from the Fourier

transformed equation, which reads:

∂τ P̃ (k, τ) + P̃ (k, τ) = P̃ [k/(1− β), τ ]P̃ [k/β, τ ] (3.18)
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differentiating twice with respect to k and computing the result for k = 0. In fact,

since P̃ (k, t) is the generating function for the moments of the distribution P (v, t),

then

∂2
kP̃ (k, t) |k=0= −〈v2〉 = −ε(τ) .

In principle the dissipative nature of the problem reintroduces the possibility of

finding a scaling solution of (3.18) of the form (3.10) for the Boltzmann equation,

at odds with the elastic case. This means finding a scaling solution

P (v, τ) =
f(v/v0(τ))

v0(τ)
, (3.19)

where v0 =
√
ε(τ) and f is the inverse Fourier transform of φ. Formally, a scaling

solution of this kind imposes a temporal dependence of the higher moments:

〈v2m〉 = v0(τ)
2mµ2m , (3.20a)

where

µ2m =

∫
dyf(y)y2m (3.20b)

does not depend on time.

Ben-Naim and Krapivsky showed that it is possible to write the equations for

every moment of the velocity distribution P (v, τ). The second moment has a closed

equation (which gives the simple exponential decay mentioned) while the others

depend on the lower order ones. They computed the asymptotic decay of every

moment and found that

lim
τ→∞

〈v2m〉
(〈v2〉)m =∞ .

Considering Eqs. (3.20), this result seems to rule out the very existence of a physical

scaling solution. For instance even if

φ(x) = (1 + x) exp(−x) (3.21)

is a valid scaling solution, it does not correspond to a real f , since it does not

satisfy:

φ(−x) = [φ(x)]† .

In fact this is not the case if one considers the possibility of a scaling function f with

diverging moments µ2m =∞ for m > 1. In such a case φ(x) should lose analyticity

for x = 0. For instance

φ(|x|) = (1 + |x|) exp(−|x|) (3.22)

corresponds to the positive

f(y) =
2

π[1 + y2]2
,
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whose large algebraic tails are the signature that moments higher then the second

diverge. Note the nonanalytic structure of (3.22) for x→ 0:

φ(x) = 1− 1

2
x2 − 1

3
|x|x2 + o(|x|x2) . (3.23)

The singular term |x|x2 is the counterpart of tail y−4 for large y � 1, i.e. of the

divergence of µ4.

A direct inspection shows that the corresponding velocity distribution

P (v, τ) =
2

πv0(τ)[1 + (v/v0(τ))2]2
(3.24)

is indeed a solution of the nonlinear Boltzmann equation, for every value of α.

In fact we believe that (3.24) represents the asymptotic solution for a large class

of initial distributions, for the following arguments:

(1) as shown by Ben Naim and Krapivsky, the dynamics of the moments for

a generic starting distribution can be computed, giving limt→∞〈v2m(t)〉/
〈v2(t)〉m =∞ for m > 1;

(2) secondly we performed numerical simulations of the BK model, collecting

evidence of the convergence to the solution (3.24) for several starting veloc-

ity distributions, namely uniform, exponential (see Fig. 1(a)) or Gaussian.

Interestingly the asymptotic probability distribution function (pdf) (3.24) does

not depend on the restitution parameter α. A similar asymptotic universality is

expected for a real one-dimensional granular gas, as shown by recent extensive

numerical simulations.8 However, when the BK model is generalized to vectorial

velocities, the tails of the pdf depend on α. Results of our numerical simulations

for the two-dimensional case are shown in Fig. 1(b). For α = 1 we recover the

asymptotic Maxwell distribution predicted by Ulam, whereas for α = 0 our data

suggest the formation of algebraic tails.
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Fig. 1. Asymptotic velocity distributions P (v, t) versus v/v0(t) for different values of α from the
simulation of the inelastic pseudo-Maxwell (Ulam’s) model in (a) 1D and (b) 2D.
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3.4. Higher dimensions

The numerical indication shown in Fig. 1 of large algebraic tails for d > 1 has

been recently confirmed by several analytical study.26,27 These works compute self-

consistently the exponents at every dimension considering the first singular term in

the x→ 0 behavior for the Fourier transformed scaling function φ(x). First consider

the isotropic solution

φ(x) = ψ(x2) .

If the corresponding scaling solution has algebraic tails for large y of the form

f(y) ∝ y−2a−d ,

then its Fourier transform for small values of its argument

ψ(z) ' 1 +
1

2
z +

∑
m<a

µ2m

(2m)!
zm +Aza + o(za) . (3.25)

In the one-dimensional case, for instance, the large y−4 tails correspond to a = 3/2,

i.e. ψ(z) ' 1 + z/2 + 1/3z3/2 + o(z3/2).

Inserting the form (3.25) in the Fourier transformed equation for the isotropic

scaling solution and equating the coefficients of equal powers of z an equation for

a can be obtained. We return to Refs. 11 and 27 for the detailed derivation of the

final transcendental equation

1− λ(a− d/2) =

∫ 1

0

Dµ[ξa−d/2 + ηa−d/2] , (3.26)

where

Dµ =
µ−1/2(1− µ)(d−2)/2

B(1/2, d−1
2 )

dµ , (3.27a)

ξ = 1− [3 + α(2− α)]
µ

4
, (3.27b)

η = (1 + α)
µ

4
(3.27c)

and λ = (1 − α2)/d, while B is the beta function which guarantees the proper

normalization
∫ 1

0
Dµ = 1.

Equation (3.26) (which can be solved numerically) gives the exponent a for a

generic dimension d > 1 and restitution coefficient α. In the elastic limit α→ 1 the

exponent a→∞, indicating that one recovers the Gaussian Boltzmann distribution

tail.

3.5. Relevance of mean-field models

In spite of these nontrivial features Mean Field models do not bear a strong re-

semblance with physical reality. Obviously, their mean field character prevents the

onset of any kind of inhomogeneities. On the other hand, theoretical approaches
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Fig. 2. Rescaled velocity distributions for the 1D MD and in the 1D lattice gas, during (a)
the homogeneous and (b) the inhomogeneous phase. (a) also shows the initial distribution (both
models). The distributions refer to systems having the same energy. Data refer to N = 106 (both
models) particles with α = 0.99 and α = 0.5 (for the lattice model in the inhomogeneous regime).

based on linear stability analysis predict three distinct and consecutive dynamical

regimes:9,11 homogeneous, inhomogeneous in the velocity field, inhomogeneous in

the velocity and density fields. Realistic tests of this state of affairs are provided by

Molecular Dynamics or Event Driven simulations (see for example Refs. 12 and 13

in 1D and Refs. 9, 11, 14, 19 and 20 in 2D or 3D). These simulations agree well with

the theory in the homogeneous regime, while in the correlated stage do not provide

a clear answer, since they become exceedingly demanding; in fact, the instabilities

appear only in large systems and at late times. However, even the homogeneous

cooling regime of a one-dimensional granular gas seems very different from that

predicted by the BK model. In Fig. 2(a), we show the velocity distribution before

the onset of extensive correlations in the velocity fields for a quasielastic systems.

In this case, and more generally for larger inelasticity, we observe a suppression of

the tails, in contrast with the algebraic behavior of (3.24).

4. Lattice Models

In a realistic description of the dynamics of granular gases one needs to account for

the spatial structure of the systems. In fact, one observes in numerical simulations

of hard inelastic bodies that the local average velocity and local average density

become non-uniform as the system evolves.

In such simulations, the evolution of a system of particles having initial random

positions and velocities consists of three different stages:11

(a) a completely homogeneous stage, extensively studied since the first contribu-

tion by Haff.21 In such a regime both the density and the velocity field are

homogeneous. The energy decays, after a very brief transient of the order of a
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collision per particle, as

ε(t) =

∑N
i=1 |vi(t)|2

N
∼ t−2 , (4.28)

which corresponds to an exponential decay

ε(τ) ∼ exp(−λτ) , (4.29)

if the time is measured by the number of collisions per particle τ .

(b) a second stage in which the density is still homogeneous, but the velocity field

develops inhomogeneities and the energy decay exhibits a power-law behavior in

the number of collisions τ , which depends on the dimensionality of the ambient

space;

(c) a third stage in which the density field also exhibits strong inhomogeneities.

The three stages are clearly separated (at least for not too high inelasticity).

Analytical confirmations of this scenario have been obtained by means of linear sta-

bility analysis of the macroscopic (hydrodynamics) description of the system.9–11.

Studies of the deviations from homogeneity have been obtained by means of fluc-

tuating hydrodynamics analysis11 and mode-coupling theory,14 obtaining scaling

forms for the structure factors of the velocity and density fields and estimates for

the asymptotic energy decay.

In the following sections, we shall deal with a natural extension of the Maxwell

models, able to incorporate the correlations which characterize the more realis-

tic descriptions of granular gases. This extension is obtained by placing immobile

particles, endowed with a velocity, on the nodes of a regular lattice (with peri-

odic boundary conditions). The evolution of the system is obtained by choosing a

random nearest neighbor pair and updating their velocities according to the trans-

formation Eq. (2.1), where now σ̂ represents the unit vector pointing from site j

to i. In this model the time is measured by means of the number of collisions per

particle τ . We shall show that such a model captures the formation of dynamical

correlations.

In the lattice model the particles are fixed to their lattice positions, so that there

is no relation between their velocities and their displacements. As a consequence the

proposed lattice models fail to describe stage c), because we are not including den-

sity inhomogeneities. Nevertheless they are able to probe the physically interesting

regime characterized by an inhomogeneous velocity field.

The velocity field initially prepared in a state characterized by random uncorre-

lated velocities, remains homogeneously random (i.e. without correlations) during a

first dynamical stage, in agreement with the so-called Homogeneous Cooling Regime

(or Haff regime) observed in simulations of inelastic hard bodies. Afterwards, one

observes the formation of spatial correlations in the velocity field, in the form of

structured domains, i.e. shocks and vortices. This is analogous to the formation of

magnetic domains in standard quench processes.
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In fact, the free cooling process bears a strong resemblance with a quench

from an initially stable disordered phase to a low temperature phase in a mag-

netic system.1 In the granular case the relaxation occurs due to the inelasticity.

Since many possible configurations are compatible with the linear and angular mo-

mentum conservation and compete in order to minimize the energy dissipation,

the system does not relax immediately towards a motionless state, but displays a

behavior similar to that observed in a coarsening process.

We have studied one-5,6 and two-dimensional7,6 versions of this lattice model

and some results will be briefly discussed below.

4.1. One-dimensional models

One-dimensional models represent a favorite playground for theoretical physi-

cists and in fact systems of inelastic hard rods on a ring have extensively been

studied.8,12,16 Here we want just to briefly show the results for the velocity dis-

tributions obtained with our lattice model. At odds with the BK (scalar) model,

the one-dimensional lattice model seems to recover quantitatively the distributions

measured in the inelastic hard rod system, in both the homogeneous and the inho-

mogeneous phase.

In Fig. 2 we show the good agreement obtained with comparing velocity prob-

ability distribution function of the lattice model and that measured in Molecular

Dynamics simulations of the inelastic hard rod gas.

• in the left frame the velocity probability distribution function in the early homo-

geneous regime of a nearly elastic system (α = 0.99) is shown: it displays the char-

acteristic two-peaks form that has been predicted by Benedetto et al.15 studying

the quasielastic limit of the corresponding Boltzmann equation; for larger inelas-

ticities the formation of the peaks is less evident, but a suppression of the tails

is generically observed;

• for larger times the asymptotic probability distribution function turns Gaussian

in both models, contrary to the expectation, based on the Burgers equation, that

the tails of the velocity probability distribution function should be of the form

exp(−v3).

The tentative of comparing the lattice model against the Inelastic Hard Rod

model encounters a major obstacle in the functional form of the energy decay,

which has been measured to be ∼ t−2/3 in the IHR model, while is ∼ τ−1/2 in

the lattice model: in order to directly compare those results, the mapping τ → t is

needed, but this has been observed to depend upon the particular regularization of

the dynamics used to avoid the inelastic collapse in the simulations of the IHR.8

Other features, such as shock fronts, observed in recent extensive simulations of

hard rods,8 have their counterparts in our one-dimensional lattice model and are

discussed in detail in Ref. 5.
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4.2. Two-dimensional lattice model

In the present section we consider a slightly more realistic situation: a system of

particles sitting on a regular two-dimensional triangular lattice and endowed with

a two-dimensional velocity.7

The cross-over from the homogeneous to the inhomogeneous regime is again

manifest in the change of the energy decay law. As shown in Fig. 3, at first the

average energy per particle ε(τ) =
∑
vi(τ)

2/N decreases exponentially at a rate λ =

(1−α2)/4. This behavior reflects the fact that each velocity evolves independently

of the others.21 On the other hand, for times larger than tc ∼ λ−1, a second regime

arises, where correlations play a major role and the average energy per particle

decays as ε(t) ∼ t−1.

During the early stage the velocity probability distribution function changes,

as already explained in the case of the one-dimensional lattice model. In two di-

mensions, during the early regime the velocity distribution deviates sensibly from

a Maxwell distribution and shows more pronounced high velocity tails. These tails

seem to be determined by the lack of spatial correlations up to tc. As soon as the

energy begins to decay as t−1 the velocity distribution changes to a Gaussian.

The inelasticity of the collisions and the presence of the Θ have the effect of re-

ducing the quantity (−(vi−vj)·σ̂), i.e. inducing an alignment of the velocities. The

most dramatic consequence, in two dimensions, is the spontaneous formation of vor-

tices as shown in Fig. 4. Vortices form spontaneously and represent the boundaries

between regions which selected different orientations of the velocities during the

quench and are an unavoidable consequence of the conservation laws which forbid

the formation of a single domain (conservation of linear and angular momentum).
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Fig. 3. Energy decay for α = 0.9 and α = 0.2 (10242 sites) in the two-dimensional lattice
model. The dashed line ∼ 1/τ is a guide to the eye for the asymptotic energy decay. In the insets
we reported the scale-dependent temperature, Tσ , defined in the text, as function of the coarse
graining size σ for τ = 47 and τ = 1720. The total energy per particle and Tσ remain nearly
indistinguishable in the early incoherent regime, but for σ < L(τ) the thermal energy becomes
much smaller than the kinetic energy, a clear indication of the onset of macroscopic spatial order.



May 20, 2002 12:0 WSPC/103-M3AS 00198

14 A. Baldassarri, A. Puglisi & U. Marini Bettolo Marconi

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Fig. 4. A (zoomed) snapshot of the velocity field at time t = 52 for the lattice model in two
dimensions, d = 2, with α = 0.7 and size N = 512 × 512. The time has been chosen at the
beginning of the correlated regime. The presence of vortices is evident. All the velocities have
been rescaled to arbitrary units, in order to be visible.

Such a cross-over between homogeneous and inhomogeneous phase can be directly

investigated studying the statistical properties of the velocity field. The charac-

terization of structures is achieved by means of correlation functions Gij(r, t) or

structure factors Sij(k, t), which are their Fourier transforms:

Gij(r, t) =
1

V

∫
dr′〈δvi(r + r′, t)δvj(r

′, t)〉 , (4.30a)

Sij(k, t) =
1

V
〈δvi(k, t)δvj(−k, t)〉 =

∫
dre−ik·rGij(r, t) , (4.30b)

where V = Ld is the volume of the system and i, j are Cartesian components.

The function Sij is an isotropic tensor and can be decomposed in two scalar

isotropic functions:

Sij(k, t) = k̂ik̂jS‖(k, t) + (δij − k̂ik̂j)S⊥(k, t) . (4.31)

It is immediate to verify that, if the vector v is decomposed into (d − 1) com-

ponents v⊥ perpendicular to k and one component v‖ parallel to k, then

S‖(k, t) =
1

V
〈δv‖(k, t)δv‖(−k, t)〉 , (4.32a)

S⊥(k, t) =
1

V
〈δv⊥(k, t)δv⊥(−k, t)〉 . (4.32b)

These correlation functions (shown in Fig. 5) represent a useful statistical in-

dicator of the spatial order of the system and are often employed to describe the

ordering process in reaction–diffusion processes. There one finds the remarkable

phenomenon known as dynamical scaling. In other words, there exists at late times

of the evolution a single characteristic length scale L(t) such that the domain struc-

ture is in a statistical sense independent of time when lengths are scaled by L(t).
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Fig. 5. Data collapse of the transverse (St) and longitudinal (Sl) structure functions for α = 0.
and α = 0.9 (system size 10242 sites, times ranging from t = 500 to t = 104). The wave number
k has been multiplied by

√
t. Notice the presence of the plateaus for the more elastic system. For

comparison we have drawn the laws x−4 and exp(−x2).

The existence of a single characteristic length scale implies that the pair correlation

function and the structure factor have the scaling form:

G‖(⊥)(r, t) = f‖(⊥)(r/L(t)) , (4.33a)

S‖(⊥)(k, t) = L(t)dg‖(⊥)(kL(t)) . (4.33b)

In our case, the Fourier transform S‖(⊥)(k, t) turns out to be a function of a

single scaling argument ktz where z is the so-called growth exponent.

The scaling of the structure factors is illustrated by the good data collapse in

Fig. 5, which identifies two growing lengths L‖(⊥)(t) both proportional to t1/2.

The form of the energy decay, the distribution of the velocity field and the

growth L‖(⊥)(t) seem to suggest that the evolution can be represented by some

effective diffusive dynamics. In fact, in the absence of the kinematic constraint

the evolution of the velocity field would be satisfactorily described by an effective

diffusion equation.

The analysis of the structure functions S‖(⊥)(k, t), instead, indicates the pres-

ence of a long-wavelength region which is diffusive in character, whereas at interme-

diate wavelength the structure functions decay according as k−β with β ∼ 4. Finally

a plateau region is observed (for α > 0) where S‖(⊥)(k, t) remain nearly constant

with respect to k, but decay in time with a power law t−2. The observed interme-

diate and small wavelength behaviors have no counterparts in the pure diffusive

model, where one always observes Gaussian structure functions.

The L−2(t)k−4 intermediate region in the structure functions is understood sim-

ply as a consequence of the existence of topological defects in the velocity field. Such

a phenomenon is known in the area of phase ordering processes as the generalized

Porod’s law.1,22 In the cooling process in d = 2 is the signature of the presence of

a particular kind of topological defects, namely vortices.

With the random initial conditions adopted, vortices are born at the smallest

scales and subsequently grow in size by pair annihilation, conserving the total
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Fig. 6. Probability densities of the longitudinal and transverse velocity increments. The main
figure shows the p.d.f. of the velocity gradients (R = 1). The inset shows the Gaussian shape
measured for R = 40 (larger than L(t) for this simulation: α = 0.2, t = 620, system size 20482).

charge. By locating the vortex cores, we measured the vortex density ρv(τ), which

represents an independent measure of the domain growth, and in fact it decays

asymptotically (when τ � tc) as an inverse power of time:

Lv(τ) = ρ−1/2
v (τ) ∝ τ1/2 . (4.34)

The vortex distribution turns out to be not uniform for α not too small. Its

inhomogeneity is characterized by the correlation dimension d2, defined through

the cumulated correlation function:

H(R) =

∑
i<j Θ(R− (ri − rj))

N2
v

∼ Rd2 , (4.35)

where ri are the core locations. For α → 1 the vortices are clusterized (d2 < 2)

i.e. do not fill homogeneously the space, whereas at smaller α their distribution

becomes homogeneous (d2 → 2).

Vortices are not the only topological defects of the velocity fields. In fact we

observe shocks, similarly to recent experiments in rapid granular flows.23 Shocks

have a major influence on the statistics of the velocity field, i.e. on the probability

distributions of the velocity increments. The probability density function (p.d.f.)

of the longitudinal increment is shown in Fig. 6 for R = 1 (longitudinal velocity

gradient) in the main frame, and for R = 40 > L(t) in the inset. For small R� L(t)

the longitudinal increment p.d.f. is skewed with an important positive tail, whereas

for R� L(t) it becomes Gaussian. The distribution of transverse increments

(vi+R − vi)× R̂ , (4.36)

instead, is always symmetric, but non-Gaussian distributed for small R. A similar

situation exists in fully developed turbulence.24

Though vortices and shocks explain the power law decay of the structure fac-

tors, the plateau in the tail of the structure function is related to the so-called



May 20, 2002 12:0 WSPC/103-M3AS 00198

Kinetics Models of Inelastic Gases 17

internal noise, i.e. to the presence of short range spatial fluctuations induced by the

collisions.11 A small α determines a rapid locking of the velocities of neighboring

elements to a common value, while in the case of α → 1, short range small am-

plitude disorder persists within the domains, breaking simple scaling of S‖(⊥) for

large k and having the effect of a self-induced noise.

The internal noise observed in the study of the longitudinal and transversal

structure factor can be characterized by means of an average local granular tem-

perature Tσ:

Tσ = 〈|v − 〈v〉σ |2〉σ , (4.37)

where 〈· · ·〉σ means an average on a region of linear size σ.

If we call L(t) a characteristic correlation length of the system, since when σ �
L(t) the local average tends to the global (zero) momentum, then limσ→∞ Tσ = E

For σ < L(t), instead, Tσ < E. The behavior of Tσ in the uncorrelated (Haff)

regime and in the correlated (asymptotic) regime for two different values of α is

presented in the inset of Fig. 3.

A very important observation is the following: for quasielastic systems Tσ ex-

hibits a plateau for 1� σ � L(t) that identifies the strength of the internal noise

and individuates the mesoscopic scale necessary to find a hydrodynamic description.

The local temperature ceases to be well-defined for smaller α: this clearly suggests

the absence of scale separation between microscopic and macroscopic fluctuations

in the strongly inelastic regime.7,25

5. Conclusions

To conclude, we have studied the kinetics of granular gases using different mod-

els and following a path of increasing complexity: the mean field inelastic Maxwell

model (or Ulam model) has an exact asymptotic solution for scalar velocities and,

in general, displays power-law velocity tails; however it cannot account for spatial

correlations and therefore is a very poor approximation of an inelastic gas. The suc-

cessive step is putting the same model onto a spatial lattice: in one dimension, with

scalar velocities, this lattice version displays a very good agreement with the kinet-

ics of an inelastic hard rod gas, in particular it reproduces the velocity distributions

in the first Haff regime and in the consequent regime. The last step of this modeling

procedure is to study the lattice model in two dimensions, with vectorial velocity

field. In this model the expected asymptotic decay of the energy is reproduced and

the dynamics of the growth of correlations in the velocity field is investigated by

measuring the structure factors. The analysis of the structure factors and the study

of other statistical properties (e.g. the distribution of the velocity gradients) indi-

cate that the evolution of the model is consistent with that of a diffusive model

with corrections due to the kinematic constraint.
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