NUTRIENT UPTAKE IN TURBULENT FLOWS

ALESSANDRO SOZZA | UNIVERSITY OF TORINO (ITALY)

WORK WITH: G. BOFFETTA, M. CENCINI, F. DE LILLO

General Motivation

Life at Low Reynolds

Transport of dissolved nutrient to the cell via osmosis Uptake is limited by diffusion.

J.R. Taylor, R. Stocker, Science (2012)

In a turbulent world

Turbulence generates **inhomogeneous** distribution of nutrients, oxygen...

Phytoplankton bloom in the Baltic Sea. (ESA)

What are the strategies for an efficient feeding?

How turbulence affects nutrient uptake?

Life at Low Reynolds...

 $\varrho(r)$

 ϱ_{∞}

(Diffusion-Controlled Processes)

Time-dependent Solution

$$\partial_t \varrho = D \triangle \varrho$$

Transforming in Laplace $\hat{\varrho}(r,s) = \int_0^\infty e^{-st} \varrho(r,t) dt \longrightarrow s\hat{\varrho} - \varrho_\infty = D \triangle \hat{\varrho}$

General solution is in the form: $\hat{\varrho}(r,s) = \frac{\varrho_{\infty}}{s} + A \frac{e^{-Kr}}{r} + B \frac{e^{Kr}}{r}$ $K = \sqrt{s/D}$

Imposing BCs:
$$\hat{\varrho}(r,s) = \frac{\varrho_{\infty}}{s} \left(1 - \frac{R}{r}e^{-K(r-R)}\right)$$

Inverse transforming $\varrho(r,t) = \varrho_{\infty} - \frac{R}{r} \varrho_{\infty} \left[1 + \operatorname{Erf} \left(\frac{R-r}{2\sqrt{Dt}} \right) \right]$

(Carslaw and Jaeger, 1959) (Osborn, 1996)

$$\kappa(t) = 4\pi D R \varrho_{\infty} \left(1 + \frac{R}{\sqrt{\pi D t}} \right)$$

Optimal Cell Size

Diffusion is a limiting factor in cell growth

Physical properties of the fluid shape the cell biology.

Life at Low Reynolds...

Strategies: Shape, Motility & Flow

Strategies: Effect of Shape

The cell shape has a modest effect on uptake:

Some bacteria appear to exploit this effect by becoming elongated in nutrient-deprived conditions (Steinberger et al. 2002).

Prolate ellipsoids have marginally greater uptake than spheres of equal volume (Clift et al. 2005).

Cell may obtain a benefit of 4 to 20%.

Strategies: Effect of Motility

Peclet Number: $Pe = \frac{V_s R^2}{D}$

Swimming in a homogeneous environment may enhance uptake.

 $\begin{array}{ll} \mbox{Sherwood Number:} & Sh \equiv \frac{\kappa}{\kappa_s} & \mbox{Uptake by advection} \\ & \mbox{Diffusive Uptake} \\ Sh \sim 1 + \frac{1}{2}Pe + Pe^2 \log(Pe) & \mbox{Pe} \ll 1 \\ & Sh \sim 0.62Pe^{1/3} & \mbox{Pe} \gg 1 \end{array}$

Frankel & Acrivos (1968)

But it implies an **energetic cost!**

If resources are **heterogeneous** motility can confer an important fitness advantage.

Competition between motility and nutrients mixing may be important and depends on the peculiar details of the species.

Turbulence may enhances uptake?

Shear Flow (Mean field approximation of turbulence) Shear Rate: $\gamma = \left(\frac{\varepsilon}{\nu}\right)^{1/2}$ Peclet Number: $Pe = \frac{\gamma R^2}{D}$ Karp-Boss, Boss, Jumars (1996) **Sherwood Number:** $Sh \equiv \frac{\kappa}{\kappa_s}$ Uptake by advection Diffusive Uptake $\begin{array}{|c|c|c|c|c|} Sh\simeq 1+0.36\,Pe^{1/2} & Pe\ll 1 \\ Sh\simeq 0.9\,Pe^{1/3} & Pe\gg 1 \end{array} & \mbox{Frankel \& Acrivos (1968)} \\ Batchelor (1979) \end{array}$

> Enhancement of uptake by bacteria is negligible (0.3%) while becomes important for larger phytoplankton species (20-30%)

Turbulent flow may create complex nutrient landscape

Preferential concentration (eg. gyrotactic model)

Life at Low Reynolds...

Strategies: Shape, Motility & Flow

How turbulence affects nutrient uptake? +

Numerical Approach

Pseudo-Spectral Method + IBM

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \nu \Delta \boldsymbol{u} + \boldsymbol{f}$$

 $\partial_t \varrho + \boldsymbol{u} \cdot \nabla \varrho = D \Delta \varrho - \beta \varrho \sum_i^N \delta(\boldsymbol{x} - \boldsymbol{\xi}) + \boldsymbol{f}_{\varrho}$

SINK TERM /

FORCING BY UPWELLING

Differently from the analytical problem: **PERIODIC BOX** (Lost Infinity) **NON-STATIONARY PROCESS** (Scalar in decay) **POINTLIKE PARTICLES** (No surface integral)

Uptake: $\kappa(t) = \int_{\Omega_p} d^3 x \, \beta \varrho(x,t) f(x-\xi)$

The uptake of the particle is obtained by integrating the instantaneous sink term.

NAVIER-STOKES
(DNS) $\left\{ \boldsymbol{\xi} : \text{particle position} \\ \boldsymbol{\beta} : \text{rate of absorption} \right.$ NUTRIENT FIELD

IMMERSED BOUNDARY

The sink term describes the diffusive halo around the cell with

$$f(\boldsymbol{x}) \neq 0 \quad \text{for} \quad \boldsymbol{x} \subset \Omega_p$$

centered on the particle position.

Numerical Approach

STAGNANT CONFIGURATION u = 0

$$\partial_t \varrho = D \triangle \varrho - \beta \rho \sum_i^N \delta(\boldsymbol{x} - \boldsymbol{\xi})$$

NUTRIENT FIELD $\begin{cases} \boldsymbol{\xi} : \text{particle position} \\ \beta : \text{rate of absorption} \end{cases}$

DECAY OF THE NUTRIENT FIELD IN PRESENCE OF SINKS

(Non-stationary process)

The sink term describes the diffusive halo around the cell with

$$f(\boldsymbol{x}) \neq 0 \quad \text{for} \quad \boldsymbol{x} \subset \Omega_p$$

centered on the particle position.

Uptake:
$$\kappa(t) = \int_{\Omega_p} d^3 x \, \beta \varrho(x, t) f(x - \xi)$$

The uptake of the particle is obtained by integrating the instantaneous sink term.

Uptake

Effective Radius

Two Simple Cases

Two Cells

Linear Shear

Diffusive Interactions / Competition

Uptake Enhancement

Diffusive Interactions

Non-interacting Spheres

Total uptake is the algebraic sum of contributions

Nutrient Shielding

Each sphere <u>shields</u> a part of flux from the other.

Diffusive Interactions

Solve the Laplace equation in bispherical coordinates.

$$\begin{cases} x = a \frac{\sin \alpha \cos \phi}{\cosh \beta - \cos \alpha} \\ y = a \frac{\sin \alpha \sin \phi}{\cosh \beta - \cos \alpha} \\ z = a \frac{\sinh \beta}{\cosh \beta - \cos \alpha} \end{cases}$$

Morse, Feshbach (1953)

Solution is expressed in terms of a multipole expansion:

At the first order approximation:

$$\kappa = 2\kappa_s \sqrt{\chi^2 - 1} \sum_{n=0}^{\infty} \frac{2}{1 + (\chi + \sqrt{\chi^2 - 1})^{2n+1}} \quad \longrightarrow \quad$$

R. Samson, J.M. Deutch, J. Chem. Phys. (1977)

 $\chi = d/2R$

$$\frac{\kappa}{2\kappa_s} = \frac{d}{R+d}$$

Competition effects are long range interactions.

Diffusive Interactions

Linear Shear Flow

$$\partial_t \varrho + \boldsymbol{u} \cdot \nabla \varrho = D \bigtriangleup \varrho$$

 $\boldsymbol{u} = (\gamma z, 0, 0)$

$$Pe = \frac{\gamma R^2}{D}$$

Linear Shear Flow

Uptake Enhancement

$$\kappa(t) = \int_{\Omega_p} d^3 \boldsymbol{x} \,\beta \varrho(\boldsymbol{x}, t) f(\boldsymbol{x} - \boldsymbol{\xi})$$

Linear Shear Flow

Low Pe Approximation

Sherwood Number:

$$Sh \simeq 1 + 0.36 \, Pe^{1/2}$$

Frankel & Acrivos POF (1968) Batchelor JFM (1979)

Future Perspectives

Preliminary results can be used as benchmark for further investigation in:

1. Turbulent flows1. Passive Particles2. Gyrotactic Model

2. Diffusion-Controlled Processes in complex geometries { 1. N-Body Systems (Random/Fractal) 2. Complex Shapes

