Fluctuations in a diffusive medium with gain

Stefano Lepri

Istituto dei Sistemi Complessi ISC-CNR Firenze

An amplifying random medium

An amplifying random medium

An amplifying random medium

Length scales

Sample size	L
Mean free path	ℓ
Path length	l
Gain length	ℓ_G
$I(l) = I_0 \exp(l/\ell_G)$	

L

Length scales

Sample size	L
Mean free path	ℓ
Path length	l
Gain length	ℓ_G
$I(l) = I_0 \exp(l/\ell_G)$	

- Diffusive regime, $\lambda \ll \ell$: $D = v\ell/3$
- If the path is long enough amplification occurs: "random laser"

Fluctuations in emission spectra

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma Phys. Rev. Lett. 93, 053903 (2004).

Diffusive estimates

- Distribution of path lengths: $p(l) = \frac{\exp(-l/\langle l \rangle)}{\langle l \rangle}$
- First-passage time estimate: $\langle l \rangle = \frac{v}{D\Lambda}$ Λ smallest eigenvalue of ∇^2 (e.g $\Lambda = q^2$, $q = \pi/L$ for slab of height L)
- Amplification: $I(l) = I_0 \exp(l/\ell_G)$

Distribution of emitted intensities:

$$p(I) = \frac{\ell_G}{\langle l \rangle} I^{-(1+\alpha)} , \qquad \alpha = \frac{\ell_G}{\langle l \rangle}$$

Diffusive estimates

- Distribution of path lengths: $p(l) = \frac{\exp(-l/\langle l \rangle)}{\langle l \rangle}$
- First-passage time estimate: $\langle l \rangle = \frac{v}{D\Lambda}$ Λ smallest eigenvalue of ∇^2 (e.g $\Lambda = q^2$, $q = \pi/L$ for slab of height L)

• Amplification: $I(l) = I_0 \exp(l/\ell_G)$

Distribution of emitted intensities:

$$p(I) = \frac{\ell_G}{\langle l \rangle} I^{-(1+\alpha)} , \qquad \alpha = \frac{\ell_G}{\langle l \rangle}$$

Diffusive estimates

- Distribution of path lengths: $p(l) = \frac{\exp(-l/\langle l \rangle)}{\langle l \rangle}$
- First-passage time estimate: $\langle l \rangle = \frac{v}{D\Lambda}$ Λ smallest eigenvalue of ∇^2 (e.g $\Lambda = q^2$, $q = \pi/L$ for slab of height L)
- Amplification: $I(l) = I_0 \exp(l/\ell_G)$

Distribution of emitted intensities:

$$p(I) = \frac{\ell_G}{\langle l \rangle} I^{-(1+\alpha)} , \qquad \alpha = \frac{\ell_G}{\langle l \rangle}$$

Diffusive estimates

- Distribution of path lengths: $p(l) = \frac{\exp(-l/\langle l \rangle)}{\langle l \rangle}$
- First-passage time estimate: $\langle l \rangle = \frac{v}{D\Lambda}$ Λ smallest eigenvalue of ∇^2 (e.g $\Lambda = q^2$, $q = \pi/L$ for slab of height L)
- Amplification: $I(l) = I_0 \exp(l/\ell_G)$

Distribution of emitted intensities:

$$p(I) = \frac{\ell_G}{\langle l \rangle} I^{-(1+\alpha)} , \qquad \alpha = \frac{\ell_G}{\langle l \rangle}$$

Diffusive estimates

- Distribution of path lengths: $p(l) = \frac{\exp(-l/\langle l \rangle)}{\langle l \rangle}$
- First-passage time estimate: $\langle l \rangle = \frac{v}{D\Lambda}$ Λ smallest eigenvalue of ∇^2 (e.g $\Lambda = q^2$, $q = \pi/L$ for slab of height L)
- Amplification: $I(l) = I_0 \exp(l/\ell_G)$

Distribution of emitted intensities:

$$p(I) = \frac{\ell_G}{\langle l \rangle} I^{-(1+\alpha)} , \qquad \alpha = \frac{\ell_G}{\langle l \rangle}$$

- $\bullet~{\rm for}~\alpha>2:$ standard central limit theorem, Gaussian statistics
- for $0 < \alpha \leq 2$, $\langle I^2 \rangle = \infty!$ Lèvy statistics;
 - a single rare event dominates the overall emission ("lucky photons")
 - fluctuations do not average out: "irreproducible" results.....
 - dependence on the size, nr. of measurements etc.

- $\bullet\,$ for $\alpha>2:$ standard central limit theorem, Gaussian statistics
- for $0 < \alpha \leq 2$, $\langle I^2 \rangle = \infty!$ Lèvy statistics;
 - a single rare event dominates the overall emission ("lucky photons")
 - fluctuations do not average out: "irreproducible" results.....
 - dependence on the size, nr. of measurements etc.

- $\bullet\,$ for $\alpha>2:$ standard central limit theorem, Gaussian statistics
- for $0 < \alpha \leq 2$, $\langle I^2 \rangle = \infty!$ Lèvy statistics;
 - a single rare event dominates the overall emission ("lucky photons")
 - fluctuations do not average out: "irreproducible" results.....
 - dependence on the size, nr. of measurements etc.

- for $\alpha > 2$: standard central limit theorem, Gaussian statistics
- for $0 < \alpha \leq 2$, $\langle I^2 \rangle = \infty!$ Lèvy statistics;
 - a single rare event dominates the overall emission ("lucky photons")
 - fluctuations do not average out: "irreproducible" results.....
 - dependence on the size, nr. of measurements etc.

- $\bullet\,$ for $\alpha>2:$ standard central limit theorem, Gaussian statistics
- for $0 < \alpha \leq 2$, $\langle I^2 \rangle = \infty!$ Lèvy statistics;
 - a single rare event dominates the overall emission ("lucky photons")
 - fluctuations do not average out: "irreproducible" results.....
 - dependence on the size, nr. of measurements etc.

Ensemble of M random walkers with positions x_i and energy E_i

- Spontaneous emission: At each t start a new walker with probability $\gamma \Delta t$ ($\gamma = sp.$ em. rate of the single atom) and energy ε , $M \longrightarrow M + 1$
- **Diffusion:** Parallel and asynchronous update of the walkers positions: $x_i \rightarrow x_i \pm a_i$
- Absorption: remove walkers at the boundaries x = 0, L, record E_i and let M → M − 1.
- Stimulated emission: For $i = 1, ..., M \ E \to E + \varepsilon$ ($\varepsilon = 1$), with a gain rate $\Gamma(E)$ e.g

$$\label{eq:gamma} \begin{split} \Gamma(E) &= \gamma E \qquad \text{"linear gain" or} \\ \Gamma(E) &= \gamma E/(1+E/E_s) \qquad \text{"saturation"} \end{split}$$

Ensemble of M random walkers with positions x_i and energy E_i

- Spontaneous emission: At each t start a new walker with probability $\gamma \Delta t$ ($\gamma = sp.$ em. rate of the single atom) and energy ε , $M \longrightarrow M + 1$
- Diffusion: Parallel and asynchronous update of the walkers positions: $x_i \rightarrow x_i \pm a_i$
- Absorption: remove walkers at the boundaries x = 0, L, record E_i and let M → M − 1.
- Stimulated emission: For $i = 1, ..., M \to E + \varepsilon$ ($\varepsilon = 1$), with a gain rate $\Gamma(E)$ e.g

$$\label{eq:gamma} \begin{split} \Gamma(E) &= \gamma E \qquad \text{"linear gain" or} \\ \Gamma(E) &= \gamma E/(1+E/E_s) \qquad \text{"saturation"} \end{split}$$

Ensemble of M random walkers with positions x_i and energy E_i

- Spontaneous emission: At each t start a new walker with probability $\gamma \Delta t$ ($\gamma = sp.$ em. rate of the single atom) and energy ε , $M \longrightarrow M + 1$
- Diffusion: Parallel and asynchronous update of the walkers positions: $x_i \rightarrow x_i \pm a_i$
- Absorption: remove walkers at the boundaries x = 0, L, record E_i and let $M \to M 1$.
- Stimulated emission: For $i = 1, ..., M \to E + \varepsilon$ ($\varepsilon = 1$), with a gain rate $\Gamma(E)$ e.g

$$\label{eq:gamma} \begin{split} \Gamma(E) &= \gamma E \qquad \text{"linear gain" or} \\ \Gamma(E) &= \gamma E/(1+E/E_s) \qquad \text{"saturation"} \end{split}$$

Ensemble of M random walkers with positions x_i and energy E_i

- Spontaneous emission: At each t start a new walker with probability $\gamma \Delta t$ ($\gamma = sp.$ em. rate of the single atom) and energy ε , $M \longrightarrow M + 1$
- Diffusion: Parallel and asynchronous update of the walkers positions: $x_i \rightarrow x_i \pm a_i$
- Absorption: remove walkers at the boundaries x = 0, L, record E_i and let $M \to M - 1$.
- Stimulated emission: For $i = 1, ..., M \ E \to E + \varepsilon$ ($\varepsilon = 1$), with a gain rate $\Gamma(E)$ e.g

 $\Gamma(E) = \gamma E$ "linear gain" or $\Gamma(E) = \gamma E/(1 + E/E_s)$ "saturation"

Single walker

Langevin limit:

$$\dot{x} = \sqrt{2D}\,\xi, \quad \dot{E} = \Gamma(E) + \sqrt{\Gamma(E)}\,\eta$$

 ξ,η are δ -correlated Gaussian, $\langle\xi\rangle=0~\langle\xi^2\rangle=\langle\eta^2\rangle=1$ Fokker-Planck eq. for P(x,E,t)

$$\dot{P} = D\frac{\partial^2 P}{\partial x^2} - \frac{\partial}{\partial E} \left(\Gamma P - \frac{1}{2}\frac{\partial\Gamma P}{\partial E}\right)$$

Boundary conditions on $[0, L] \times [1, \infty)$:

- Absorbtion: P(0, E, t) = P(L, E, t) = 0
- Coupling of diffusion and gain processes : eq for $P(x, 1, t) \equiv f(x, t)$

$$\dot{f} = Df'' - \gamma f + \gamma$$

- Solve by separation of variables $P(x, E) = Q(x)W(E) Q \sim \sin(kx)$ with $k = m\pi/L$ (*m* integer)
- Approximate solution (single mode m = 1); for linear gain

$$P(x,E) \propto \frac{\sin\left(\frac{\pi x}{L}\right)}{E^{1+\alpha}}$$

where $\gamma_c \equiv D(\pi/L)^2$ and $\alpha \equiv \gamma_c/\gamma$

• "Laser threshold" $\gamma = \gamma_c$: Cauchy-like tail $\alpha = 1$, $P(x, E) \propto E^{-2}$,

For many walkers x_i, E_i let $\phi(x, t) = \sum_i^{M(t)} E_i \, \delta \, (x - x_i(t))$, stochastic calculus

Langevin equation

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \Gamma(\phi) + \frac{\partial}{\partial x} (v\phi) + s$$

For many walkers x_i, E_i let $\phi(x,t) = \sum_i^{M(t)} E_i \,\delta \,(x - x_i(t))$, stochastic calculus

Langevin equation

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \Gamma(\phi) + \frac{\partial}{\partial x} (v\phi) + s$$

Diffusion and gain: Lethokov equation for random lasers (1968) Threshold at γ_c , absorbing b. $\phi(0,t) = \phi(L,t) = 0$

For many walkers x_i, E_i let $\phi(x, t) = \sum_i^{M(t)} E_i \,\delta(x - x_i(t))$, stochastic calculus

Langevin equation

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \Gamma(\phi) + \frac{\partial}{\partial x} (v\phi) + \mathbf{s}$$

Additive noise from spontaneous emission, Poisson process

$$\phi \to \phi + \varepsilon$$

at random times, $\langle s \rangle = \gamma$.

For many walkers x_i, E_i let $\phi(x, t) = \sum_i^{M(t)} E_i \, \delta \, (x - x_i(t))$, stochastic calculus

Langevin equation

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \Gamma(\phi) + \frac{\partial}{\partial x} (v\phi) + s$$

Random advection

$$\langle v(x,t)v(x',t')\rangle = D\ell\Delta(x-x')\delta(t-t')$$

 Δ short-range correlated in space

Remarks

Linear gain:

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \gamma \phi + \frac{\partial}{\partial x} (v\phi) + s$$

- Model for active scalar [Deutsch 1993]
- Random advection + additive noise ----- power-laws
- Mean-field solution $\bar{\phi}(x)$ unstable at $\gamma = \gamma_c$
- Important differences:
 - Finite system, dissipation
 - ② Two sources of add. noise: $s, \ \partial(var{\phi})/\partial x$
 - Advective term is a finite-size effect! From dimensional analysis (in d dimensions):

 $\lambda(L)\nabla\cdot(\mathbf{u}\phi) \quad \lambda\propto(\ell/L)^{\frac{d}{2}}$

Remarks

Linear gain:

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} + \gamma \phi + \frac{\partial}{\partial x} (v\phi) + s$$

- Model for active scalar [Deutsch 1993]
- Random advection + additive noise ----- power-laws
- Mean-field solution $\bar{\phi}(x)$ unstable at $\gamma = \gamma_c$
- Important differences:
 - Finite system, dissipation
 - 2 Two sources of add. noise: s, $\partial(v\bar{\phi})/\partial x$
 - Advective term is a finite-size effect! From dimensional analysis (in d dimensions):

 $\lambda(L)\nabla\cdot(\mathbf{u}\phi) \quad \lambda\propto(\ell/L)^{\frac{d}{2}}$

Intermittency

Discretization on the lattice:

$$\dot{\phi}_{i} = D\left[\phi_{i+1} + \phi_{i-1} - 2\phi_{i}\right] + \Gamma(\phi_{i}) + \frac{1}{2}(v_{i+1}\phi_{i+1} - v_{i-1}\phi_{i-1}) + s_{i}$$

 $\langle v_i^2\rangle=D\ell \ \phi_0=\phi_{N+1}=0, \ v_1=v_N=0; \ \sum_i \phi_i \ {\rm conserved}.$

Statistics

Finite-time Lyapunov

Comparison with experiments

Levý statistics compatible with data, different regimes

Stefano Lepri (ISC-CNR)

Comparison with experiments

Comparison with experiments

Range of Levý statistics reduces decreasing the mean-free-path

Outlook

- Random amplifying media;
- A statistical explanation for fluctuations in the emission spectra;
- Langevin equation for the energy density with multiplicative random advection term
- Gaussian and Lèvy regimes
- Effective noise strength $\lambda(L)\sim (\ell/L)^{\frac{d}{2}}\colon$ criterion for different statistical regimes
- Comparison with experiments

S. L., Phys. Rev. Lett. 110, 230603 (2013) E. Ignesti et al. Phys. Rev. A 88, 033820 (2013)

Outlook

- Random amplifying media;
- A statistical explanation for fluctuations in the emission spectra;
- Langevin equation for the energy density with multiplicative random advection term
- Gaussian and Lèvy regimes
- Effective noise strength $\lambda(L)\sim (\ell/L)^{\frac{d}{2}}\colon$ criterion for different statistical regimes
- Comparison with experiments

S. L., Phys. Rev. Lett. 110, 230603 (2013) E. Ignesti et al. Phys. Rev. A 88, 033820 (2013)