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Active particles

Small-scale patchiness of motile plankton in the unsteady ocean.

Mechanisms: density stratification, predator-prey cycles, chemotaxis, phototaxis,
gravitaxis.

DNS of gyrotactic, neutrally buoyant, spherical plankton in turbulence show
small-scale patchiness. Theory: strongly gyrotactic plankton gather in down-
welling regions of the turbulence.
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—mge. Durham et al., Nature Communications 4, 2148 (2013)



Active particles

Assumptions:
-particles neutrally buoyant
-particles move independently of each other
-inertial effects negligible
-particles detach from flow by swimming straight ahead, speed vsn
-particles rotated by turbulent flow
and by gravitational torque (gyrotaxis) since ¢.0.m. not at centre
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(active particle)
w rotation by turbulent flow

Durham et al., Nature Communications 4, 2148 (2013)



Questions

Formulate and solve statistical model that accounts for the symmetries
of the problem. Can be analysed using asymptotic methods and perturbation theory.

Questions.
- | | ?
Where do the organisms go in turbulence’ Durham et al., Nature Communications 4, 2148 (2013)
- How does shape affect the observed spatial patterns?

Preferential sampling stronger or weaker for non-spherical particles?
Zhan et al., J. Fluid Mech. 793 (2014) 22

- Relation between preferential sampling and small-scale clustering?
Effect on encounter rates?

- Dependence on dimensionless parameters”? Theory for large gravitaxis:
Durham et al., Nature Communications 4, 2148 (2013)

- Caustics



Analogy with heavy particles in turbulence

Computer simulation of 10* particles (blue) Direct numerical simulations (DNS)
INn two-dimensional smooth random flow of particles in turbulence

Coleman & Vassilicos,
Phys. Fluids 21 (2009) 113301

Duncan, Mehlig, Ostlund & Wilkinson,
Phys. Rev. Lett. 95 (2005) 240602

Equation of motion: 7 = v and v = g + y(u(r,t) — v).
Gravity g, fluid-velocity field w(r,t) , Stokes damping constant 7.



Preferential sampling

Maxey, J. Fluid Mech. 174 (1987) 441

Preferential sampling, inertial effect. Assume St > 0 but .
small, and neglect settling due to gravity. * L% .

At small S5t heavy particles follow effective velocity field Veg Q.’: Lo .:
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Spatial clustering in sinks of veg Where V.v.g < 0:
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Here S = (A + A")/2 is the symmetric (strain) part of the matrix of particle-velocity
gradients A;; = du;/dr;, and O = (A — A")/2 isthe antisymmetric part.

‘Maxey'’s centrifuge’: particles avoid vortices. Effect of particle inertial. Valid for very small St.

Air bubbles in water ( pp < pr)?



Preferential sampling - small-scale clustering

Preferential sampling affects but does not explain small-scale clustering. Which mechanism
brings particles in a straining region closer together?

red: number density of
particles

green: vortical regions

flow-correlation length n

preferential sampling small-scale clustering



Small-scale clustering

Sommerer & Ott, Science 259 (1993) 351

Exponents \; > )\, > )3 describe rate of contraction or expansion of small Iength
element §r, , area element 6.4, , and volume element §); of particles T~

A1 = t@£g;t_1loge(5rt)
A+ = tgg;t_lkx;X6/h)
)\1 + )\2 + )\3 = tll)ﬂ(;lot 1 loge(évt) .

Lyapunov fractal dimension

> =1

—d—Agp
‘A%+1‘

dr, =K+

where A1 > Xy > ... > Ay and k Is largest integer for which A, > 0 .

Dimension deficit A;=d — dj, .

Compute exponents from Z(r;,t). For example A1 + Ao + A3 = (TrZ).



Equation of motion

Kessler, Nature 313 (1985) 218

Kessler's model for centre-of-mass and orientational dynamics

r=v=u(r,t)+vsn n=w(rt)\n.

swimming

Particle position r, particle orientation n, time ¢, fluid velocity w(r, t), swimming
speed vg , swimming directionn .

Vs )
. . maqge:;
Particle angular velocity é |g
w(r,t)=—(nAg)/2B)+Q(r,t)+An A [S(r,t)n] . w O i
\ / . . C
gravitaxis effect of turbulent velocity gradients
Jeffery, Proc. Roy. Soc. London Ser. A 102 (1922) 161 —mge;

Orientation parameter B, and g = —e€., .
Fluid-velocity gradient matrix A ,S = (A +A")/2,0=(A—-A")/2,and On = QA n .

Shape factor: A=1 rod, A=0 sphere.



Gravitational vs. hydrodynamic torque

P. R. Jonsson, Mar. Ecol. Prog. Ser. 52 (1989) 39

Gyrotactic torque is due to inhomogeneity in particle-mass density.
Shape asymmetry gives rise to hydrodynamic torque for homogeneous particles.

Consider small needle or dumbbell settling with velocity vy so that Re, = av, /v ~ 0.
A symmetric needle or dumbbell (fore-aft symmetry) continues to settle at initial orientation.
Particle size a , kinematic viscosity v . Happel & Brenner, Low Reynolds Hydrodynamics (1983)

Inertial torque (first order in Re,,) turns symmetric needle (dumbbell) to horizontal orientation.
Cayat & Cox, J. Fluid Mech. 209 (1989) 435

Asymmetric dumbbell at Re, ~ 0 turns so that larger
sphere settles first (spheres have same mass density).

a
¥
C

Asymmetric dumbbell to first order in Re,, : hydrodynamic
and inertial torques balance at certain angle « that } .

@
depends on asymmetry and Re,, . |
Candelier & Mehlig, J. Fluid Mech. (2016)



Model for turbulent velocity field

Method: approximate analytical solution
using trajectory expansions’ (Ku-expan-
r=v and v =g+ y(u(r,t) —v). sion. Gustavsson & Mehlig, Adv. Phys. (2016)

Statistical model for turbulent aerosols

REVIEW ARTICLE

Incompressible, homogeneous, isotropic
Gaussian random function w(r, ).

Statistical models for spatial patterns of heavy particles in turbulence
K. Gustavsson® and B. Mehlig®"*

@ Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden;
YNORDITA, Roslagstullsbacken 23, IUI 91 Stockholm, Sweden

Correlation time 7.

The dynamics of heavy particles suspended in turbulent flows is of fundamental importance for
a wide range of questions in astrophysics, atmospheric physics, oceanography, and technology.
Laboratory experiments and numerical simulations have demonstrated that heavy particles respond
in intricate ways to turbulent fluctuations of the carrying fluid: non-interacting particles may cluster
together and form spatial patterns even though the fluid is incompressible, and the relative speeds
of nearby particles can fluctuate strongly. Both phenomena depend sensitively on the parameters of
the system. This parameter dependence is difficult to model from first principles since turbulence
plays an essential role. Laboratory experiments are also very difficult, precisely since they must refer
to a turbulent environment. But in recent years it has become clear that important aspects of the
dynamics of heavy particles in turbulence can be understood in terms of statistical models where the
turbulent fluctuations are approximated by Gaussian random functions with appropriate correlation
functions. In this review we summarise how such statistical-model calculations have led to a detailed
understanding of the factors that determine heavy-particle dynamics in turbulence. We concentrate
on spatial clustering of heavy particles in turbulence. This is an important question because spa-
tial clustering affects the collision rate between the particles and thus the long-term fate of the system.

Correlation length 7).
Typical speed uyg.

No inertial range.
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Dimensionless parameters

Measure of how rapidly w(r, t)fluctuates: Kubo number Ku = for
n

Duncan, Mehlig, Ostlund & Wilkinson, Phys. Rev. Lett. 95 (2005) 165503

Shape factor A .
Swimming speed: ¢ = vg/ug .
Gyrotactic relaxation time ¥ = B/7 (¥ — oo : vanishing effect).

Dimensionless parameters in DNS of turbulence:
Durham et al., Nature Communications 4, 2148 (2013)

dpns = vg/uk and ¥pns = B/7k

Kolmogorov scales, Kolmogorov time 7k = 1/1/tr(AA) ~ n/ug .

Correspondence: ®pns = ¢/Ku and Upng = PKu.



Preferential sampling - large &

Preferential sampling of u., and its z-gradient A, (evaluated at the particle position).
Small swimming speed ® = vg /ug :

d(1—A)+2(A+2) T4V +1)

(AL} 0oL~ Ku @2

n d (20 +41)2
<UZ>OON—Ku<I>d(1_A)+2 \
U d 2 4+ 1
Conclusions

-particles preferentially sample sinks of transversal velocity field, tr ;] A = —A., <0

-particles preferentially sample downwelling regions, v, < 0 .

(1) o0 /Vsindependent of ® for small @ .

102 10" 10?



Preferential sampling - large &

Preferential sampling of u., and its z-gradient A, (evaluated at the particle position).
Large swimming speed ® = vg /ug :

(Azz)oo g Budtl(1—A)/Z

(Ur)oo  Ku (d(A —1) +2A)
wg @ 2d

Conclusions

-particles preferentially sample sinks of transversal velocity field, tr ;] A = —A., <0

-spherical particles preferentially sample downwelling regions, «. < 0, rods upwelling
regions, u, > 0

-phase transition at A = d/(d + 2)



Comparison with statistical-model simulations

Left: d = 2and Ku=0.1. Rightd =3 and Ku=1.

0,1: — e U—01 A=0Q
¢ V=1 A=
O
A =1 A=1
large- @ limit

universal, Ku-independent

preferential sampling d preferential sampling
of upwelling regions of upwelling regions



Comparison with DNS

Comparison of statistical-model simulations with DNS
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Open symbols: DNS (Durham et al., Nature Communications 4, 2148 (2013))
Filled symbols: statistical-model simulations for Ku = 1,2, 5, 10.

Statistical-model results independent of Ku for large Ku.
Qualitative agreement with DNS. Factor due to difference between universal small-scale

fluctuations of turbulence and statistical model
Schumacher et al., PNAS 11 (2014) 10961



Small-scale clustering

Small-scale clustering determined by the particle-velocity gradients Z - follow separations
between a cloud of particles that are initially infinitesimally close together.

At zero swimming speed, ® = 0, the particle centre-of-mass follows the flow.
In this case Z = A. In general not.

trZ determines small-scale clustering. Time evolution of volume V; of particle cloud:

d
&Vt = trZ Vt .

Steady-state average

(7)o = (V- VYoo = A oo+ Mg



Small-scale clustering - (trZ) .o = (V - )

Expand equations of motion for small @ :

V-v~ USB[—(1+A) 0§uz T (1—A)(83UZ_AUZ)}

: - . Durham et al., Nature Communications 4, 2148 (2013)
Derived earlier for A = 0. £/ e ashansky, Phys. Rev. E 92 (2015) 013017

Average in statistical model
(V- 0)oon/ug ~ —Ku (®U)?By(A) for & <1

with shape factor B;(A) = [(d+2)(d+4) —2d(d+4)A + (44-2d+ d°)A*|/d , and
(V- 0)oon/ug ~ —Kud®U? E4(A) for @ > 1

with Ey(A) = /7 /2(d 4+ 1)(d + 3)(A — 1)2/d .

Conclusions: rods cluster less than spheres.
Zhan et al., J. Fluid Mech. 793 (2014) 22



Fractal dimension

Lyapunov fractal dimension d;, =2 — (A1 + A2) /A2 (for d =2 )
Lyapunov exponents Ajand \,.
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Dashed lines: A, ~ ®¥? | weak
Durham et al., Nature Communications 4, 2148 (2013) { Clustering
Fouxon & Leshansky, Phys. Rev. E 92 (2015) 013017 107, 5",
P

strong gravitaxis @ W =0.1 A =0 O
intermediate gravitaxis ¢ Y =1 A=0 & UT=1 A=1

. spherical rod-shaped
Conclusions
-rods cluster less than spheres.

-theory fails at large values of U (caustics).



Small-scale clustering - weak gyrotaxis

Weak gravitaxis (W > 1): clustering stronger for rod-shaped particles.

e A=0 O

¢ A=04 A A=0.6
\% W

Ku=1

O =2

Expected since spheres do not cluster in the limit v — oo .

Theory fails at large values of W (caustics)



Caustics - heavy particles in turbulence

Wilkinson & Mehlig, Europhys. Lett. 71 (2005) 186

One-dimensional model & = ~y(u(x,t) — ).

Il] e e e -
O ———ou | 0 . 2 0
smgula_rﬂ ?
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This singularity (‘caustic) gives rise to large relative velocities of
closeby particles.

Same as sling effect’. Falkovich, Fouxon & Stepanov, Nature 419 (2002)151

Caustics give rise to random uncorrelated motion” Février, Simonin & Squires, J. Fluid Mech. 533 (2005) 1

and ‘crossing trajectories’.
21



Multi-valued particle velocities

The commonly employed smooth hydrodynamic approach il AN NN
for the particle-number density o(r, ) /li',;—._-v;_'i AR AR ARRS
T R
0 cusp 44T LN NRasaAnAR
—o(r,t) + [V -v(r,t)]o(r,t) =0 BHAEE R A Yy
8t _______ \ «««««««««««««««
(@nd corresponding theory for correlation functions) cannot be ¢+ 1@ vl ‘ Z;;T_;;I";Ej‘:';‘:;gi
used for St > 0 because particle velocity field is multivalued. SR L f:\:;j:i:‘-j_'f_:ff,:f',j:’.j
Phase-space approach required:
Gustavsson, Mehlig, Wilkinson & Uski, Phys. Rev. Lett. 101 (2008) 174503
Gustavsson & Mehlig, Phys. Rev. E 87 (2012) 023016 .
Gustavsson & Mehlig, J. Turbulence 15 (2014) 34 caustic

Kinetic phase-space approach
Reeks, Phys. Fluids A 3 (1991) 446

Zaichik & Alipchenkov, Phys. Fluids 15 (2003) 1776

Random uncorrelated motion
Simonin et al., Phys. Fluids 18 (2006) 125197

Février, Simonin & Squires, J. Fluid Mech. 533 (2005) 1

22



Caustics - microswimmers

Analogy with inertial-particle problem:
velocities of active particles multi-valued.
Cusp catastrophe. Numerical simulation
of statistical model (d = 2).

Cusp ( — ), particle velocities (—) .

Caustic formation is a Kramers escape
process of the matrix Y, elements Y;; = on,; /0r; .

Dynamics in Y11 - Yi2-plane. Noise-induced escape Vi, | TS
from stable fixed point (0, 0) via line of unstable ol — :
fixed points (d = 2). '

T 2Kut¥



Conclusions

Statistical model for the dynamics of active particles.

Admits approximate analytical solution using trajectory expansions’
Gustavsson & Mehlig, Adv. Phys. (2016)

-Preferential sampling: instantaneous correlations with flow structures.
Whether clustering in down- or upwelling regions depends upon dimensionless
parameters. But ((V - w) ) always negative. Gyrotaxis breaks symmetry.

-Small-scale clustering: history of flow gradients that the particles experienced
In the past matter. Clustering of rod-like particles weaker or stronger than
spherical ones. Depends on dimensionless parameters.

-Statistical-model results become independent of Ku for large Ku
and agree with DNS results of turbulence. Similar in heavy-particle
problem.

1 0.2




Open questions

-Caustics give rise to multi-valued particle velocities. Mapped to peculiar
Kramers escape problem. Compute rate of caustic formation

-Large- ¥ limit (difficult because caustics are frequent)

-Encounter rates



