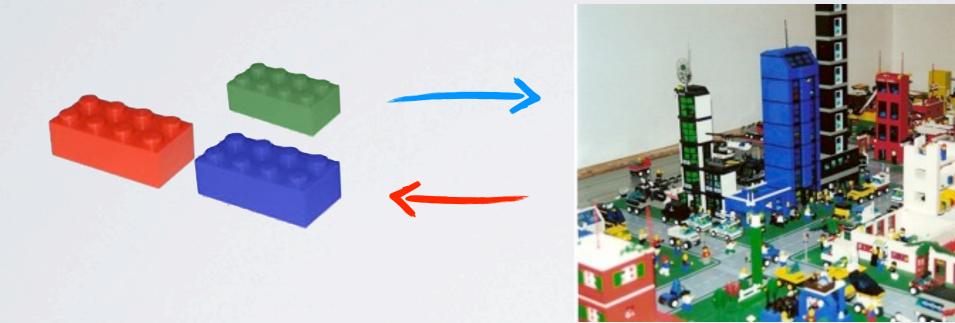
SELF-ASSEMBLY AND DIFFUSION OF ANISOTROPIC PARTICLES

Daniela J. Kraft

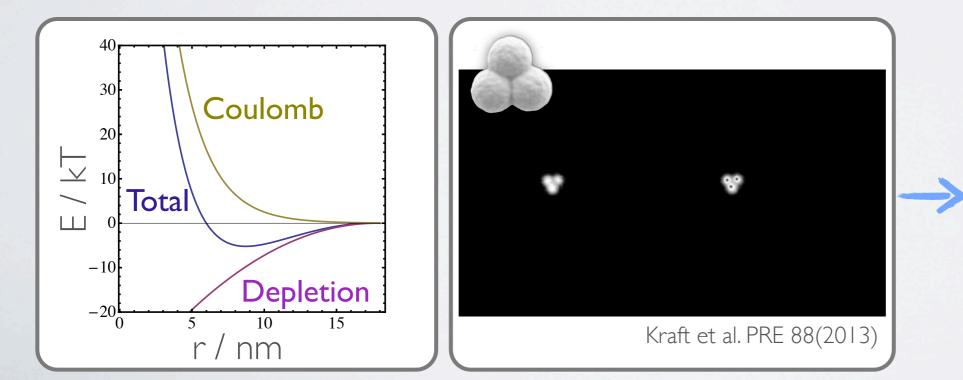
COST workshop, Lagrangian transport: from complex flows to complex fluids Soft Matter Physics, LION, Leiden University, The Netherlands March 7 2016



"What I cannot create, I do not understand." **R. Feynman**

WHY COLLOIDAL PARTICLES?

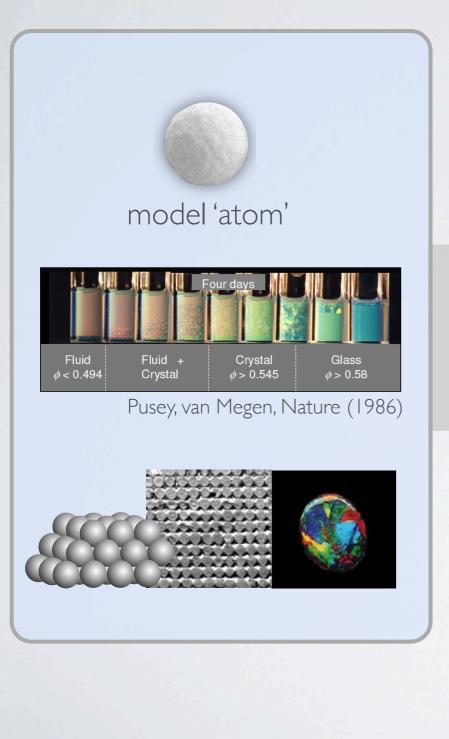
SOFT, SLOW, SEEABLE

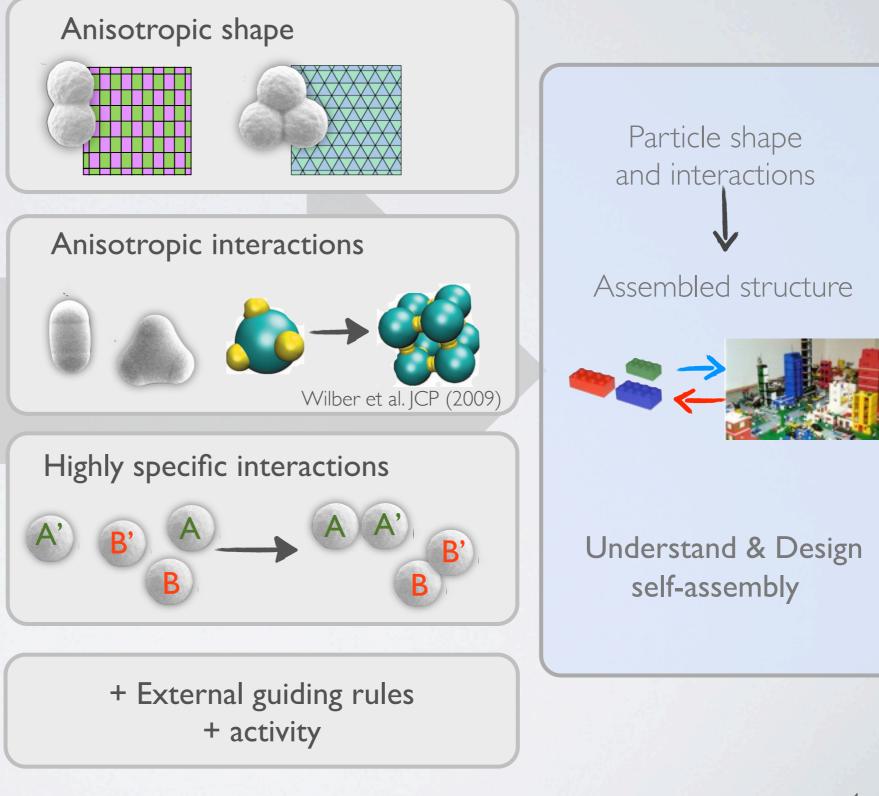


Ideal Model System For Doing Fundamental Physics

Applications

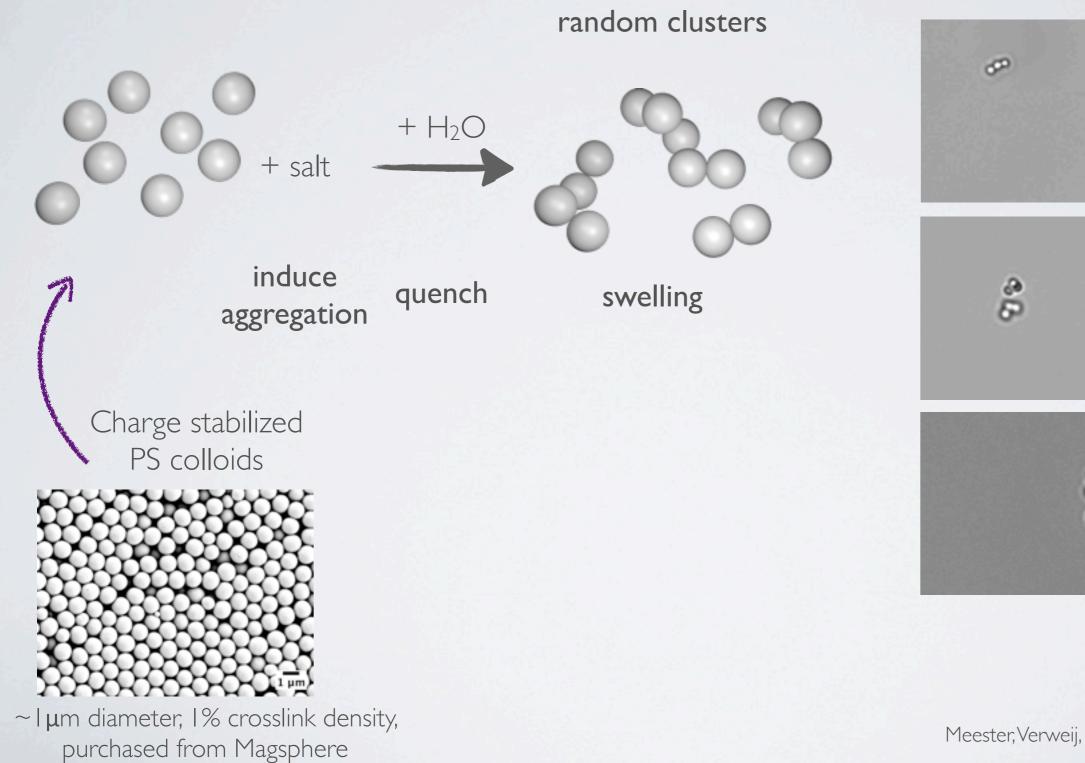
FROM SPHERES TO COMPLEX PARTICLES





Colloidal Recycling: Synthesis of Complex Colloidal Particles

RESHAPING RANDOM COLLOIDAL CLUSTERS



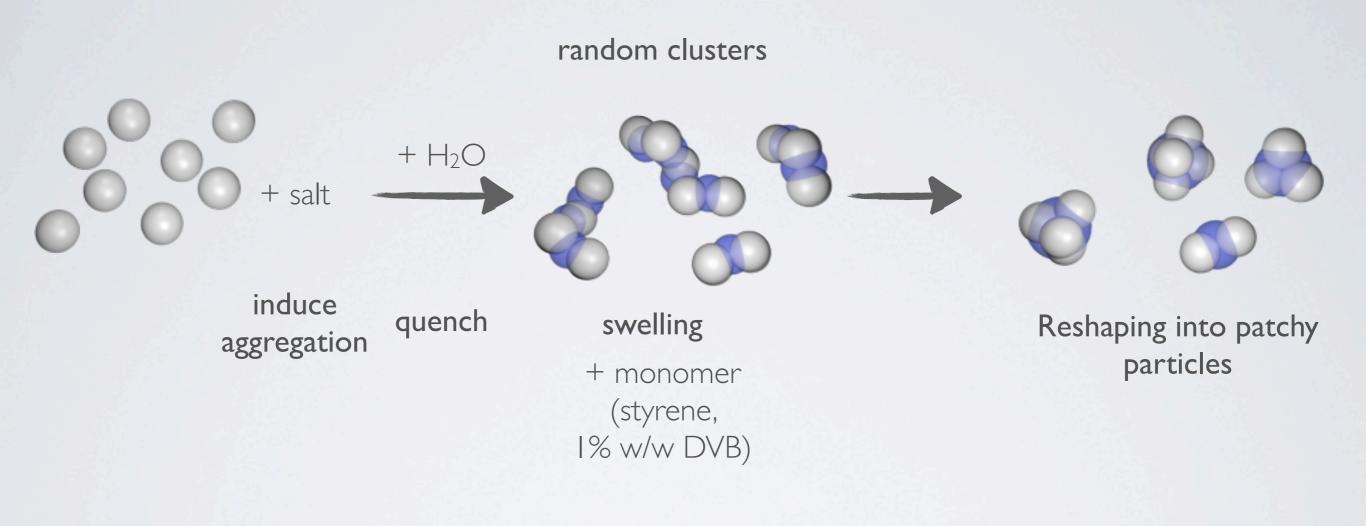
Meester, Verweij, vd Wel, Kraft, ACSNano (2016)

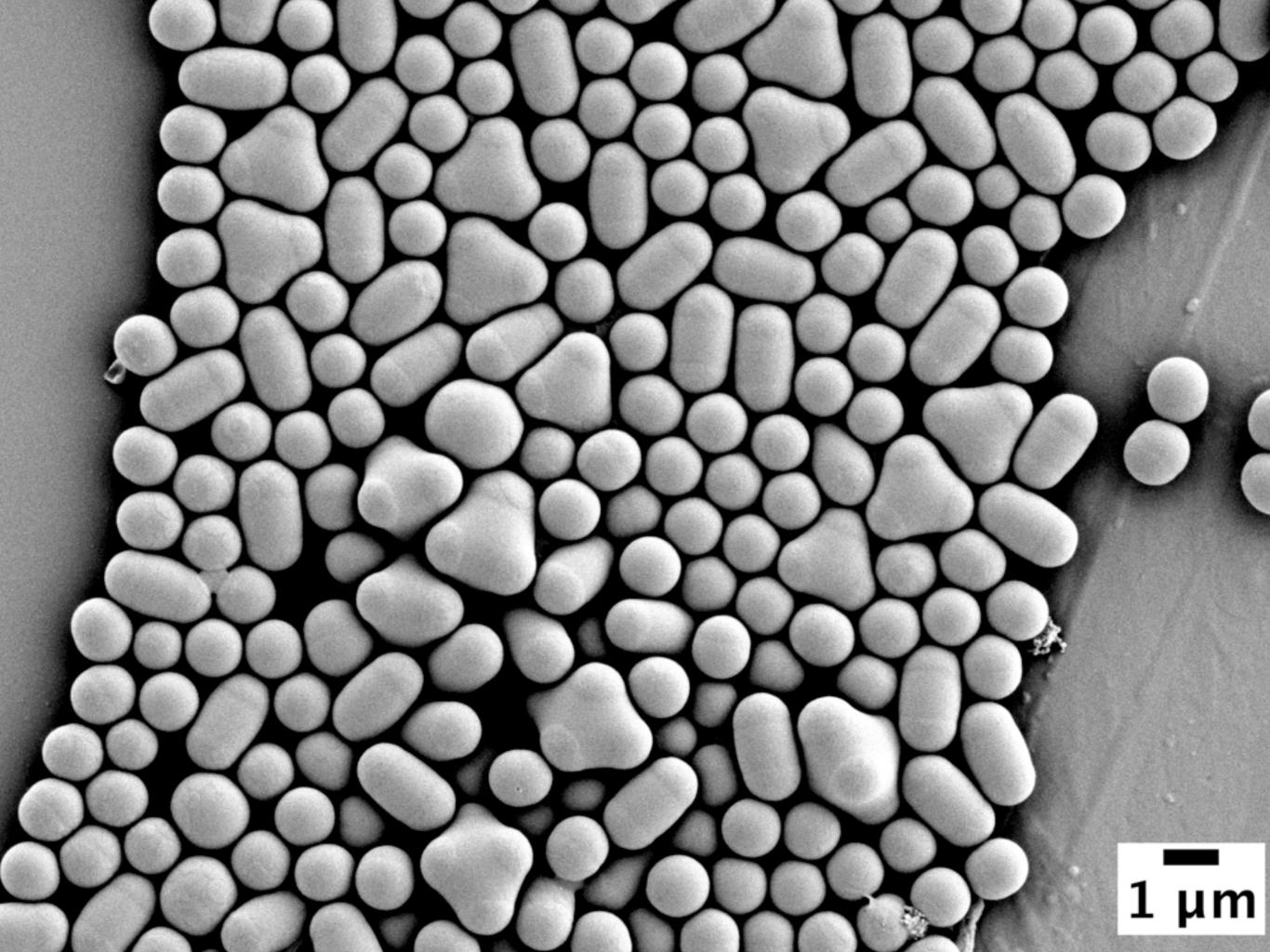
8

3

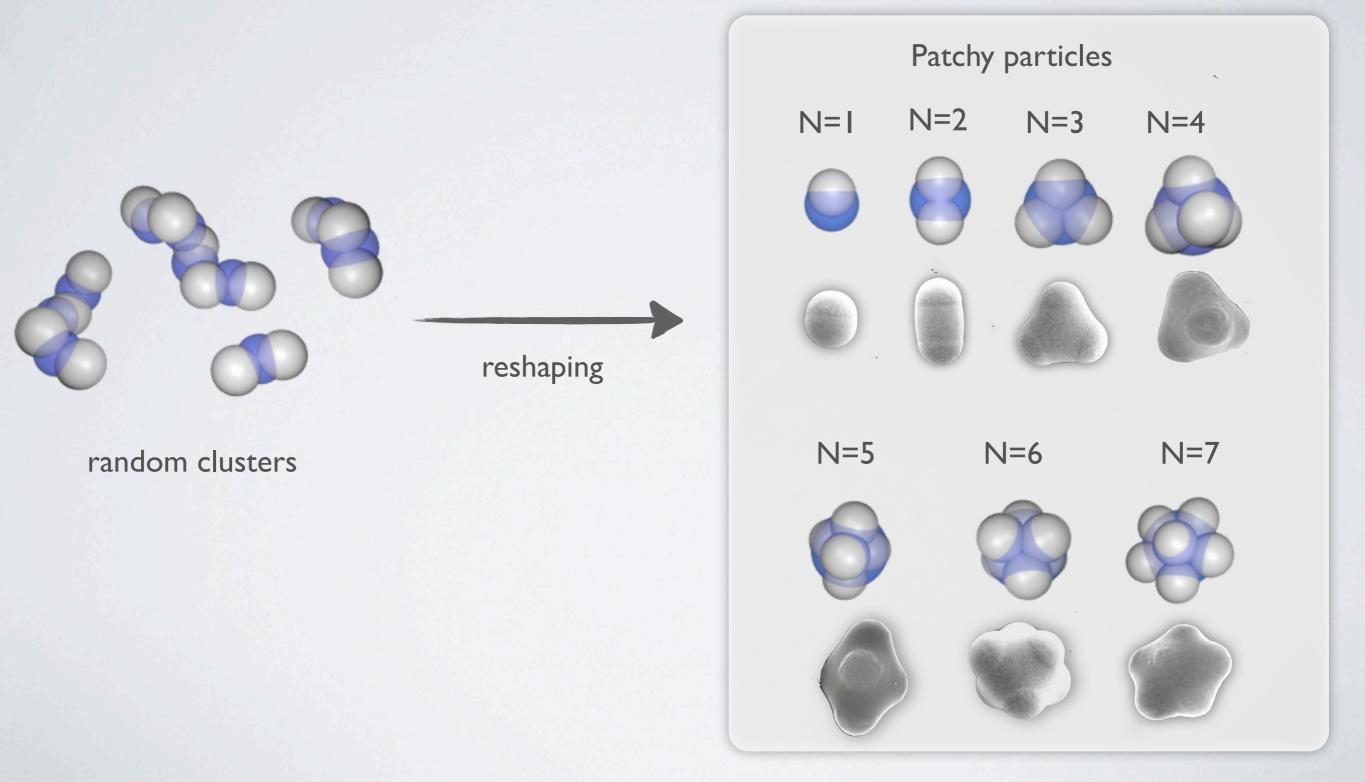
87

RESHAPING RANDOM COLLOIDAL CLUSTERS



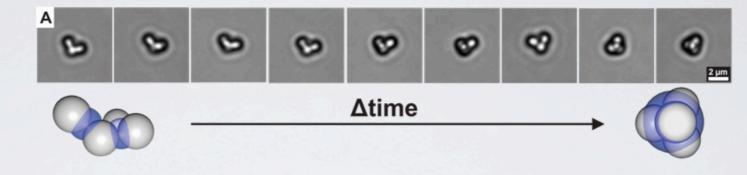


PARTICLE SWELLING RECONFIGURES THE RANDOM CLUSTERS INTO UNIFORM PATCHY PARTICLES

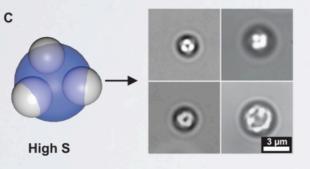


COALESCENCE DRIVEN RECONFIGURATION

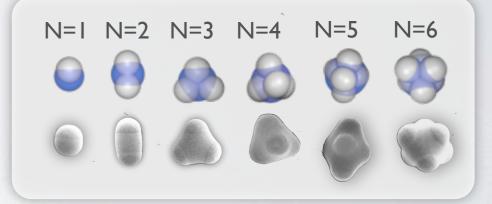
Liquid droplet coalescence drive rearrangement



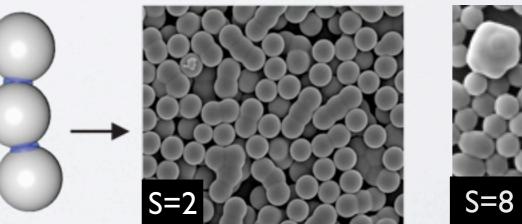
Liquid droplet confines the spheres

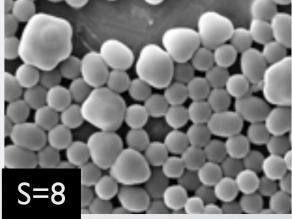


Cluster minimize the second moment of the mass distribution



Insufficient swelling
→ no / small liquid bridges
→ no reconfiguration!





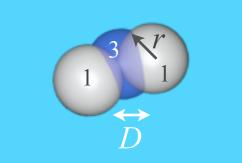
WHAT ENABLES RECONFIGURATION?

 $\begin{array}{c} 3 \\ 1 \\ D \end{array} \begin{array}{c} \gamma \\ 1 \\ D \end{array} \begin{array}{c} \gamma \\ 1 \\ 1 \end{array}$

Van der Waals interaction energy $W(D) = -\frac{Ar}{12D}$ with the Hamaker constant A (Lifshitz theory) $A = \frac{3}{4}k_BT\left(\frac{\epsilon_1 - \epsilon_3}{\epsilon_1 + \epsilon_3}\right)^2 + \frac{3h\nu_e}{16\sqrt{2}}\frac{(n_1^2 - n_3^2)^2}{(n_1^2 + n_3^2)^{3/2}}$

polystyrene spheres: $\epsilon_{PS} = 2.55$ $n_{PS} = 1.557$

polystyrene spheres in water: $\epsilon_w = 80$ $n_w = 1.333$ $A_{PS-w} = 1.5 \cdot 10^{-20} J$

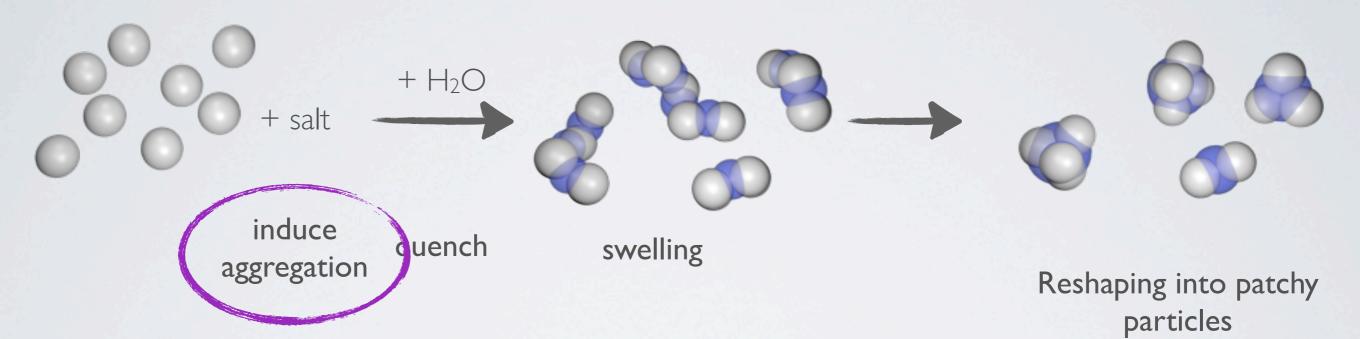


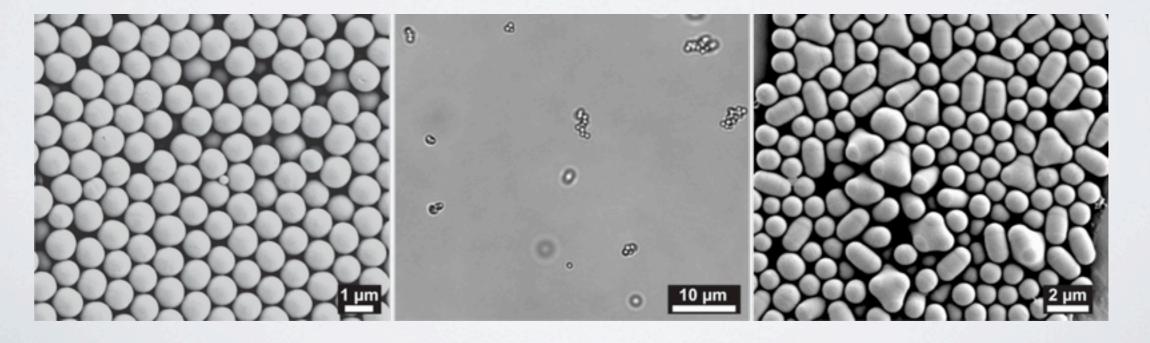
$$\epsilon_{st} = 2.47$$
 $n_{st} = 1.547$ $A_{PS-st} = 2.5 \cdot 10^{-23} J$

600x reduction of van der Waals attraction due to liquid bridges!

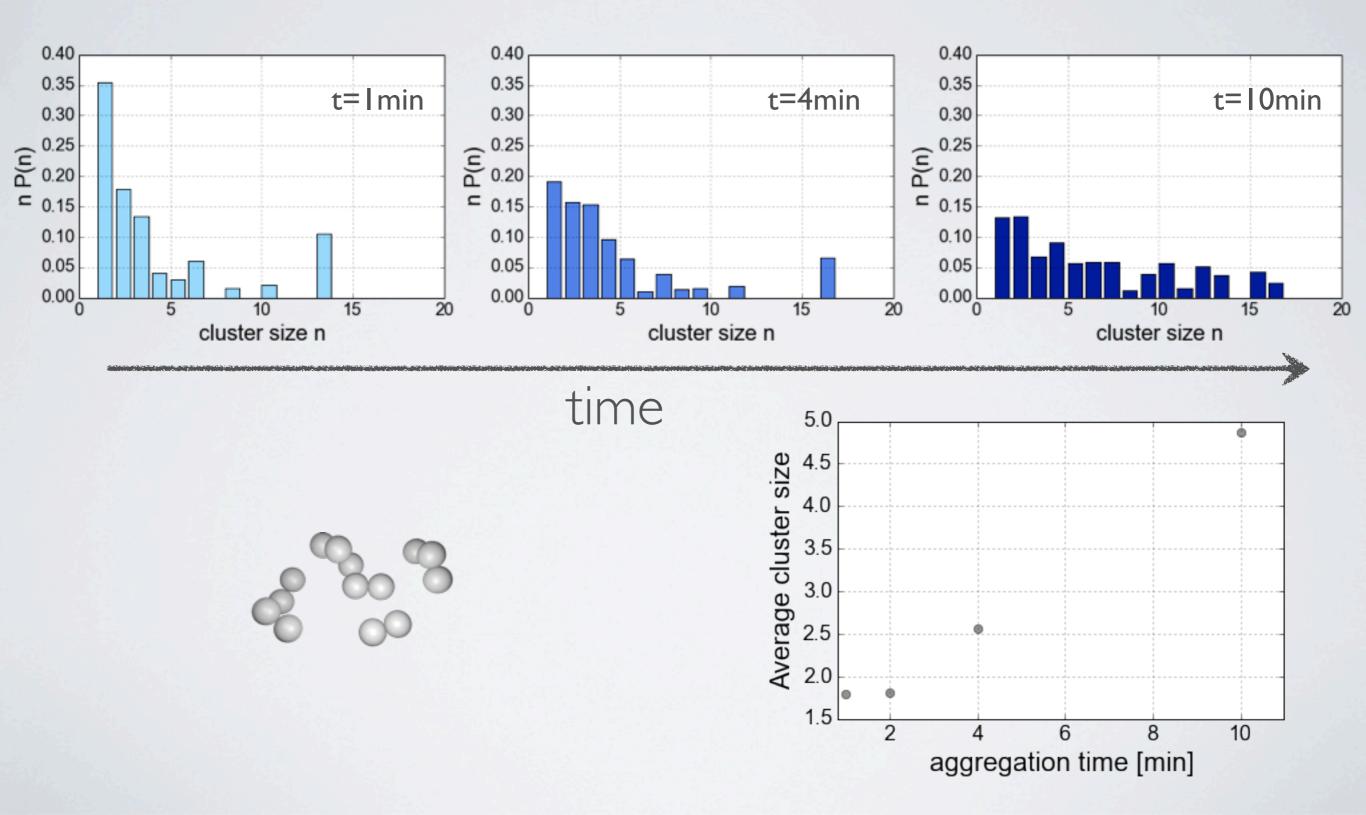
COLLOIDAL RECYCLING

random clusters

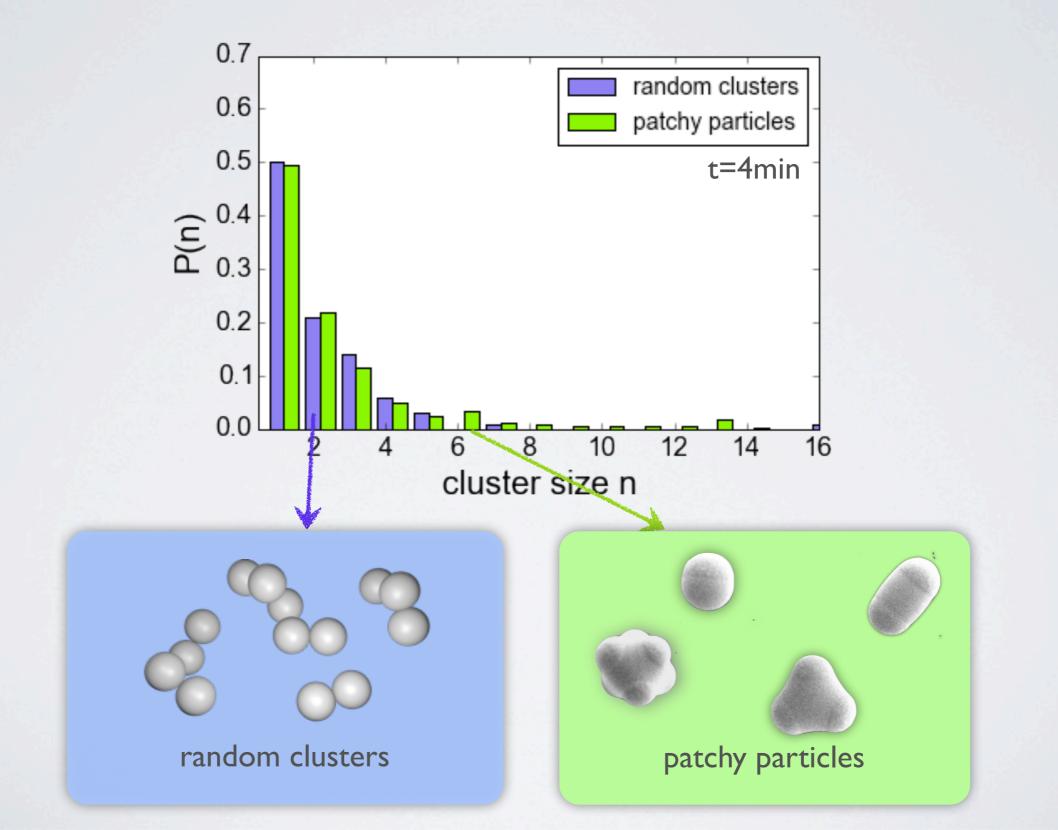




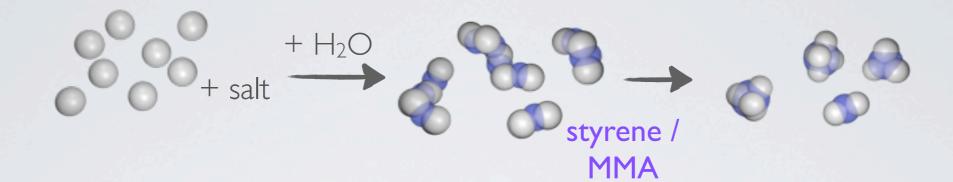
CLUSTER SIZE IS TUNABLE BY AGGREGATION TIME



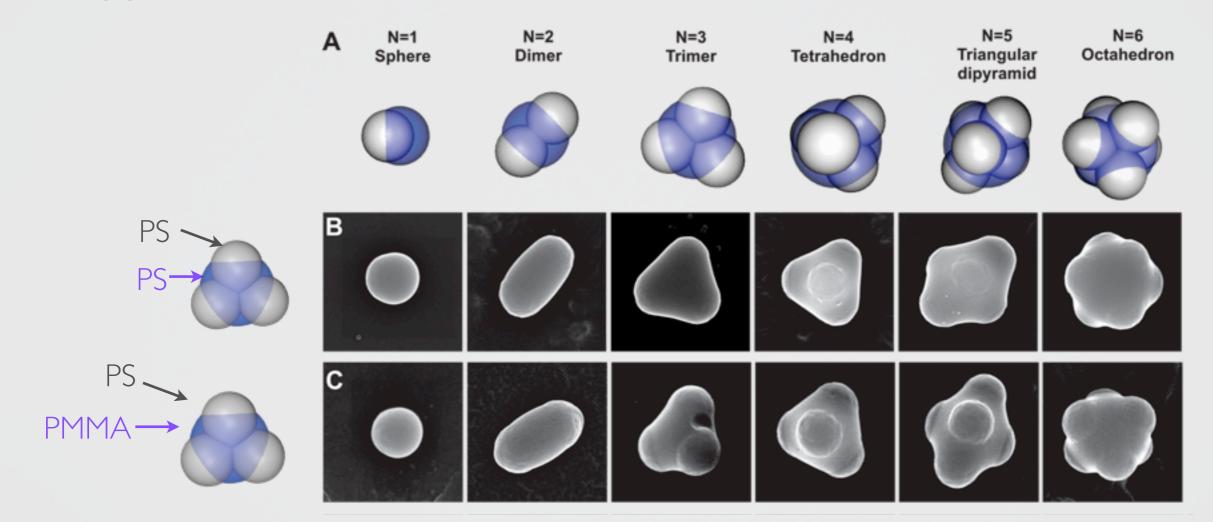
ONLY RESHAPING DURING SWELLING, NO FURTHER AGGREGATION



COMPOSITE PS / PMMA COLLOIDAL MOLECULES



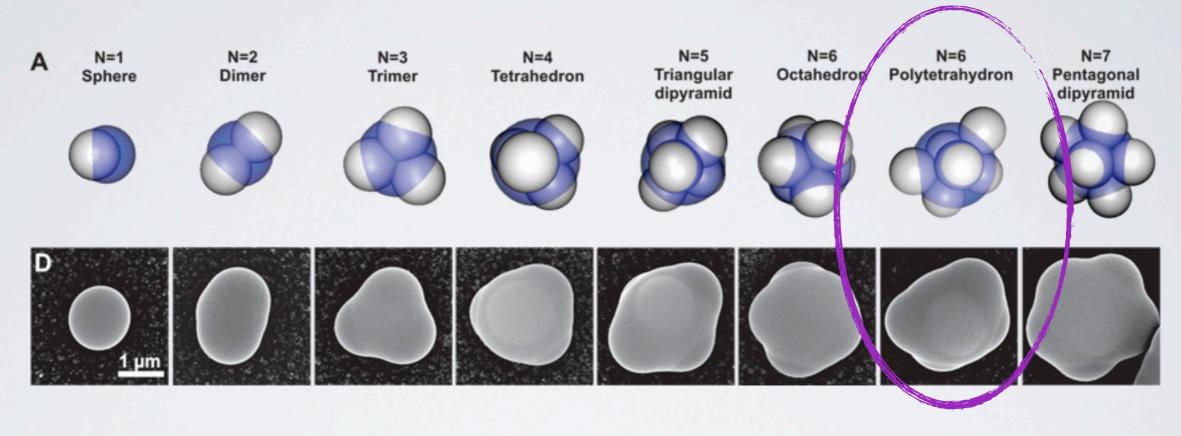
Patchy particles



Meester, Verweij, vd Wel, Kraft, ACSNano (2016)

BEYOND DROPLET CONFINED CLUSTERS

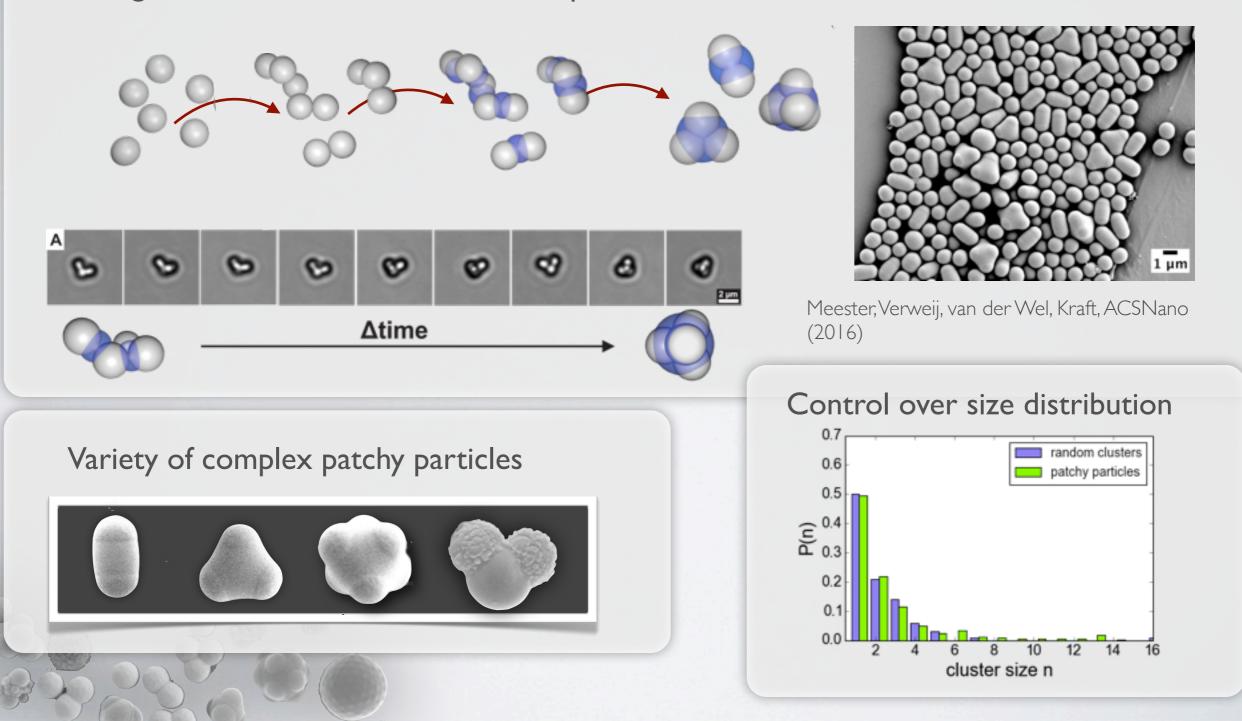
"homemade" soft PS swollen with toluene



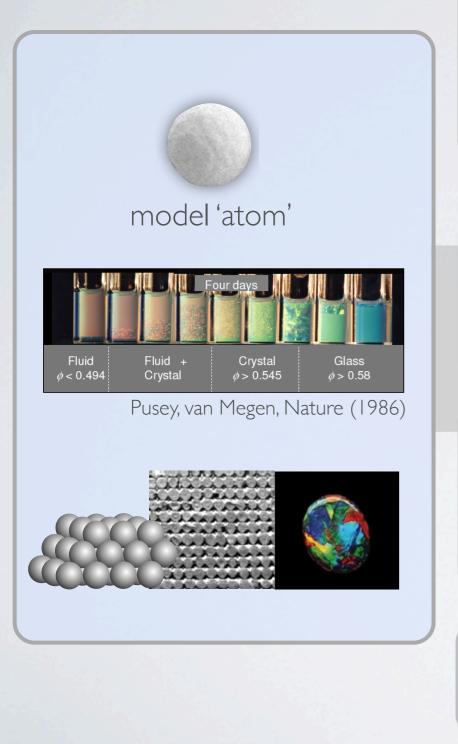
In clusters made up of softer particles and in the absence of cluster spanning droplets, **entropy** becomes important in determining the cluster shape!

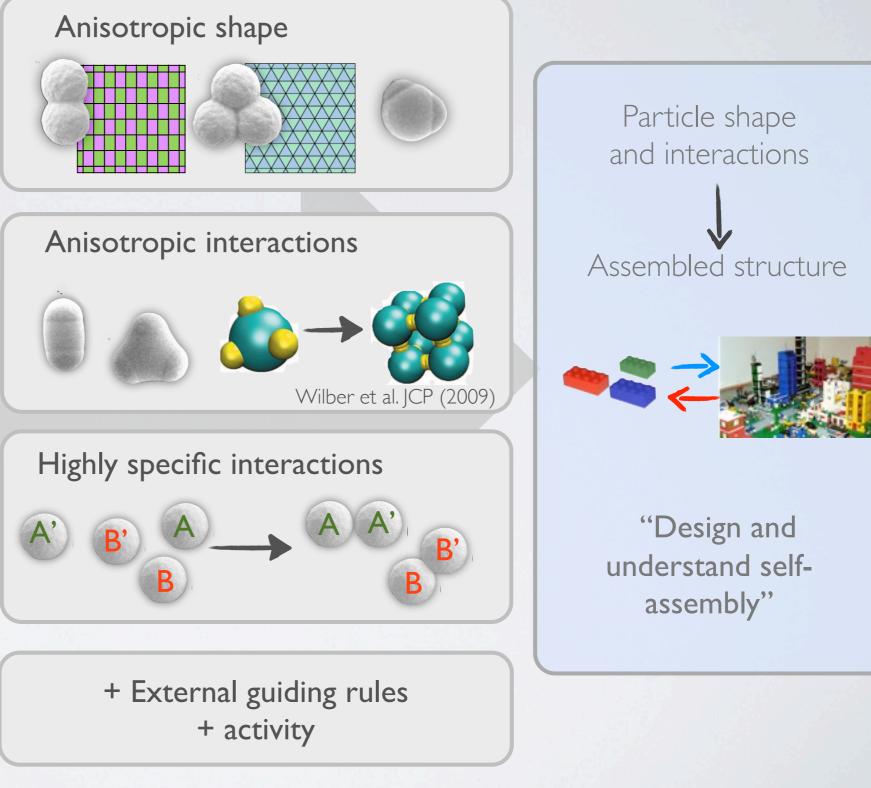
SUMMARY - RECYCLING COLLOIDAL AGGREGATES INTO PATCHY PARTICLES

Reorganization of random clusters of spheres



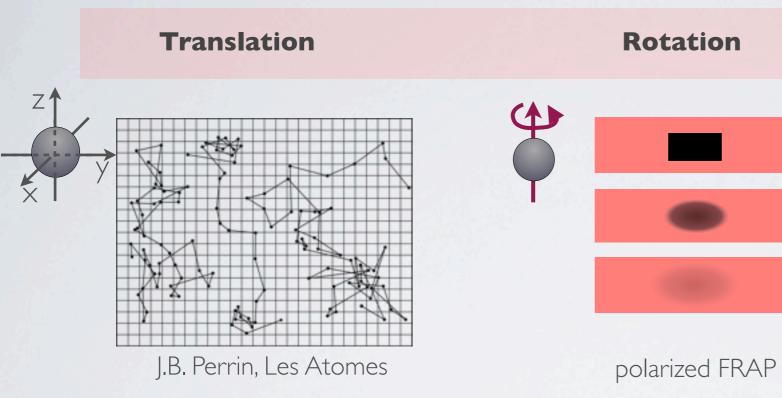
FROM SPHERES TO COMPLEX PARTICLES





BROWNIAN MOTION OF ANISOTROPIC COLLOIDAL PARTICLES

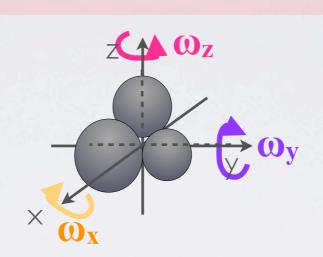
BROWNIAN MOTION OF ANISOTROPIC PARTICLES



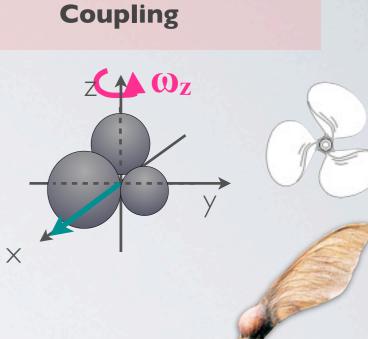
BROWNIAN MOTION OF ANISOTROPIC PARTICLES

Translation

Origin of coordinate system determines 'meaning' of diffusion coefficients



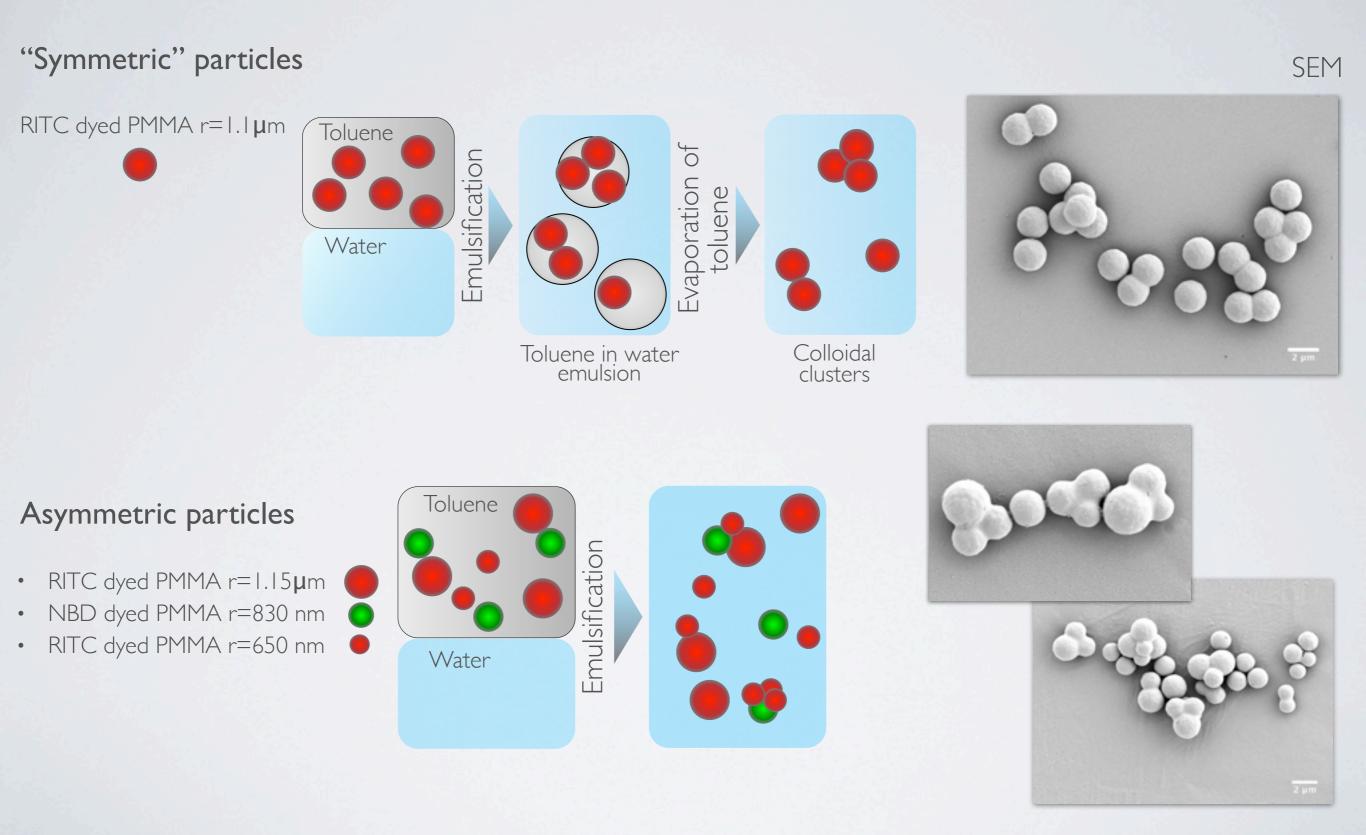
Rotation



Can we measure the shape-dependent diffusion coefficients?

http://de.wikipedia.org/wiki/Ahorne http://www.pt-boat.com/propeller/propeller.html

SYNTHESIS OF ANISOTROPIC PARTICLES

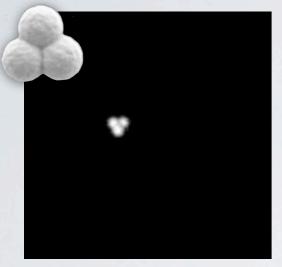


DETERMINATION OF THE DIFFUSION CONSTANT MATRIX FROM 3D CONFOCAL MICROSCOPY

14

10

Confocal microscopy of fluorescent PMMA particles Track particle positions using IDL or Trackpy



•

10x real speed

- 0
- center of mass position

 $\Delta \vec{x}(t) = \vec{x}(t) - \vec{x}(0)$

• orthonormal orientation vectors $\hat{u}_i(t)$ $\Delta \hat{u}(t) = \frac{1}{2} \sum_{i=1}^{3} \hat{u}_i(0) \times \hat{u}_i(t)$

 $\vec{\xi}(t) = (\Delta \vec{x}(t), \Delta \hat{u}(t))$

Calculate diffusion constant matrix from cross-correlations

Center of mass motion

 $\vec{x} = (x, y, z)$

$$\mathcal{D} = \frac{1}{2} \lim_{t \to 0} \frac{\partial}{\partial t} \left\langle \vec{\xi}(t) \otimes \vec{\xi}(t) \right\rangle$$

or
$$\mathcal{D}_{i,j} = \frac{1}{2} \lim_{t \to 0} \frac{\partial}{\partial t} \left\langle \xi_i(t) \xi_j(t) \right\rangle$$

Change in body fixed axes t t+dt $z' \uparrow \hat{u}_i(t)$ $y' \downarrow y'$ $x' \downarrow \hat{u}_i(t)$ $y' \downarrow \hat{u}_i(t)$ $y' \downarrow \hat{u}_i(t)$

Analyze trajectory and rotations using IDL

Tra	nel	atic		CO	upi	ing	trar	
Ira	.11510	alic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	& rotation				
	Δx	Δy	Δz	Δu_x	Δu_y	Δu_z	;	
Δx	(*	*	*	*	*	*		
Δy	*	*	*	*	*	*	24	
$\mathcal{D}^{\Delta z}$	*	*	*	*	*	*	2	
$\mathcal{D}\overline{\Delta u}_x$	*	*	*	*	*	*		
Δu_y		*	*	*	*	*		
Δu_z	*	*	*	*	*	*		

S.

Coupling Rotation trans. & rot.

THE HYDRODYNAMIC FRICTION MATRIX

Diffusion constant matrix still depends on temperature and viscosity

 $\mathcal{D}_0 = \frac{1}{2} \lim_{t \to 0} \frac{\partial}{\partial t} \left\langle \vec{\xi}(t) \otimes \vec{\xi}(t) \right\rangle$

Hydrodynamic friction matrix

 $\mathcal{H} = \frac{1}{\beta\eta} \, \mathcal{D}_0^{-1}$

Translation	(*	*	*	*	*	*)	Coupling trans.
	*	*	*	*	*	*	& rotation
H —	*	*	*	*	*	*	
n =	*	*	*	*	*	*	
Coupling		*	*	*	*	*	
Coupling trans. & rot.	*	*	*	*	*	*	Rotation

Only particle **shape and size** define the hydrodynamic friction matrix

eta inverse thermal energy

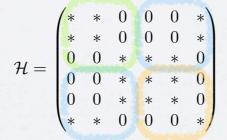
 η viscosity

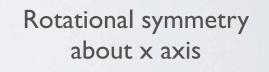
 k_B Boltzmann constant

Symmetries in the particle shape reduce the complexity of the matrix

 $\mathcal{H}(\text{iso}) = \begin{pmatrix} * & 0 & 0 & 0 & 0 & 0 \\ 0 & * & 0 & 0 & 0 & 0 \\ 0 & * & 0 & 0 & 0 & 0 \\ 0 & 0 & * & 0 & 0 & 0 \\ 0 & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & 0 \end{pmatrix}$

One plane of symmetry (x-y plane)





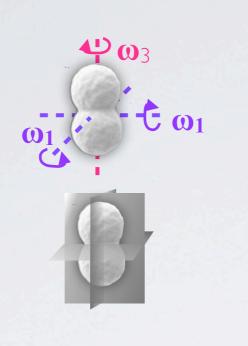
	\mathcal{H}_{11}	0	0	0	0	0
	0	\mathcal{H}_{22}	0	0	0	$-\mathcal{H}_{53}$
บ _	0	0	\mathcal{H}_{22}	0	\mathcal{H}_{53}	0
π –	0	0	0	\mathcal{H}_{44}	0	0
	0	0	\mathcal{H}_{53}	0	\mathcal{H}_{55}	0
	0	$-\mathcal{H}_{53}$	0	0	0	\mathcal{H}_{55}

¹Happel and Brenner, Low Reynolds Number Hydrodynamics, Prentice Hall

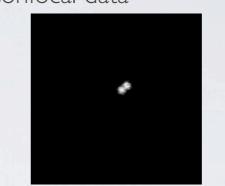
DIMERS: UNIAXIAL PARTICLES

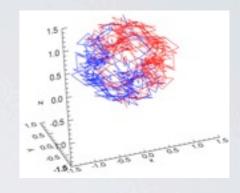
Symmetries

- Rotational symmetry and discrete rotational symmetry
 - Mirror symmetries for three perpendicular planes (orthotropic shape)



Experiments Confocal data

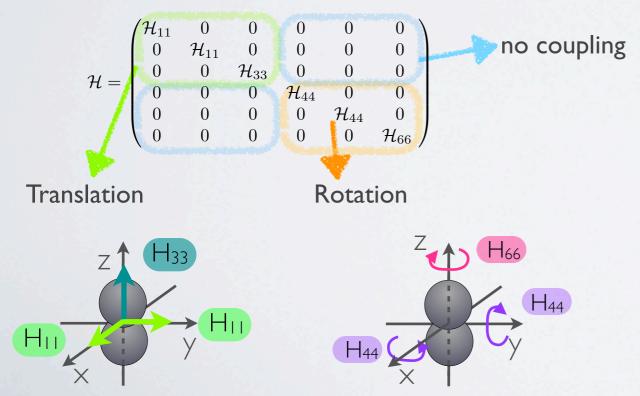




10x real speed

$\mathcal{H}^{exp}(dimer) =$	(25.2)	0.8	-1.2	-0.4	-1.8
	0.8	25.7	0.7	-5.6	-1.1
$\mathcal{U}^{exp}(dimor) =$	-1.2	0.7	19.7	-1.5	-0.2
π (unner) –	-0.4	-5.6	-1.5	128.8	1.7
	-1.8	-1.1	-0.2	1.7	114.5
	(–				

Hydrodynamic friction matrix



Numerical calculation (Hydrosub code)

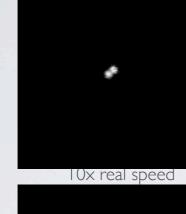
Shape symmetries are well represented in the hydrodynamic friction matrix!

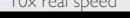
de la Torre and Carasco, Biopolymers 63, 163 (2002)

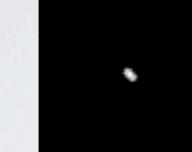
UNIAXIAL PARTICLES - DIMERSWITH LONGER BOND LENGTH

Particles

Experiments







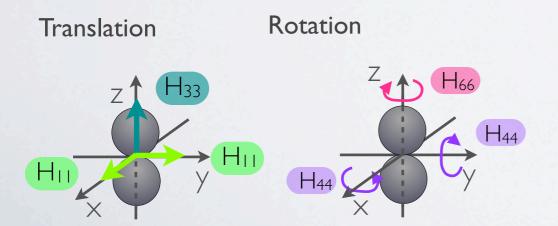
	(25.2)	0.8	-1.2	-0.4	-1.8	_/
	0.8	25.7	0.7	-5.6	-1.8 -1.1 -0.2 1.7 114.5	_
$\mathcal{H}^{exp}(dimer) =$	-1.2	0.7	19.7	-1.5	-0.2	_
π (unner) –	-0.4	-5.6	-1.5	128.8	1.7	_
	-1.8	-1.1	-0.2	1.7	114.5	_
		—	and the second second	a stranger to state		_/

	(25.4)	0.5	-0.7	-1.4	-1.	-)
	0.5	26.1	0.1	0.	1.	-
$\mathcal{H}^{exp}(\text{dimer},2) =$	-0.7	0.1	22.3 0.6	0.6	3.8	_
π (unner,2) –	-1.4	0.	0.6	180.3	-1.5	-
	-1.	1.	3.8	-1.5	186.	_
	/ -		- /	_		_/

 $D_{t,\parallel} = 0.073 \mu \mathrm{m}^2 / \mathrm{s}$ $D_{t,\perp} = 0.093 \mu \mathrm{m}^2 / \mathrm{s}$ $D_{t,\parallel}/D_{t,\perp}=1.28$ $D_r = 0.016 \text{ rad}^2/s$

$D_{t,\parallel}=0.071\mu\mathrm{m}^2/\mathrm{s}$
$D_{t,\perp}=0.082\mu\mathrm{m}^2/\mathrm{s}$
$D_{t,\parallel}/D_{t,\perp} = 1.15$
$D_r = 0.010 \text{ rad}^2/s$

Larger aspect ratio yields slower rotational diffusion constant

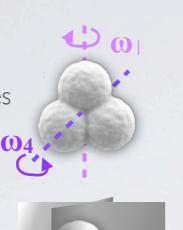


BIAXIAL PARTICLES

Symmetries

Translation

Discrete rotational symmetries •



 Mirror symmetries for two perpendicular planes

Rotation

no coupling

Hydrodynamic friction matrix

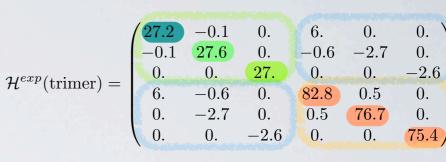
Z

 $\mathcal{H} = \begin{pmatrix} \mathcal{H}_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathcal{H}_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{H}_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{H}_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{H}_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathcal{H}_{66} \end{pmatrix}$

Ηეე

Experiments

Confocal data

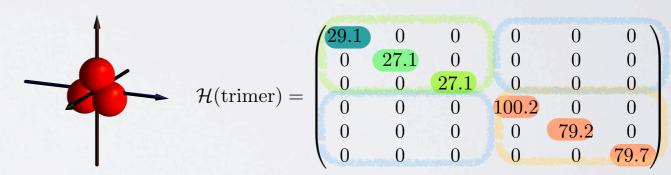


10x real speed

 $D_{t,z} = 0.068 \mu \mathrm{m}^2/\mathrm{s}$

 $D_{t,y} = 0.0685 \mu \text{m}^2/\text{s}$ $D_{r,x,y} = 0.023 \text{ rad}^2/\text{s}$ $D_{t,y} = 0.0665 \mu \text{m}^2/\text{s}$ $D_{r,z} = 0.024 \text{ rad}^2/\text{s}$

Numerical calculations

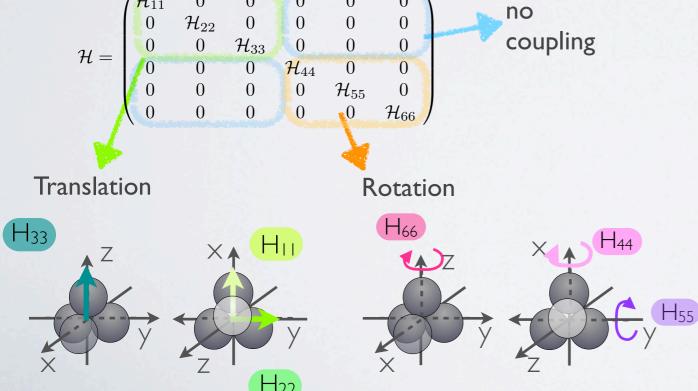


Shape symmetries are well represented in the hydrodynamic friction matrix

Kraft et al. PRE 88 (2013)

BIAXIAL PARTICLES WITH DISCRETE ROTATIONAL SYMMETRY

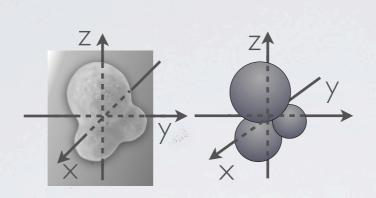
Symmetries Experiments Confocal data Discrete, helicoidal rotational • symmetries ($\phi \rightarrow \phi + \Delta \phi$, with -0.9 $0 < \Delta \phi < \pi$) $\mathcal{H}^{exp}(\text{tetramer}) = \begin{pmatrix} 0 & 42.6 & 0 & 1.6 & -0.5 \\ 0 & 42.6 & 0 & 1.6 & -0.5 \\ 0 & 0 & 43.1 & 0 & 0 & - \\ -0.9 & 1.6 & 0 & 212.6 & 0 \\ -1.5 & -0.5 & 0 & 0 & 212.2 \\ 0 & 0 & -0.6 & 0 & 0 & 21 \end{pmatrix}$ 0 -0.60 0 • Mirror symmetry 10x real speed $D_t = 0.043 \mu {\rm m}^2 / {\rm s}$ Translational diffusion: Rotational diffusion: $D_r = 8.7 \cdot 10^{-3} \text{rad}^2/\text{s}$ • **Hydrodynamic friction matrix Numerical calculations** no



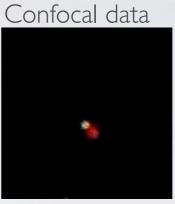
ASYMMETRIC PARTICLES

Symmetries

- No rotational symmetries
- Mirror symmetry only



Experiments



5x real speed

Hydrodynamic friction matrix \mathcal{H}_{51} \mathcal{H}_{61} coupling \mathcal{H}_{65} \mathcal{H}_{51} \mathcal{H}_{66} 0 \mathcal{H}_{65} \mathcal{H}_{61} 0 Translation Rotation H₆₆ H33 H₅₅ H₄₄ H

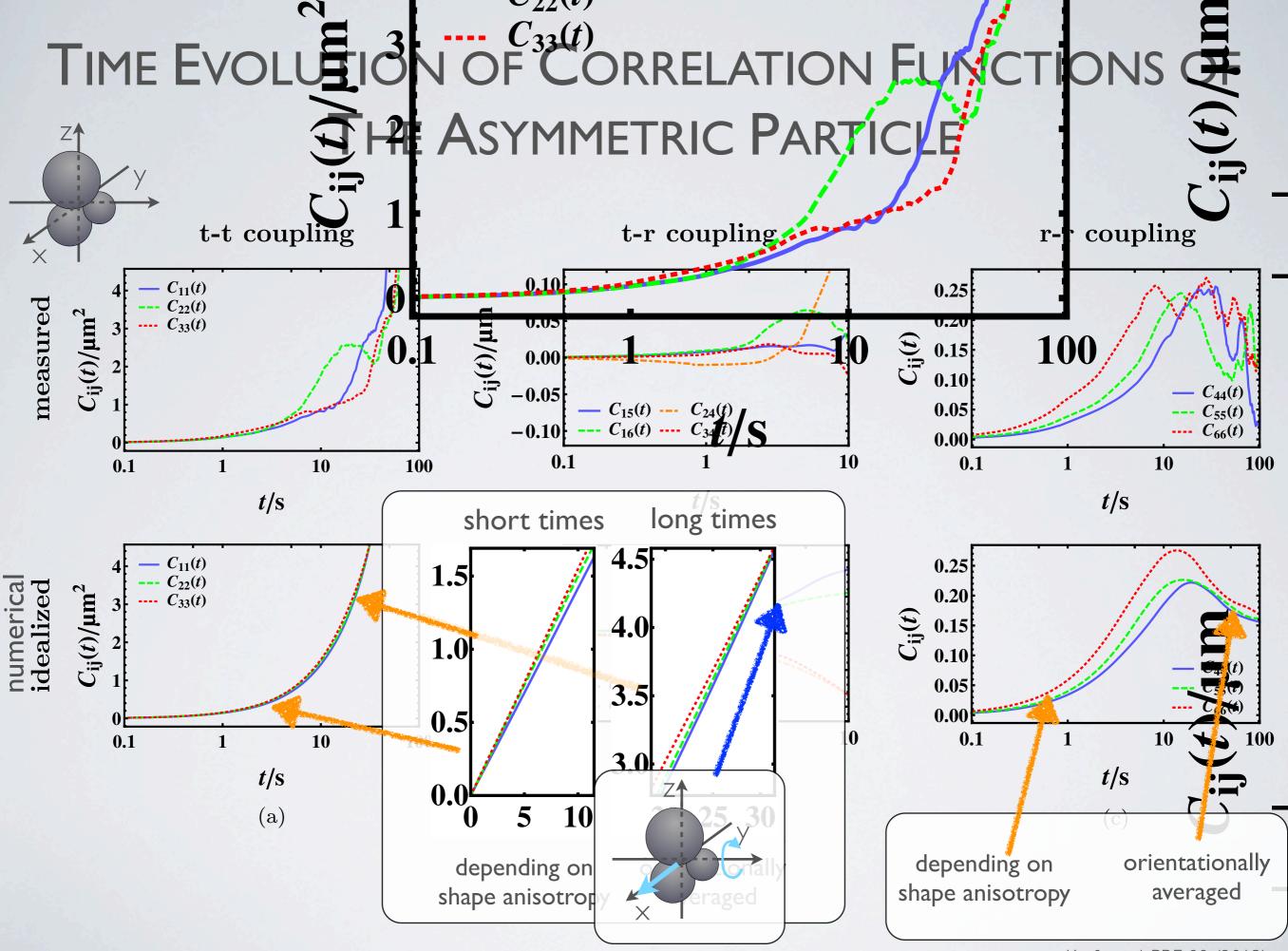
	(27.2)	3.9	0.7	6.0	-7.2	-6.1
Contraction of the second	3.9	29.2	-2.4	9.9	0.8	-9.7
1(exp(innex)) =	0.7	-2.4	21.7	-4.1	4.0	0.6
$\mathcal{H}^{ourp}(\text{irreg.}) =$	6.0	9.9	-4.1	137.0	-4.8	8.9
	-7.2	0.8	4.0	-4.8	102.4	19.5
$\mathcal{H}^{exp}(\text{irreg.}) =$	(-6.1)	-9.7	0.6	8.9	19.5	61.2

Numerical calculations

	27.9	0			-12.6	-7.2
	0	26.1	0.3	11.0	0	0
11	0	0.3	24.8	6.0	0	0
$\pi =$	0	11.0	6.0	104.4	0	0
	-12.6	0	0	0	90.2	11.2
	(-7.2)	0	0	0	11.2	58.9

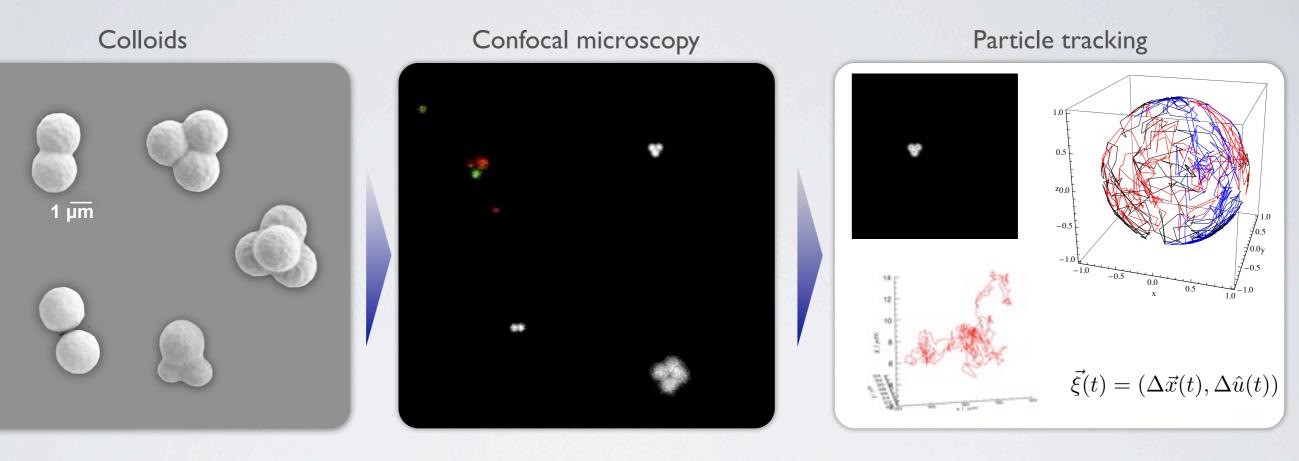
- Coupling between translation and rotation
- Coupling between rotational diffusion directions
- Particle shape is reflected in the hydrodynamic friction matrix

Kraft et al. PRE 88 (2013)



Kraft et al. PRE 88 (2013)

EXPERIMENTAL DETERMINATION OF THE HYDRODYNAMIC FRICTION MATRIX



Hydrodynamic friction matrix

Translation	*	* *	* *	*	* *	*	Coupling trans. & rotation
2/	10		*		*	*	
n -	*	*	*	*	*	*	
Coupling trans. & rot.	*	*	*	*	*	*	
trans. & rot.	(*	*	*	*	*	*	Rotation

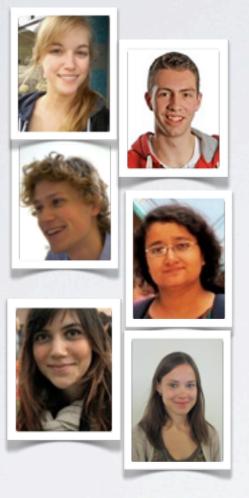
Depends only particle shape and size

- ✓ First* 3D measurement of the full
 hydrodynamic friction matrix and diffusion
 matrix of anisotropic particles with different
 symmetries
- ✓ Particle symmetries determine symmetries in hydrodynamic friction matrix
- ✓ Good agreement between experiments and numerical predictions

THANK YOU

Leiden University

Vera Meester Ruben Verweij Casper van der Wel Indrani Chakraborty Hans Frijters Sabine Matysik Melissa Rinaldin



Simulations

University of Düsseldorf Raphael Wittkowski Borge ten Hage Hartmut Löwen

Experiments

NYU

David Pine Andrew Hollingsworth Kazem Edmond

Funding Rubicon fellowship VENI grant Sectorplan Nanofront Gravity grants DAAD Rise fellowship

Publications

Meester, Verweij, van der Wel, Kraft, ACSNano (2016) Kraft et al. PRE 88 (2013)

