Stochastic perturbation of integrable systems

Khanh Dang Nguyen Thu Lam and Jorge Kurchan

LPS-ENS, Paris

Giovanni Paladin

Integrable systems

N independent constants of motion

Action $(I_1,...I_N)$ and Angle $(\theta_1,...,\theta_N)$ variables

Action-angle representation

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$

$$\begin{split} \dot{I}_i &= -\frac{\partial H}{\partial \theta_i} \\ \dot{\theta}_i &= \frac{\partial H}{\partial I_i} = \omega_i (\mathbf{I}) \end{split}$$

Flow is *laminar*, restricted to tori $I_i = const$, $\theta_i = \omega_i t$

Topology: stationary points and separatrices

We perturb with weak, additive noise

$$\begin{aligned} \dot{q}_i &= \frac{\partial H}{\partial p_i} \\ \dot{p}_i &= -\frac{\partial H}{\partial q_i} + \varepsilon^{\frac{1}{2}} \xi_i(t) \end{aligned}$$

mostly consider the case in which the $\xi(t)$ are white noises:

$$\langle \xi(t) \rangle = 0,$$
 and $\langle \xi(t)\xi(t') \rangle = 2\delta(t-t').$

In the action-angle variables, the noise is no longer additive, and reads:

$$\begin{split} \dot{I}_i &= \varepsilon^{\frac{1}{2}} \sum_k \{I_i, q_k\} \xi_k(t) \\ \dot{\theta}_i &= \omega_i + \varepsilon^{\frac{1}{2}} \sum_k \{\theta_i, q_k\} \xi_k(t) \end{split}$$

Surprise: a Lyapunov instability appears

two trajectories subjected to the *same* noise diverge exponentially

Hydrodynamic analogy: Taylor's diffusion

$$H = I - \frac{1}{6}I^3$$
; $\omega(I) = 1 - \frac{1}{2}I^2$,

and let us choose:

$$\{\theta, q\} = \sqrt{2}\cos\theta.$$

so that:

$$\dot{\theta} = \omega(I)$$

 $\dot{I} = -(2\varepsilon)^{\frac{1}{2}} \sin \theta \xi(t)$

Ordinary diffusion, Taylor diffusion and Lyapunov regimes

To leading order, everything happens

along the flow (on the tori)

$$\dot{u}_{\theta i} = \sum_{j} \frac{\partial^{2} H}{\partial I_{j} \partial I_{i}} u_{Ij}$$
$$\dot{u}_{Ii} = \sum_{kj} \frac{\partial^{2} q_{k}}{\partial \theta_{i} \partial \theta_{j}} (\varepsilon^{-\alpha} t) \xi_{k}(t) u_{\theta j}$$

$$egin{array}{rcl} \dot{u}_{ heta} &=& \displaystylerac{d^2 H}{dI^2} \, u_I \ \dot{u}_I &=& \displaystyle
ho(t) u_{ heta} \end{array}$$

with
$$\overline{\rho(t)\rho(t')} = \delta(t-t')\Lambda_{II\theta\theta}$$
.

$$\Lambda_{II\theta\theta} = \overline{\left(\frac{\partial^2 q}{\partial \theta^2}\right)^2} = \overline{\left(\frac{\ddot{q}}{\omega(I)^2}\right)^2}$$

$$\dot{u}_{\theta} = \frac{d^2 H}{dI^2} u_I$$
$$\dot{u}_I = \rho(t) u_{\theta}$$

$$\ddot{u}_{ heta} = rac{d^2 H}{dI^2}
ho(t) u_{ heta}$$
put $z = rac{\dot{u}_{ heta}}{u_{ heta}}$

$$\ddot{u}_{\theta} - \frac{d^2 H}{dI^2} \rho(t) \ u_{\theta} \qquad ; \qquad \dot{z} - z^2 = \rho(t)$$

we connect with Halperin, Gardner-Derrida, Mallick-Marcq, ...

And we get, for the Lyapunov exponent

$$\lambda = \omega'(I)\langle z \rangle = \left(\frac{3}{2}\right)^{1/3} \frac{\sqrt{\pi}}{\Gamma(\frac{1}{6})} \left(\varepsilon \overline{(\ddot{q})^2} \left(\frac{1}{\omega} \frac{d\omega}{dH}\right)^2\right)^{1/3}$$

in terms of the average of \ddot{q} over a cycle

٠

Separatrices: the pendulum $H = \frac{1}{2} p^2 + 1 - \cos q$

$$\lambda = \omega'(I)\langle z \rangle = \left(\frac{3}{2}\right)^{1/3} \frac{\sqrt{\pi}}{\Gamma(\frac{1}{6})} \left(\varepsilon \overline{(\ddot{q})^2} \left(\frac{1}{\omega} \frac{d\omega}{dH}\right)^2\right)^{1/3}$$

Separatrices: the pendulum

$$H = \frac{1}{2} p^2 + 1 - \cos q$$

For $\delta \equiv |H-2|$, one may compute

$$\omega(\delta \to 0) \simeq \frac{\pi}{|\log \delta|} \to 0$$

$$\frac{1}{\omega}\frac{d\omega}{dH} \sim \frac{1}{\delta|\log \delta|} \to \infty.$$

 $\varepsilon^{-\frac{1}{3}}\lambda \to \infty.$

The angle α of the Lyapunov vector with the torus

$$\alpha = \arctan z = \arctan\left(\frac{u_I}{u_\theta}\right)$$

The angle α follows a Langevin equation:

$$\dot{\alpha} \approx -\frac{dV}{d\alpha} + \frac{1}{\tau\omega'} \xi(t)$$
$$V(\alpha) = \frac{\omega'}{2} \left(\alpha - \frac{1}{2} \sin 2\alpha - small \right)$$

Evolution of the angle

is punctuated by fast phase-slips

A numerical example

Meanwhile, the modulus grows steadily between slips

One finds a universal result: $\langle t_{slip} \rangle = 1.81 \tau_{\lambda}$

Localization: band-edge phenomenology

$$\ddot{u}_{\theta i} + \sum_{j} u_{\theta j} = \ddot{u}_{\theta i} + \sum_{j} \hat{H}_{ij} u_{\theta j}$$

$$\hat{H}_{ij}(t) \equiv -\sum_{kl} \frac{\partial^2 H}{\partial I_l \partial I_i} \frac{\partial^2 G_k}{\partial \theta_l \partial \theta_j} (\varepsilon^{-\alpha} t) \,\xi_k(t)$$

Shrödinger eigenvalue equation

 $u_{\theta i} \rightarrow \psi_i$ and $t \rightarrow x$,

$$\nabla^2 \psi + \mathbf{\hat{H}} \psi = e\psi$$

density of zeroes $e < 0 \rightarrow$ number of phase-slips per unit time

Gardner-Derrida

... many things to learn from this vast literature

Weakly perturbed integrable models: mimicking complicated perturbations with stochastic ones

1. An integrable mean-field

2. Perturbation in planetary systems

A regime beyond KAM, and beyond the Nekhoroshev, for which there is no theory (?)

A spherical mean field, time-dependent granularity is the nonintegrable perturbation

Integrable Kepler trajectories, perturbed by other planets

Lyapunov time (million Years) Moser

Mercury	1.4M
Venus	7.2 M
Earth	4.8M
Mars	4.5M
Jupiter	8.4 M
Saturn	6.4M
Uranus	7.5M
Neptune	6.7M

with some questions that I have ...

A simple system perturbed by noise

 $\langle t_{slip} \rangle = 1.81 \ \tau_{\lambda}$

Pluto and Saturn phase-slips J. Wisdom

Froeschlé model without and with modification

$$H = \sum_{i=1}^{N} \frac{I_i^2}{2} + I_0 + \frac{\epsilon(N+2)}{1 + \frac{1}{N+2} \sum_{i=0}^{N} \cos \theta_i} + \sum_i \cos \theta_i$$

Froeschlé model without and with modification

$$\begin{split} \dot{\theta}_0 &= 1, \\ \dot{\theta}_i &= I_i \\ \dot{I}_i &= -\epsilon \sin \theta_i - \epsilon \sin \theta_i \xi(t), \end{split}$$

with

$$\xi(t) = \left(1 + \frac{1}{N+2}\sum_{i}\cos\theta_i\right)^{-2} - 1.$$

Either perturbed pendula, or free rotors

Random I_i with variance β

$$\xi(t) = -\frac{2}{N+2} \sum_{i=0}^{N} \cos \theta_i + \frac{3}{(N+2)^2} \left(\sum_{i=0}^{N} \cos \theta_i \right)^2 + \mathcal{O}(N^{-3}).$$

$$\begin{split} \langle \xi \rangle &= \frac{3}{2} \frac{N+1}{(N+2)^2} \simeq \frac{3}{2N}, \\ \langle \xi^2 \rangle &= 2 \frac{N+1}{(N+2)^2} \simeq \frac{2}{N} \end{split}$$

$$\sigma^2 = \langle \xi^2 \rangle - \langle \xi \rangle^2 \simeq \frac{2}{N}$$

Random I_i with variance β

Autocorrelation

Using the true $\xi(t)$ as a noise on a separate system

The modified Froeschle' model

4 < N < 8192

The case of the unmodified Froeschle' model is interesting

The Lyapunov exponent is dominated by the few I_i that are close to the (pendulum) separatrix

higher Lyapunov exponents should be considered ... and perhaps for planets as well...

Diffusion of the eccentricity of Mercury, slightly different runs

Laskar

Figure 1 | Mercury's eccentricity over 5 Gyr. Evolution of the maximum

• Suggests a statistical treatment is in order

• assuming partial ergodicity on the torus , etc