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Active particles

Small-scale patchiness of motile plankton in the unsteady ocean. 

Mechanisms: density stratification, predator-prey cycles, chemotaxis, phototaxis,
gravitaxis.

DNS of gyrotactic, neutrally buoyant, spherical plankton in turbulence show
small-scale patchiness.  Theory: strongly gyrotactic plankton gather in down-
welling regions of the turbulence. 
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Active particles

Assumptions:
              -particles neutrally buoyant
              -particles move independently of each other
              -inertial effects negligible 
              -particles detach from flow by swimming straight ahead, speed
              -particles rotated by turbulent flow 
                   and by gravitational torque (gyrotaxis) since c.o.m. not at centre
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Questions

Department of Physics

Formulate and solve statistical model that accounts for the symmetries 
of the problem. Can be analysed using asymptotic methods and perturbation theory.

Questions.
  - Where do the organisms go in turbulence?

  - How does shape affect the observed spatial patterns?
    Preferential sampling stronger or weaker for non-spherical particles?

  - Relation between preferential sampling and small-scale clustering? 
    Effect on encounter rates?

  - Dependence on dimensionless parameters? Theory for large gravitaxis: 

  - Caustics
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Department of Physics

Computer simulation of       particles (blue)    Direct numerical simulations (DNS)
in two-dimensional smooth random flow       of particles in turbulence

Equation of motion:            and                                    .
Gravity    , fluid-velocity field            , Stokes damping constant    . 
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Preferential sampling, inertial effect. Assume            but
small, and  neglect settling due to gravity.

At small     heavy particles follow effective velocity field

Spatial clustering in sinks of        where                  :

                                                                                    
        
Here                            is the symmetric (strain) part of the matrix of particle-velocity
gradients                        ,  and                              is the  antisymmetric part.
     
`Maxey’s centrifuge´: particles avoid vortices. Effect of particle inertial. Valid for very small     .

Air bubbles in water (              )?
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Preferential sampling affects but does not explain small-scale clustering. Which mechanism
brings particles in a straining region closer together?

                                                                                              red: number density of
                                                                                                     particles 

                                                                                              green: vortical regions

                                                                                              flow-correlation length 

Preferential sampling - small-scale clustering
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Small-scale clustering 

Exponents                       describe rate of contraction or expansion of  small length 
element       , area element        , and volume element         of particles

Lyapunov fractal dimension

where                                 and     is largest integer for which             . 

Dimension deficit                     . 

Compute exponents from              . For example                                      .
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Equation of motion

Department of Physics

Kessler’s model for centre-of-mass and orientational dynamics

                                           ,

Particle position   , particle orientation    , time   , fluid velocity           , swimming
speed     , swimming direction    .

Particle angular velocity
                                    

Orientation parameter    , and               .

Fluid-velocity gradient matrix    ,                          ,                           , and                      .     

Shape factor:          rod,          sphere.                           .
.
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r n t u(r, t)
vS
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Gravitational vs. hydrodynamic torque

Gyrotactic torque is due to inhomogeneity in particle-mass density.

Shape asymmetry gives rise to hydrodynamic torque for homogeneous particles.

Consider small needle or dumbbell settling with velocity     so that                            .
A symmetric needle or dumbbell (fore-aft symmetry) continues to settle at initial orientation.
Particle size    , kinematic viscosity    .

Inertial torque (first order in       ) turns symmetric needle (dumbbell) to horizontal orientation.

Asymmetric dumbbell at               turns so that larger
sphere settles first (spheres have same mass density).

Asymmetric dumbbell to first order in       : hydrodynamic 
and inertial torques balance at certain angle    that
depends on asymmetry and        .
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Model for turbulent velocity field

Statistical model for turbulent aerosols                    Method: approximate analytical solution
                                                                               using `trajectory expansions´ (     -expan-
                      and                                     .             sion.

Incompressible, homogeneous, isotropic
Gaussian random function           .

Correlation time     .

Correlation length    .

Typical speed     .   

No inertial range.

Gustavsson & Mehlig, Adv. Phys. (2016)ṙ = v v̇ = g + �(u(r, t)� v)
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Dimensionless parameters

Measure of how rapidly           fluctuates: Kubo number                  .

Shape factor    .

Swimming speed:                   .

Gyrotactic relaxation time                 (             : vanishing effect).

Dimensionless parameters in DNS of turbulence:

                                and                         

Kolmogorov scales, Kolmogorov time                                         .

Correspondence:                          and                       . 
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Preferential sampling of       and its    -gradient        (evaluated at the particle position).
Small swimming speed                  :

Conclusions

    -particles preferentially sample sinks of transversal velocity field, 
     
    -particles preferentially sample downwelling regions,            .

    -               independent of     for small    .  
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Preferential sampling - large 

Preferential sampling of       and its    -gradient        (evaluated at the particle position).
Large swimming speed                  :

Conclusions

    -particles preferentially sample sinks of transversal velocity field, 
     
    -spherical particles preferentially sample downwelling regions,            , rods upwelling
      regions, 

    -phase transition at 
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Comparison with statistical-model simulations

Left:          and                . Right           and             .Ku = 0.1 Ku = 1d = 2 d = 3

preferential sampling
of upwelling regions                               

downwelling                               
large-    limit
universal,      -independent

� = 0.1 � = 0
� = 1 � = 0

� = 0.1 � = 1
� = 1 � = 1

Ku
�

preferential sampling
of upwelling regions                               



Comparison with DNS

Comparison of statistical-model simulations with DNS

Open symbols: DNS  (                                                               )
Filled symbols: statistical-model simulations for                         .

Statistical-model results independent of       for large      .
Qualitative agreement with DNS. Factor due to difference between universal small-scale 
fluctuations of turbulence and statistical model

Ku = 1, 2, 5, 10

Ku Ku
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Small-scale clustering 

Small-scale clustering determined by the particle-velocity gradients    - follow separations
between a cloud of particles that are initially infinitesimally close together. 

At zero swimming speed,          , the particle centre-of-mass follows the flow. 
In this case           . In general not.

      determines small-scale clustering. Time evolution of volume     of particle cloud:
 
                                   .

Steady-state average 

                                                                    .
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Small-scale clustering - 

Expand equations of motion for small     : 

Derived earlier for           .                                                                 

Average in statistical model

                                                               for

with shape factor                                                                                        , and    

                                                              for                 

with                                                                 .

Conclusions: rods cluster less than spheres.                                                          
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Fractal dimension

Lyapunov fractal dimension                                      (for           )
Lyapunov exponents      and     .

Small-scale clustering if                           .

Theory (solid lines). Simulations (symbols).
Dashed lines: 

Conclusions

 -rods cluster less than spheres.

 -theory fails at large values of     (caustics).
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Small-scale clustering - weak gyrotaxis

Weak gravitaxis (            ): clustering stronger for rod-shaped particles.

Expected since spheres do not cluster in the limit              .

Theory fails at large values of     (caustics)

                                   

 � 1

 !1

� = 2
Ku = 1

� = 0 � = 0.2
� = 0.4 � = 0.6
� = 0.8 � = 1

 



One-dimensional model                              .  

This singularity (`caustic´) gives rise to large relative velocities of 
closeby particles.

Same as `sling effect´.

Caustics give rise to `random uncorrelated motion´
and `crossing trajectories´.

Wilkinson & Mehlig, Europhys. Lett. 71 (2005) 186
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Caustics in turbulent aerosols

Michael Wilkinson1 and Bernhard Mehlig2
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Networks of caustics can occur in the distribution of particles suspended in a randomly moving
gas. These can facilitate coagulation of particles by bringing them into close proximity, even in cases
where the trajectories do not coalesce. We show that the long-time morphology of these caustic
patterns is determined by the Lyapunov exponents  1,  2 of the suspended particles, as well as the
rate J at which particles encounter caustics. We develop a theory determining the quantities J ,  1,
 2 from the statistical properties of the gas flow, in the limit of short correlation times.

Aerosols are usually unstable systems, in that the sus-
pended particles eventually coagulate. Understanding
the process giving rise to this coagulation, and deter-
mining the time scale over which it occurs are important
questions in describing any aerosol system. If the gas
phase does not have macroscopic motion, the coagulation
may be e�ected by di�usion of the suspended particles,
or (if the suspended particles are of a volatile substance)
by Ostwald ripening. The coagulation process can be
greatly accelerated if the aerosol undergoes macroscopic
internal motion. Ultrasound, for example, has been used
to accelerate coagulation in aerosols [1]. Turbulent flow
could also play a role in the coagulation of suspended par-
ticles; this could be relevant in the coalescence of visible
moisture into rain droplets [2].

If suspended particles are simply advected in an in-
compressible flow, their density remains constant. Iner-
tial e�ects are therefore required for coagulation, unless
the flow exhibits significant compressibility. In earlier
work [3, 4] we discussed the motion of inertial particles
in a random velocity field. We showed that there is a
phase where the trajectories of the particles coalesce, so
that arbitrarily small particles coagulate. In the limit
where the correlation time � of the flow approaches zero,
this path-coalescing phase only exists when the velocity
field is predominantly potential flow (such as the flow
due to sound waves) [4]. Turbulent fluid flow is expected
to be predominantly solenoidal, and it is of interest to
find alternative mechanisms of coagulation which oper-
ate outside the path-coalescence phase.

Here we describe an alternative mechanism facilitating
coagulation, illustrated in Fig. 1: we show the distribu-
tion of particles suspended in a randomly moving gas (the
equations of motion and statistics of the flow field are
given by eqns. (1) to (3) below). The large panel shows
the distribution of particles after a short time, starting
from a random scatter with uniform density. The parti-
cles cluster onto a network of caustic lines, analogous to
the networks of optical caustics that can be seen on the
bottom of a swimming pool [5]. The phenomenon we de-
scribe here is a new mechanism by which aerosol particles
are brought into close proximity. The remaining parts
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FIG. 1: Distribution of inertial particles suspended in a ran-
domly moving fluid (blue corresponds to lowest density, yellow
to highest). The initial distribution is a random scatter. The
large panel shows caustics at short time. Panels (a)-(c) show
the long-time behaviour. In all cases, the region is the unit
square, the mean particle density is 2.5 � 105, m = 1, and
there is potential flow (with parameters ⌦ = 0.03, ⌅ = 0.01,
⌃t = 0.05, see text). Main panel: ⇤ = 0.53, t = 5, (a):
⇤ = 1.18, t = 500, (b): ⇤ = 0.72, t = 125, (c): ⇤ = 0.21,
t = 125. The three cases correspond to: (a)  2 <  1 < 0, (b)
 1 > 0,  1 +  2 < 0, and (c)  1 > 0,  1 +  2 > 0, see text.

of Fig. 1 show the distribution of particles after a long
time, in three di�erent cases: part (a) shows the path-
coalescence phase where the trajectories condense onto
points. Parts (b) and (c) show two cases where there is
no path coalescence, but a steady state with significant
inhomogeneities of density due to caustics: these have
very di�erent morphologies, depending on the parameter
values, as we shall show.

Fig. 1 is surprising because it is be expected that ran-
dom movement of uniformly distributed particles would
leave the distribution uniform. The following questions
naturally arise. First, why do the particle trajectories
coalesce into points in Fig. 1(a)? This phenomenon was
first noted in [6] and subsequently analysed in detail in
[3, 4] (c.f. also the theory developed at the end of this pa-

                                                                                

Caustics - heavy particles in turbulence

Falkovich, Fouxon & Stepanov, Nature 419 (2002)151 V. Jankievic

Février, Simonin & Squires, J. Fluid Mech. 533 (2005) 1

21

singularity

xi(t)

t

x x

x

v



Multi-valued particle velocities

The commonly employed smooth hydrodynamic approach 
for the particle-number density

(and corresponding theory for correlation functions) cannot be 
used for             because particle velocity field is multivalued.

Phase-space approach required:

Kinetic phase-space approach

Random uncorrelated motion
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Caustics - microswimmers

Analogy with inertial-particle problem: 
velocities of active particles multi-valued.
Cusp catastrophe. Numerical simulation
of statistical model (          ).
Cusp (             ), particle velocities (       ) . 

Caustic formation is a Kramers escape 
process of the matrix    , elements                       .

Dynamics in       -      -plane. Noise-induced escape
from stable fixed point          via line of unstable
fixed points (          ).
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Conclusions

Statistical model for the dynamics of active particles.
Admits approximate analytical solution using `trajectory expansions´

-Preferential sampling: instantaneous correlations with flow structures.
 Whether clustering in down- or upwelling regions depends upon dimensionless
 parameters. But                   always negative. Gyrotaxis breaks symmetry.

-Small-scale clustering: history of flow gradients that the particles experienced
 in the past matter. Clustering of rod-like particles weaker or stronger than
 spherical ones. Depends on dimensionless parameters.

-Statistical-model results become independent of       for large     
 and agree with DNS results of turbulence. Similar in heavy-particle 
problem.
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Open questions

-Caustics give rise to multi-valued particle velocities. Mapped to peculiar
 Kramers escape problem.  Compute rate of caustic formation

-Large-    limit (difficult because caustics are frequent)

-Encounter rates

                    

 


