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Statistical Analysis of Language
- Amount of produced data
            - Text messages:       10 B messages/day worldwide;
               - Twitter:                 400 M tweets/day by 200M active users;                                                                                                                                                
               - Wikipedia:              10 M contributors; 1 B words;
               - Google n-grams:     5 M books between [1520, 2000], 100 B words;

and scientific investigations (language as a lens on human activities and though).
- Opportunity for applications (e.g., search engines, data mining) 

Database: Usenet discussion group
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Martin Gerlach and E. G. Altmann, 
Stochastic model for the vocabulary growth in natural languages,
Phys. Rev. X 3, 021006 (2013)

http://link.aps.org/doi/10.1103/PhysRevX.3.021006
http://link.aps.org/doi/10.1103/PhysRevX.3.021006


Motivation

Samuel Morse (1791-1872)
[Wikipedia]

e  t  a  i   ..    q  y ..

the  ... also ... prince ...

message

“The dictionary or vocabulary consists of words 
alphabetically arranged and regularly numbered... so that
each word in the language has its telegraphic number...”

[Morse’s first telegraph patent as cited by J. Gleick, The Information]

How the vocabulary grows in time and with database size?

International Morse Code
[Wikipedia]rank=1 2 3 ...



Motivation: invert indexing

page 1 page 2 page 3 page 4

“the”

“it”

...

word n

...

word N

page 5

Vocabulary size 
=

 memory allocation

page 6



Motivation: vocabulary of a language?

Problem: role of database size?

Year 1905-1914 1948-1957 1995-2004
 # distinct words 3,715,000 5,045,000 5,238,000

Quantitative Analysis of Culture Using Millions of Digitized Books
Michel et. al., Science (2011) [English]

Year 1900 1950 2000
 # distinct words 544,000 597,000 1,022,000

Report on the state of the German language (March 2013)
 German Academy for Language and Literature 

Union of German Academies of Sciences and Humanities



Google n-gram database
- 5 M books from [1520, 2000]
- 100 B words

Vocabulary growth with database size

Cumulative
Wikipedia

Heap
s’ l

aw
 (<1960’s)

Limit vocabulary?

N
∼M

λ

N=M



Descriptive model

Simple mode: usage of each word follows a Poisson process with fixed frequency

How F(r) decays with r?
where F(r) is the frequency of the r-th most frequent word (r = rank).

Zipf’s law (1935)
F(r)~ 1/r

�N(M)� =
�

r

1− e−F (r)M



Generalized Zipf’s law

11

i distribution F (r;Ω) set of parameters Ω

1 Power-Law Cr−γ γ

2 Shifted Power-Law C(r + b)−γ γ, b

3 Power-Law with Exponential cutoff (beginning) C exp (−b/r) r−γ γ, b

4 Power-Law with Exponential cutoff (tail) C exp (−br) r−γ γ, b

5 Log-normal Cr−1 exp
�
− 1

2 (ln r − µ)2 /σ2
�

µ, σ

6 Weibull Crγ−1 exp
�
−br−γ

�
γ, b

7 Double Power-Law C

�
r−1, r ≤ b

bγ−1r−γ r > b,
γ, b

TABLE S1. Proposed models to fit rank-frequency distributions.

where

L�
(Ω) = − lnL = −

M�

i=1

lnF (r (i) ;Ω) . (S3)

In this expression M is the number of tokens, which implies that the sum goes over each observed token i and its

corresponding rank r(i). In practice, the minimization is obtained with a Nelder-Mead simplex algorithm (available

in the Scipy library [7]).

The quality of the fit was evaluated quantitatively by means of a p-value obtained from a χ2
-statistics [8]:

χ2
=

Q�

j=1

=
(Nj − nj)

2

nj
. (S4)

Here the domain is partitioned into Q cells, such that the expected number of observations per cell nj ≥ 5 [9], with

Nj being the actual observed number of observations in cell j. A recently proposed alternative strategy [10] involving

the comparison of the Kolmogorov-Smirnow statistics of the actual empirical data with randomly generated data

is computationally not feasible in this case, because it would require us to draw ≈ 10
15

random numbers (p-value
precision 0.01) due to the size of the database of > 10

11
tokens.

In the last step we determine which of the proposed models i = 1...R, where R is the number different models

considered, is most likely to describe the data. In order to account for the different number of fitted parameters we

calculate the Akaike information criterion (AIC) [11] for each model i

AIC = 2L�
(Ω∗

) + 2K, (S5)

where K is the number of parameters estimated in the model. The model which gives the minimum value AICmin =

min
i
{AICi} is most likely to describe the given data. From this we can calculate the relative likelihood li [12]

li = exp (− (AICi −AICmin) /2) , (S6)

which states how likely model i is to describe the data in comparison with the best model. This implies that the

probability wi that model i (out of the R models considered) describes the data is given by [12]

wi = P (model i|data) = li/
R�

j=1

lj . (S7)

B. Results

In this section we give a detailed overview of the results obtained from fitting the models in Tab. S1 to the rank-

frequency distributions for all languages considered, i.e., English, French, Spanish, German, and Russian. In Fig. S3

- S7(a+b) we plot the AIC from the models in Tab. S1 applied to yearly y(t) and cumulative data Y (t) of the

respective language. In Fig. S3 - S7(c) we show explicitly the rank-frequency distribution of the data Y (2000) and the

corresponding fits of the three models that yield the best description: the double power-law (i = 7), the power-law

with an exponential cutoff in the tail (i = 3), and the log-normal (i = 5).



Generalized Zipf’s law
English Wikipedia
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for high-frequency words and a critical rank r = b deter-
mines a transition to a power-law with exponent γ. Dou-
ble power-laws were proposed as a generalization of Zipf’s
law in Ref. [38] and further investigated in Refs. [39, 40].
These insightful works used distributions with two power-
law exponents γ1, γ2 and were motivated by the visual in-
spection of double logarithmic plots. Our improved sta-
tistical analysis confirm and extend these observations
for the simpler distribution Eq. (1). Besides the like-
lihood analysis and visual inspection given in Fig. 1, a
third strong evidence in favor of distribution (1) comes
from the comparison of the estimated parameters of dif-
ferent corpora shown in Fig. 1(b,c). Very similar values
b ∈ [7 · 103, 12 · 103] and γ ∈ [1.8, 2.5] were obtained for
non-overlapping databases, and the fluctuations become
smaller for increasing database size. The observations
strongly suggest that the same fixed parameters provide
a good description of all English texts (e.g., y(1900) and
y(2000)). In order to test this, hereafter we do not con-
sider individual fits for each database and instead assume
that Eq. (1) is valid with b = b∗ = 7873 and γ = γ∗ =
1.77, values obtained for our largest database Y (2000).

Similar findings also apply to the other languages. In
Tab. I we summarize the parameters γ∗ and b∗ obtained
from a ML-fit of the largest database Y (2000) of the re-
spective language to Eq. (1). French and Spanish are
also best described by Eq. (1) for databases exceeding
a particular size and yield values for γ∗ and b∗ simi-
lar to English. For German and Russian Eq. (1) con-
stitutes only the second best model. However, we have
strong indications that it provides a better account of the
tails (r � b∗) and therefore we expect that even larger
databases will reveal the double power-law as the best
fit also in these languages (see SI-Sec. II B for details).
Apart from being the smallest databases among the in-
vestigated languages, another feature affecting the fitting
in German and especially in Russian is the higher degree
of inflection in the morphology of these languages. We
recall that no lemmatization was applied in our defini-
tion of words and, therefore, inflected words (obtained,
e.g., by adding a suffix) are counted as new word-types.
This reasoning explains the higher measured values of b∗

(vocabulary in the r−1 regime). From the fitting per-
spective, however, the large values of b∗ in German and
Russian require even larger databases to characterize the
deviations from the r−1 regime for r � b∗.

language b∗ γ∗

English 7, 873 1.77

French 8, 208 1.78

Spanish 8, 757 1.78

German 19, 863 1.62

Russian 62, 238 1.94

TABLE I. Parameters b∗ and γ∗ obtained from ML-fit of
Eq. (1) obtained for the largest database Y (2000) for all con-
sidered languages.

Heaps’ analysis

We now turn to our second empirical analysis: the de-
pendence of the total number of different words (word-
types, N) on the size of the database (in word-tokens,
M). The classical result for this relation is the empir-
ical Heaps’ law [12], which states that N ∼ Mλ with
λ ∈ [0, 1] (a ∼ b indicates that a/b =constant for large
b). We start searching for the consequences of our previ-
ous observations in the Zipf’s analysis to this new prob-
lem. A simple and powerful approach is the so-called
Zipfian ensemble (ZE) [21], which assumes that the oc-
currence of every possible word is governed by a Poisson
process with an intensity proportional to its frequency
(see SI-Sec. III A). It was shown that under this or simi-
lar assumptions (e.g., stochastic processes with fixed fre-
quencies for words), asymptotically Heaps’ law can be
interpreted as a direct consequence of a Zipfian rank fre-
quency distribution F (r) ∼ r−γ [9, 13, 14, 19, 21] and
vice versa [20, 41, 42], where γ = 1/λ. Here we want
to draw attention to the fact that these observations are
not restricted to Zipf’s and Heaps’ laws, i.e., assuming
a stochastic model, the relationship between F (r) and
N(M) can always be established. The expectation of the
ZE of Eq. (1) with a threshold n � 1 is (see SI-Sec. III
B)

Ndp(M ; γ, b) = Cn

�
M, M � Mb

M1−1/γ
b M1/γ , M � Mb,

(2)

where Mb is the number of tokens such that N(Mb) = b
and the scaling constant Cn = C/n (C ≈ F (1) being
the frequency of the most common word, as can be seen
from Eq. (1)). Thus, the effect of the threshold n applied
to the growth curve of the vocabulary simply amounts
to rescaling the constant C. While the expected (aver-
age) number of word-types over many realizations of the
stochastic process leads to a sharp transition between the
two regimes, the values of Ndp(M ≈ Mb) might depend
more strongly on the particular realization.
In Fig. 2 we show that the data in the google-ngram

database obeys the scalings of Eq. (2). In Fig. 2(a) we
present the N(M) curve for English. While for the yearly
database y(t) we obtain a set of points for each t, the
cumulative database Y (t) builds a curve of vocabulary
growth for increasing t. Despite the differences in these
databases, all the data lie in a relatively narrow region
of the plot which resembles a single curve compatible
with the double scaling of Eq. (2). This curve is well
described by the N(M) curve obtained from the combi-
nation of the double power-law distribution Eq. (1) with
fixed parameters (γ∗, b∗) and the assumption of Poisson
usage of words, in the spirit of the ZE. Similar obser-
vations apply to all considered languages, as shown in
Fig. 2(b). On closer inspection, Fig. 2(c), the fine details
of the N(M) curve are not compatible with the fluctua-
tions expected from the strongly simplifying assumptions
of the ZE. It is, nevertheless, remarkable that the agree-

Google n-gram English

Generalized Zipf’s law

Fdp (r; γ, b) =

�
r−1, r ≤ b,
r−γ r > b



Ndp (Nc) =

�
M, M � Mb,
M1/γ , M � Mb

�N(M)� =
�

r

1− e−F (r)M

Simple mode: usage of each word follows a Poisson process with fixed frequency

where F(r) is the frequency of the r-th most frequent word (r = rank).

Fdp (r; γ, b) =

�
r−1, r ≤ b,
r−γ r > b

Descriptive model



N (M) ∼
�

M, M � Mb,
M1/(α+1), M � Mb

Descriptive model



  

Is it a new 
word?

Is it a 
core-word?

Yes No

M-th word in the database

Yes No

  

Choose a previous 
word, proportional 

to freq.

Nc �→ Nc + 1 Nc̄ �→ Nc̄ + 1 N(Mb) = Nmax
cwith

Assumptions:

1. Core vocabulary is finite:

2.             decays with N:pnew
pnew �→ pnew (1− α/N)

N (M) ∼
�

M, M � Mb,
M1/(α+1), M � Mb

Nc ≤ Nmax
c ⇒ pc → 0

1− pnewpnew

pc
1− pc

Generative model (Yule-Simon type)
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Change in the core vocabulary

f(t,Δt): fraction of core words at time t  
            which remain core at time t+Δt

majesty
Napoleon
hitherto

....
computer
cultural
tech.

...

Core
Vocabulary1900-

2000-

t

Δt



Accelerating in time!
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Change in the core vocabulary



1900
majesty, doubtless, 

furnished, monsieur, 
Napoleon, hitherto

2000
cultural,context, 

technology, programs, 
environmental, computer

Most frequent 
replaced words

Change in the core vocabulary
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E. G. Altmann, Giampaolo Cristadoro,  Mirko Degli Esposti, "On the origin 
of long-range correlations in texts",  PNAS 109, 11582 (2012)

http://dx.doi.org/10.1073/pnas.1117723109
http://dx.doi.org/10.1073/pnas.1117723109


War and Peace, by Leo Tolstoy
BOOK ONE: 1805

CHAPTER I
"Well, Prince, so Genoa and Lucca are now 
just family estates of the Buonapartes. But I 

warn you, if you don't tell me that this 
means war, if you still try to defend the 

infamies and horrors perpetrated by that 
Antichrist--I really believe he is Antichrist--I 
will have nothing more to do with you and 
you are no longer my friend, no longer my 
'faithful slave,' as you call yourself! But how 
do you do? I see I have frightened you--sit 

down and tell me all the news." 

. . .

01001000011010000011010100010
0110010100000

001001000
01000001001001001011010000100101010010

01000010100010010100100001001101010010001001
01000011000001100100001000010001000010
011000010010001100010000000010010100001
100101100100001001000010010010100000010

1001000100000011000010110100101001001000100001
010000101000100100001010010010010000110100

0110101001001001000000011000010010010000
01100010001010100011010000110010000100010
0100110010101100001010001000101000110010

01000100001000010100001001000

. . .

         text   s=War  and Peace  by    Leo  Tolstoy   Book  one   1805   Chapter     1 Well      Prince

       vowels=01001000110100000110010001001100100000000001001000001000001001...

Symbolic sequence s Numeric sequence

f(s)

War and Peace, by Leo Tolstoy
BOOK ONE: 1805

CHAPTER I
"Well, Prince, so Genoa and Lucca are now 
just family estates of the Buonapartes. But I 

warn you, if you don't tell me that this 
means war, if you still try to defend the 

infamies and horrors perpetrated by that 
Antichrist--I really believe he is Antichrist--I 
will have nothing more to do with you and 
you are no longer my friend, no longer my 
'faithful slave,' as you call yourself! But how 
do you do? I see I have frightened you--sit 

down and tell me all the news." 

. . .

}

t

Observation

σ2
X(t) := �X(t)2� − �X(t)�2 � Dt

Random walk X(t):
0 => left

  1 => right



Transport and long correlations

Long-range correlation:

Super-diffusion:

Cx(t) � t−β , 0 < β < 1
γ = 2− β

σ2
X(t) � tγ , 1 < γ < 2



?

6

100 101 102 103 104 105

t

100

101
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!
X

2 (t)

vowels - wrnpc
shuffled "i's
shuffled {0,1}
~t1.55, #=1.55
~t     , #=1.00

100 101 102 103 104

t

100
101
102
103
104

!
X

2 (t)

vowels
shuffled {0,1}
shuffled "i'salice sawyer pride

missisipi jungle beagle

moby ulysses quixote

Fig. S1. Long-range correlation in texts encoded as vowels. Upper plot: detailed analysis in the book wrnpc with exponent γ̂ = 1.55 ± 0.05 (wrnpc). Lower plots:
analysis of the remaining 9 books with the following exponents γ̂: 1.55± 0.05 (wrnpc), 1.18± 0.05 (alice), 1.23± 0.04 (sawyer), 1.20± 0.03 (pride) 1.48± 0.05
(missisipi), 1.26± 0.05 (jungle), 1.25± 0.04 (beagle), 1.45± 0.05 (moby), 1.61± 0.06 (ulysses), 1.26± 0.04 (quixote)
Footline Author PNAS Issue Date Volume Issue Number 7

Fig. S1: Long-range correlation in texts encoded as vowels. Upper plot: detailed analysis in the book wrnpc with exponent γ̂ =
1.55 ± 0.05 (wrnpc). Lower plots: analysis of the remaining 9 books with the following exponents γ̂: 1.55 ± 0.05 (wrnpc),
1.18 ± 0.05 (alice), 1.23 ± 0.04 (sawyer), 1.20 ± 0.03 (pride) 1.48 ± 0.05 (missisipi), 1.26 ± 0.05 (jungle), 1.25 ± 0.04 (beagle),
1.45± 0.05 (moby), 1.61± 0.06 (ulysses), 1.26± 0.04 (quixote)

Different books

- What is the origin of the long-range correlation? 
- How is it connected to the semantics of the text (story)?

- What is the role of the observable f?

Basic questions are 
still open:

Motivation:
Correlations beyond Markov models/methods



S(0) =
σ2
τ

�τ�3

�
1 + 2

�

k

Cτ (k)

�

short range

long range S(0) → ∞

γ = 1

σ2
X(t) := �X(t)2� − �X(t)�2 � tγ , γ = 2− β

στ

�τ� → ∞, e.g., p(τ) ∼ τ−α
Burstiness

Correlation in  
∞�

k=1

Cτ (k) → ∞, e.g., Cτ (k) := �τjτj+k� − �τj��τj+k� � k−βττk

Inter-event times: }

τ = 4

 x=10010001101... τk = 3, 4, 1, 2, . . .

                                

1 < γ ≤ 2

Burstiness and correlation

S(ω) :=

� +∞

−∞
Cx(t)e

2πitωdt

Transport Power spectrum



On the origin of long-range correlations in texts
E. G. Altmann
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The complexity of human interactions with social and natural phe-

nomena is mirrored in the way we describe our experiences through

natural language. In order to retain and convey such a high dimen-

sional information, the statistical properties of our linguistic output

has to be highly correlated in time. An example are the robust ob-

servations, still largely not understood, of correlations on arbitrary

long scales in literary texts. In this paper we explain how long-

range correlations flow from highly structured linguistic levels down

to the building blocks of a text (words, letters, etc..). By combining

calculations and data analysis we show that correlations take form

of a bursty sequence of events once we approach the semantically

relevant topics of the text. The mechanisms we identify are fairly

general and can be equally applied to other hierarchical settings.

long correlations | complex systems | language dynamics | statistical physics

L
iterary texts are an expression of the natural language
ability to project complex and high-dimensional phenom-

ena into a one-dimensional, semantically meaningful sequence
of symbols. For this projection to be successful, such se-
quences have to encode the information in form of structured
patterns, such as correlations on arbitrarily long scales [1, 2].
Understanding how language processes long-range correla-
tions, an ubiquitous signature of complexity present in human
activities [3, 4, 5, 6, 7] and in the natural world [8, 9, 10, 11],
is an important task towards comprehending how natural lan-
guage works and evolves. This understanding is also crucial
to improve the increasingly important applications of infor-
mation theory and statistical natural language processing,
which are mostly based on short-range-correlations methods
[12, 13, 14, 15, 16].

Take your favorite novel and consider the binary sequence
obtained by mapping each vowel into a 1 and all other sym-
bols into a 0. One can easily detect structures on neighboring
bits, and we certainly expect some repetition patterns on the
size of words. But one should certainly be surprised and in-
trigued when discovering that there are structures (or mem-
ory) after several pages or even on arbitrary large scales of
this binary sequence. In the last twenty years, similar obser-
vations of long-range correlations in texts have been related
to large scales characteristics of the novels such as the story
being told, the style of the book, the author, and the lan-
guage [1, 2, 17, 18, 19, 20, 21, 22]. However, the mechanisms
explaining these connections are still missing (see Ref. [2] for
a recent proposal). Without such mechanisms, many funda-
mental questions cannot be answered. For instance, why all
previous investigations observed long-range correlations de-
spite their radically different approaches? How and which
correlations can flow from the high-level semantic structures
down to the crude symbolic sequence in the presence of so
many arbitrary influences? What information is gained on
the large structures by looking at smaller ones? Finally, what
is the origin of the long-range correlations?

In this paper we provide answers to these questions by ap-
proaching the problem through a novel theoretical framework.
This framework uses the hierarchical organization of natural
language to identify a mechanism that links the correlations at
different linguistic levels. As schematically depicted in Fig. 1,
a topic - say War - is linked to several words that are used
to describe it in the novel. At the lower level, words are con-

nected to the letters they are formed, and so on. We calculate
how correlations are transported through these different levels
and compare the results with a detailed statistical analysis in
ten different novels. Our results reveal that while approaching
semantically relevant high-level structures, correlations unfold
in form of a bursty signal. Moving down in levels, we show
that correlations (but not burstiness) are preserved, explain-
ing the ubiquitous appearance of long-range correlations in
texts.

Theoretical framework

The importance of the observable. In line with information
theory, we treat a literary text as the output of a stationary
and ergodic source that takes values in a finite alphabet and
we look for information about the source through a statistical
analysis of the text [23]. Here we focus on correlations func-
tions, which are defined after specifying an observable and a
product over functions. In particular, given a symbolic se-
quence s (the text), we denote by sk the symbol in the k-th
position and by sm

n (m ≥ n) the substring (sn, sn+1, . . . , sm).
As observables, we consider functions f that map symbolic
sequences s into a sequence x of numbers (e.g., 0’s and 1’s).
We restrict to local mappings, namely xk = f(sk+r

k ) for any

e    t   .. i   ..    p ..  r ..

the  ...    prince ... 

V         C

WAR FAMILY

...
...

...
...

...

le
ve
l

up
(high)

down
(low)

Friday, February 3, 2012

Fig. 1. Hierarchy of levels at which literary texts can be analyzed. Depicted are

the levels vowels/consonants (V/C), letters (a-z), words, and topics.
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is the origin of the long-range correlations?

In this paper we provide answers to these questions by ap-
proaching the problem through a novel theoretical framework.
This framework uses the hierarchical organization of natural
language to identify a mechanism that links the correlations at
different linguistic levels. As schematically depicted in Fig. 1,
a topic - say War - is linked to several words that are used
to describe it in the novel. At the lower level, words are con-

nected to the letters they are formed, and so on. We calculate
how correlations are transported through these different levels
and compare the results with a detailed statistical analysis in
ten different novels. Our results reveal that while approaching
semantically relevant high-level structures, correlations unfold
in form of a bursty signal. Moving down in levels, we show
that correlations (but not burstiness) are preserved, explain-
ing the ubiquitous appearance of long-range correlations in
texts.

Theoretical framework

The importance of the observable. In line with information
theory, we treat a literary text as the output of a stationary
and ergodic source that takes values in a finite alphabet and
we look for information about the source through a statistical
analysis of the text [23]. Here we focus on correlations func-
tions, which are defined after specifying an observable and a
product over functions. In particular, given a symbolic se-
quence s (the text), we denote by sk the symbol in the k-th
position and by sm

n (m ≥ n) the substring (sn, sn+1, . . . , sm).
As observables, we consider functions f that map symbolic
sequences s into a sequence x of numbers (e.g., 0’s and 1’s).
We restrict to local mappings, namely xk = f(sk+r

k ) for any
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Fig. 1. Hierarchy of levels at which literary texts can be analyzed. Depicted are

the levels vowels/consonants (V/C), letters (a-z), words, and topics.
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and (iv) the related distribution of the number of occurrences of
words per document [14,15]. Because we have a large database
and do not bin the datastream into documents, we are able to go
beyond these insightful works and systematically examine
frequency and linguistic status as factors in word burstiness.
Our large database allows a detailed analysis of words that,

despite being in the same frequency range, have very different
statistical behavior. For instance, in the range 2,000vStTv3,000,
words with high b (&0:80) include once, certainly, instead, yet, give, try,
makes, and seem; the few words with b &v 0:40 include design, selection,
intelligent, and Wilkins. Corroborating Ref. [14], it is evident that
words with low b better characterize the discourse topic. However,
these examples also show that the distinction between function
words and content words cannot be explanatory. For instance,
many content words, such as the adverbs and verbs of mental
representation in the list just above, have b values as high as many
function words. Here we obtain a deeper level of explanation by
drawing on tools from formal semantics, specifically on type theory
[27,43,44], and on dynamic theories of semantics [45,46], which
model how words and sentences update the discourse context over
time. We use semantics rather than syntax because syntax governs
how words are combined into sentences, and we are interested in
much longer time scales over which syntactic relations are not
defined. Type theory establishes a scale from simple entities (e.g.,
proper nouns) to high type words (e.g., words that cannot be
described using first-order logic, including intensional expressions
and operators). Simplifying the technical literature in the interests
of good sample sizes and coding reliability, we define a ladder of
four semantic classes, as listed in Table 1.
In Fig. 2, we report our systematical analysis of the recurrence

time distribution of all 2,128 words that appeared more than ten
thousand times in our database (for word-specific results see Table
S1). We find a wide range of values for the burstiness parameter b
[0:2vbv0:9, Fig. 2(a,b)] and the stretched exponential distribu-
tion describes well most of the words [R2

median~0:993, Fig. 2(c)].
The Class-specific results displayed in Fig. 2(a–c) show that words
of all classes are accurately described by the same statistical model
over a wide range of scales, a strong indication of a universal
process governing word usage at these scales. Figure 2(b) also
reveals a systematic dependence of b on the semantic Classes:

burstiness increases (b decreases) with decreasing semantic Class.
This relation implies that words functioning unambiguously as
Class 3 verbs should be less bursty than words of the same
frequency functioning unambiguously as common nouns (Class 2).
This prediction is confirmed by a paired comparison in our
database: such verbs have a higher b in 103 out of 116 pairs of
verbs and frequency-matched nouns (sign test, Pƒ8 10{19). The
relation applies even to morphologically related forms of the same
word stem (see Text S1, Lemmatization): for 37 out of the 47 pairs of
Class 3 adjectives and Class 4 adverbs in the database that are
derived with -ly, such as perfect, perfectly, the adverbial form has a
higher b than the adjective form (sign test, Pƒ5 10{5). Figure 2(d)
shows the dependence of b on inverse frequency StT. This figure
may be compared to the TF-IDF (term frequency-inverse
document frequency) method used for keyword identification
[14], but it is computed from a single document (see also Refs.
[16–18]). Figure 2(d) reveals that b is correlated with StT and that
the Class ordering observed in Fig. 2(b) is valid at all StTs. The
detailed analysis in Fig. 2(e) demonstrates that semantic Class is
more important than frequency as a predictor of burstiness (Class
accounts for 0:32 and log-frequency for 0:26 of the variance of b,
by the test proposed in Ref. [47]).
We are now in a position to discuss why burstiness depends on

semantic Class. A straw man theory would seek to derive the
burstiness of referring expressions directly from the burstiness of
their referents. The limitations of such a theory are obvious: Oxygen
is a very bursty word in our database (b&0:25) though oxygen is
ubiquitous. A more careful observer would connect the burstiness of
words to the human decisions to perform activities related to the
words. For instance, the recurrence time between sending emails is
known to approximately follow a power law [3,5]. However, in our
database the word email is significantly closer to the exponential
(b&0:5) than a power law would predict (b?0). Indeed, a defining
characteristic of human language is the ability to refer to entities and
events that are not present in the immediate reality [48]. These
nontrivial connections between language and the world are
investigated in semantics. An insight on the problem of word usage
can be obtained from Ref. [27], which establishes that the meaning
and applicability of words with great logicality remains invariant
under permutations of alternatives for the entities and relations
specified in the constructions in which they appear. Here we
consider permutability to be proportional to the semantic Classes of
Table 1. As a long discourse unfolds exploring different construc-
tions, we expect words with higher permutability (higher semantic
Class) to be more homogeneously distributed throughout the
discourse and therefore have higher b (be less bursty). Critical to this
explanation is the fact that human language manipulates represen-
tations of abstract operators and mental states [49]. However, the
overt statistics of recurrence times do not need to be learned word
by word. It seems more likely that they are an epiphenomenal result
of the differential contextualization of word meanings. The fact that
the behavior of almost all words deviate from a Poisson process to at
least some extent, indicates that the permutability and usage of
almost all words are contextually restricted to some degree, whether
by their intrinsic meaning or by their social connotations.

Different Databases
In Fig. 3 we verify our main results using databases of different

sizes and characterized by different levels of formality. We
analyzed a second example of a USENET group (U), a series of
political debates (D), two novels (S,W), and a technical book (P)
(for word-specific results see Table S1). The stretched exponential
provides a close fit for frequent words in these datasets [Fig. 3(a,c)],
and a wide and smoothly varying range of bs is observed in each

Table 1. Examples of the classification of words by semantic
types.

Class Name Examples of words

1 Entities Africa, Bible, Darwin

2 Predicates and Relations blue, die, in, religion

3 Modifiers and Operators believe, everyone, forty

4 Higher Level Operators hence, let, supposedly, the

The primitive types are entities e, exemplified by proper nouns such as Darwin
(Class 1), and truth values, t (which are the values of sentences). Predicates or
relations, such as the simple verb die, and the adjective/noun blue, take entities
as arguments and map them to sentences (e.g., Darwin dies, Tahoe is blue). They
are classified as Se,tT (Class 2). The notation Sx,yT denotes a mapping from an
element x in the domain to the image y [43,44]. The semantic types of higher
Classes are established by assessing what mappings they perform when they
are instantiated. For example, everyone is of type SSe,tT,tT (Class 3), because it
is a mapping from sets of properties of entities to truth values [44]; the verb
believe shares this classification as a verb involving mental representation. The
adverb supposedly is a higher order operator (Class 4), because it modifies other
modifiers. Following Ref. [44] (contra Ref. [43]) words are coded by the lowest
type in which they commonly occur (see Text S1, Coding of Semantic Types).
doi:10.1371/journal.pone.0007678.t001
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