SELF-ASSEMBLY AND DIFFUSION OF ANISOTROPIC PARTICLES

Daniela J. Kraft

COST workshop, Lagrangian transport: from complex flows to complex fluids Soft Matter Physics, LION, Leiden University, The Netherlands
March 72016

"What I cannot create, I do not understand."
R. Feynman

Why Colloidal Particles?

Size:
$\sim 10 \mathrm{~nm}$ - $10 \mu \mathrm{~m}$

Soft, Slow, Seeable

Ideal Model System
For Doing
Fundamental Physics
Applications

From Spheres to Complex Particles

COLLOIDAL RECYCLING: SYNTHESIS OF COMPLEX COlLOIDAL PARTICLES

Reshaping Random Colloidal Clusters

Reshaping Random Colloidal Clusters

random clusters

Particle SWelling Reconfigures the Random Clusters into Uniform Patchy Particles

Coalescence driven Reconfiguration

 Liquid dropletcoalescence drive rearrangement

Liquid droplet confines the spheres

Insufficient swelling

- no / small liquid bridges
\Rightarrow no reconfiguration!

What enables Reconfiguration?

$$
\text { Van der Waals interaction energy } W(D)=-\frac{A r}{12 D}
$$

with the Hamaker constant A (Lifshitz theory)

$$
A=\frac{3}{4} k_{B} T\left(\frac{\epsilon_{1}-\epsilon_{3}}{\epsilon_{1}+\epsilon_{3}}\right)^{2}+\frac{3 h \nu_{e}}{16 \sqrt{2}} \frac{\left(n_{1}^{2}-n_{3}^{2}\right)^{2}}{\left(n_{1}^{2}+n_{3}^{2}\right)^{3 / 2}}
$$

polystyrene spheres: $\quad \epsilon_{P S}=2.55 \quad n_{P S}=1.557$
polystyrene spheres in water: $\quad \epsilon_{w}=80 \quad n_{w}=1.333 \quad A_{P S-w}=1.5 \cdot 10^{-20} \mathrm{~J}$

polystyrene spheres in styrene:

$$
\epsilon_{s t}=2.47 \quad n_{s t}=1.547
$$

$$
A_{P S-s t}=2.5 \cdot 10^{-23} \mathrm{~J}
$$

600x reduction of van der Waals attraction due to liquid bridges!

COLLOIDAL Recycling

random clusters

Cluster Size is Tunable by Aggregation Time

time

Only Reshaping During Swelling, no further AgGREGATION

Composite PS / PMMA Colloidal Molecules

Patchy particles

Beyond Droplet Confined Clusters

"homemade" soft PS swollen with toluene

In clusters made up of softer particles and in the absence of cluster spanning droplets, entropy becomes important in determining the cluster shape!

Summary - Recycling Colloidal Aggregates into Patchy Particles

Reorganization of random clusters of spheres

From Spheres to Complex Particles

Particle shape and interactions

$$
\downarrow
$$

Assembled structure

"Design and understand selfassembly"

Brownian motion of Anisotropic Colloidal Particles

Brownian Motion of Anisotropic Particles

Brownian Motion of Anisotropic Particles

Translation

Origin of coordinate system determines 'meaning' of diffusion coefficients

Rotation

Coupling

Can we measure the shape-dependent diffusion coefficients?

SyNTHESIS OF ANISOTROPIC Particles

Determination ofthe Diffusion Constant Matrix from 3D Confocal Microscopy

Confocal microscopy of fluorescent PMMA particles

Track particle positions using IDL or Trackpy

Analyze trajectory and rotations using IDL
Center of mass motion
$\vec{x}=(x, y, z)$

IOx real speed

- center of mass position

$$
\Delta \vec{x}(t)=\vec{x}(t)-\vec{x}(0)
$$

- orthonormal orientation vectors $\hat{u}_{i}(t)$

$$
\Delta \hat{u}(t)=\frac{1}{2} \sum_{i=1}^{3} \hat{u}_{i}(0) \times \hat{u}_{i}(t)
$$

$$
\vec{\xi}(t)=(\Delta \vec{x}(t), \Delta \hat{u}(t))
$$

Calculate diffusion constant matrix from cross-correlations

$$
\mathcal{D}=\frac{1}{2} \lim _{t \rightarrow 0} \frac{\partial}{\partial t}\langle\vec{\xi}(t) \otimes \vec{\xi}(t)\rangle
$$

or
$\mathcal{D}_{i, j}=\frac{1}{2} \lim _{t \rightarrow 0} \frac{\partial}{\partial t}\left\langle\xi_{i}(t) \xi_{j}(t)\right\rangle$

Change in body fixed axes

The Hydrodynamic Friction Matrix

Diffusion constant matrix still depends on temperature and viscosity

$$
\mathcal{D}_{0}=\frac{1}{2} \lim _{t \rightarrow 0} \frac{\partial}{\partial t}\langle\vec{\xi}(t) \otimes \vec{\xi}(t)\rangle
$$

Hydrodynamic friction matrix

$$
\mathcal{H}=\frac{1}{\beta \eta} \mathcal{D}_{0}^{-1}
$$

Only particle shape and size define the hydrodynamic friction matrix

β	inverse thermal energy
η	viscosity
k_{B}	Boltzmann constant

Translation $\left(\begin{array}{cccccc}* & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ \text { Coupling } \\ * & * & * & * & * & * \\ * & * & * & * & * & *\end{array}\right)$ Rotation \quad rotation
trans. \& rot.

Symmetries in the particle shape reduce the complexity of the matrix

$$
\begin{array}{cc}
\begin{array}{c}
\text { Orthotropic particle } \\
\text { (3 planes of symmetry) }
\end{array} & \begin{array}{c}
\text { One plane of symmetry } \\
\text { (} x-y \text { plane) }
\end{array} \\
\mathcal{H}(\text { iso }) & =\left(\begin{array}{llllllll}
* & 0 & 0 & 0 & 0 & 0 \\
0 & * & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & 0 & 0 \\
0 & 0 & 0 & * & 0 & 0 \\
0 & 0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & *
\end{array}\right) \\
\mathcal{H}=\left(\begin{array}{cccccc}
* & * & 0 & 0 & 0 & * \\
* & * & 0 & 0 & 0 & * \\
0 & 0 & * & * & * & 0 \\
0 & 0 & * & * & * & 0 \\
0 & 0 & * & * & * & 0 \\
* & * & 0 & 0 & 0 & *
\end{array}\right)
\end{array}
$$

Rotational symmetry about x axis

$$
\mathcal{H}=\left(\begin{array}{cccccc}
\mathcal{H}_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathcal{H}_{22} & 0 & 0 & 0 & -\mathcal{H}_{53} \\
0 & 0 & \mathcal{H}_{22} & 0 & \mathcal{H}_{53} & 0 \\
0 & 0 & 0 & \mathcal{H}_{44} & 0 & 0 \\
0 & 0 & \mathcal{H}_{53} & 0 & \mathcal{H}_{55} & 0 \\
0 & -\mathcal{H}_{53} & 0 & 0 & 0 & \mathcal{H}_{55}
\end{array}\right)
$$

DIMERS: UNIAXIAL PARTICLES

Symmetries

- Rotational symmetry and discrete rotational symmetry
- Mirror symmetries for three perpendicular planes
(orthotropic shape)

Hydrodynamic friction matrix

Experiments

Confocal data

10x real speed

$$
\mathcal{H}^{e x p}(\text { dimer })=\left(\begin{array}{cccccc}
25.2 & 0.8 & -1.2 & -0.4 & -1.8 & - \\
0.8 & 25.7 & 0.7 & -5.6 & -1.1 & - \\
-1.2 & 0.7 & 19.7 & -1.5 & -0.2 & - \\
-0.4 & -5.6 & -1.5 & 128.8 & 1.7 & - \\
-1.8 & -1.1 & -0.2 & 1.7 & 114.5 & - \\
- & - & - & - & - & -
\end{array}\right) \quad \begin{aligned}
& D_{t, \perp}=0.073 \mu \mathrm{~m}^{2} / \mathrm{s} \\
& D_{t, \|}=0.093 \mu \mathrm{~m}^{2} / \mathrm{s} \\
& D_{t, \|} / D_{t, \perp}=1.28 \\
& D_{r}=0.016 \mathrm{rad}^{2} / \mathrm{s}
\end{aligned}
$$

Numerical calculation (Hydrosub code)

$$
\mathcal{H}^{\text {th }}(\text { dimer })=\left(\begin{array}{cccccc}
28.7 & 0 & 0 & 0 & 0 & 0 \\
0 & 28.7 & 0 & 0 & 0 & 0 \\
0 & 0 & 26.2 & 0 & 0 & 0 \\
0 & 0 & 0 & 100.6 & 0 & 0 \\
0 & 0 & 0 & 0 & 100.6 & 0 \\
0 & 0 & 0 & 0 & 0 & 62.7
\end{array}\right)
$$

Shape symmetries are well represented in the hydrodynamic friction matrix!

UNIAXIAL PARTICLES - DIMERS WITH LONGER BOND LENGTH

$$
\begin{aligned}
& \mathcal{H}^{e x p}(\text { dimer })=\left(\begin{array}{cccccc}
25.2 & 0.8 & -1.2 & -0.4 & -1.8 & - \\
0.8 & 25.7 & 0.7 & -5.6 & -1.1 & - \\
-1.2 & 0.7 & 19.7 & -1.5 & -0.2 & - \\
-0.4 & -5.6 & -1.5 & 128.8 & 1.7 & - \\
-1.8 & -1.1 & -0.2 & 1.7 & 114.5 & - \\
- & - & - & - & - & -
\end{array}\right) \quad \begin{array}{l}
D_{t, \|}=0.073 \mu \mathrm{~m}^{2} / \mathrm{s} \\
D_{t, \perp}=0.093 \mu \mathrm{~m}^{2} / \mathrm{s} \\
D_{t, \|} / D_{t, \perp}=1.28 \\
D_{r}=0.016 \mathrm{rad}^{2} / \mathrm{s} \\
\mathcal{H}^{e x p}(\text { dimer }, 2)
\end{array} \\
& \\
&\left.\begin{array}{cccccc}
25.4 & 0.5 & -0.7 & -1.4 & -1 . & - \\
0.5 & 26.1 & 0.1 & 0 . & 1 . & - \\
-0.7 & 0.1 & 22.3 & 0.6 & 3.8 & - \\
-1.4 & 0 . & 0.6 & 180.3 & -1.5 & - \\
-1 . & 1 . & 3.8 & -1.5 & 186 . & - \\
- & - & - & - & - & -
\end{array}\right) \begin{array}{l}
D_{t, \|}=0.071 \mu \mathrm{~m}^{2} / \mathrm{s} \\
D_{t, \perp}=0.082 \mu \mathrm{~m}^{2} / \mathrm{s} \\
D_{t, \|} / D_{t, \perp}=1.15 \\
D_{r}=0.010 \mathrm{rad}^{2} / \mathrm{s}
\end{array}
\end{aligned}
$$

Larger aspect ratio yields slower rotational diffusion constant

Translation

Rotation

BIAXIAL PARTICLES

Symmetries

- Discrete rotational symmetries

- Mirror symmetries for two perpendicular planes

Hydrodynamic friction matrix

Translation
Rotation

Numerical calculations

Shape symmetries are well represented in the hydrodynamic friction matrix

BIAXIAL PARTICLES WITH DISCRETE ROTATIONAL SYMMETRY

Symmetries

- Discrete, helicoidal rotational symmetries $(\varphi \rightarrow \varphi+\Delta \varphi$, with $0<\Delta \varphi<\pi)$
- Mirror symmetry

Hydrodynamic friction matrix

Translation
Rotation

Experiments

Confocal data

IOx real speed

$$
\mathcal{H}^{e x p}(\text { tetramer })=\left(\begin{array}{cccccc}
41.8 & 0 & 0 & -0.9 & -1.5 & 0 \\
0 & 42.6 & 0 & 1.6 & -0.5 & 0 \\
0 & 0 & 43.1 & 0 & 0 & -0.6 \\
-0.9 & 1.6 & 0 & 212.6 & 0 & 0 \\
-1.5 & -0.5 & 0 & 0 & 212.2 & 0 \\
0 & 0 & -0.6 & 0 & 0 & 210.4
\end{array}\right)
$$

$$
\text { - Translational diffusion: } \quad D_{t}=0.043 \mu \mathrm{~m}^{2} / \mathrm{s}
$$

- Rotational diffusion:

$$
D_{r}=8.7 \cdot 10^{-3} \mathrm{rad}^{2} / \mathrm{s}
$$

Numerical calculations

AsYmmetric Particles

Symmetries

- No rotational symmetries
- Mirror symmetry only

Experiments

Confocal data

Hydrodynamic friction matrix

$5 \times$ real speed
$\mathcal{H}^{e x p}$ (irreg.) $=\left(\begin{array}{cccccc}27.2 & 3.9 & 0.7 & 6.0 & -7.2 & -6.1 \\ 3.9 & 29.2 & -2.4 & 9.9 & 0.8 & -9.7 \\ 0.7 & -2.4 & 21.7 & -4.1 & 4.0 & 0.6 \\ 6.0 & 9.9 & -4.1 & 137.0 & -4.8 & 8.9 \\ -7.2 & 0.8 & 4.0 & -4.8 & 102.4 & 19.5 \\ -6.1 & -9.7 & 0.6 & 8.9 & 19.5 & 61.2\end{array}\right)$

Numerical calculations

$$
\mathcal{H}=\left(\begin{array}{cccccc}
27.9 & 0 & 0 & 0 & -12.6 & -7.2 \\
0 & 26.1 & 0.3 & 11.0 & 0 & 0 \\
0 & 0.3 & 24.8 & 6.0 & 0 & 0 \\
0 & 11.0 & 6.0 & 104.4 & 0 & 0 \\
-12.6 & 0 & 0 & 0 & 90.2 & 11.2 \\
-7.2 & 0 & 0 & 0 & 11.2 & 58.9
\end{array}\right)
$$

- Coupling between translation and rotation
- Coupling between rotational diffusion directions
- Particle shape is reflected in the hydrodynamic friction matrix

Time Evolution of Correlation Functions of The Asymmetric Particle

r-r coupling

Experimental Determination ofthe Hydrodynamic Friction Matrix

Hydrodynamic friction matrix

Translation $\left(\begin{array}{cccccc}* & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & *\end{array}\right)$ Rotation rotation
Coupling
trans. \& rot.
Depends only particle shape and size
$\sqrt{ }$ First* 3D measurement of the full hydrodynamic friction matrix and diffusion matrix of anisotropic particles with different symmetries
$\sqrt{ }$ Particle symmetries determine symmetries in hydrodynamic friction matrix
\checkmark Good agreement between experiments and numerical predictions

THANK YOU

Funding

Rubicon fellowship
VENI grant
Sectorplan
Nanofront Gravity grants
DAAD Rise fellowship

University of Düsseldorf
Raphael Wittkowski
Borge ten Hage
Hartmut Löwen

Simulations

Experiments
NYU
David Pine
Andrew Hollingsworth
Kazem Edmond

