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“What I cannot create, I do not understand.” 
R. Feynman
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Highly specific interactions

+ External guiding rules
+ activity

Pusey, van Megen, Nature (1986) 

Anisotropic interactions

self-assembly becomes more difficult with increasing target
size and whether particular geometric features make some
targets particularly difficult to assemble. In doing so, we will
pay particular attention to the main processes which compete
with successful assembly and how their impact on the yield
can be minimized. We hope that the design principles we
learn from this work will offer some guidance to ex-
perimental groups seeking to make practical synthetic self-
assembling systems.

Although the assembly process studied here is similar to
that of virus capsids, in that anisotropic particles come to-
gether to form closed, highly symmetric shell structures, the
interaction potential we use has no dependence on the tor-
sional angle between interacting particles. While this is
likely to be a good choice for modeling synthetic anisotropic
particles, it is not a good representation of the interactions
between proteins and leads to behavior not observed for sys-
tems of virus capsomers. We consider a model including tor-
sional interactions, and which hence more closely mirrors
capsid assembly, in the accompanying paper.37

II. METHODS

A. Model

We make use of a minimal model, designed to contain
only the essential features required for targeted self-assembly
while allowing for efficient simulation. The model consists
of spherical particles patterned with attractive patches. They
are described by a modified Lennard-Jones potential, in
which the repulsive part of the potential is isotropic but the
attractive part is anisotropic and depends on the alignment of
patches on interacting particles. Specifically, the potential is
described by

Vij!rij,!i,! j" = #VLJ!rij" , r ! "LJ,

VLJ!rij"Vang!r̂ij,!i,! j" , r # "LJ,
$

!1"

where VLJ, the Lennard-Jones potential, is given by

VLJ!r" = 4$%&"LJ

r
'12

− &"LJ

r
'6( . !2"

Vang is an angular modulation factor, which depends on the
orientations of the patches on the two interacting particles, as
well as the direction of the vector joining them. Specifically,

Vang!r̂ij,!i,! j" = Gij!r̂ij,!i"Gji!r̂ ji,! j" , !3"

where

Gij!r̂ij,!i" = exp&−
%kminij

2

2"2 ' , !4"

" gives the width of the Gaussian, %kij is the angle between
patch vector k on particle i and the interparticle vector rij,
and kmin is the patch that minimizes the magnitude of this
angle. Hence, only the patches on each particle that are clos-
est to the interparticle axis interact with each other, and Vang
is 1 if the patches point directly at each other. One feature of
this potential is that as "→& the isotropic Lennard-Jones
potential is recovered. For computational efficiency the po-

tential is truncated and shifted at r=3"LJ, and the crossover
distance in Eq. !1" is adjusted so that it still occurs where the
potential is zero.

A particular particle is specified by a set of unit vectors
describing the positions of the attractive patches. For each of
our target structures, the patches are placed such that they
point directly at the neighboring particles in the target struc-
ture. Figure 1 shows the component particles and complete
clusters for each of our target structures, the Platonic solids.
Note that for these targets all the particles and patches are
equivalent. Somewhat similar patchy particle models
have been used to study gel formation,38,39 crystallization
of proteins40,41 and patchy colloids,42–44 and fiber
formation.45,46

B. Dynamical simulations

In the simulations of our model we wish to represent the
Brownian motion that colloids and nanoparticles undergo in
solution. As we do not include any solvent particles in our
coarse-grained description of the system, a simple and effi-
cient way to represent this dynamics is to use Monte Carlo
!MC" where the moves are restricted to be local, since this
ensures that the dynamics is diffusive.

In particular, we use Metropolis MC in the canonical
ensemble using periodic boundary conditions. The allowed
move types are small single-particle translations and rota-
tions. The translational moves are randomly chosen from a
cube centered on the selected particle. Rotational moves
make use of a quaternion description of the particle’s orien-
tation; the proposed quaternion is given by the renormalized
sum of the current quaternion and a smaller, randomly gen-
erated 4-vector.

One potential problem with using single-particle moves
is that, although free particles and clusters undergo diffusion
as required, the relative diffusion rates of clusters of different
sizes can be incorrect with the larger clusters diffusing too
slowly. However, in practice for systems where the main
mechanism of cluster growth is by monomer addition rather
than cluster-cluster aggregation, single-particle moves are
sufficient. Indeed, preliminary simulations using the virtual
move MC algorithm, which has been recently introduced by
Whitelam and et al. and is designed to overcome this prob-
lem by using cluster moves,47,48 show only minor differences
to those presented here. By contrast, we have found that such
an algorithm is crucial for systems designed to assemble hi-
erarchically.

(b) (c) (d) (e)(a)

FIG. 1. Single particles and complete clusters for the different target struc-
tures: !a" tetrahedron, !b" octahedron, !c" cube, !d" icosahedrons, and !e"
dodecahedron.
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self-assembly becomes more difficult with increasing target
size and whether particular geometric features make some
targets particularly difficult to assemble. In doing so, we will
pay particular attention to the main processes which compete
with successful assembly and how their impact on the yield
can be minimized. We hope that the design principles we
learn from this work will offer some guidance to ex-
perimental groups seeking to make practical synthetic self-
assembling systems.

Although the assembly process studied here is similar to
that of virus capsids, in that anisotropic particles come to-
gether to form closed, highly symmetric shell structures, the
interaction potential we use has no dependence on the tor-
sional angle between interacting particles. While this is
likely to be a good choice for modeling synthetic anisotropic
particles, it is not a good representation of the interactions
between proteins and leads to behavior not observed for sys-
tems of virus capsomers. We consider a model including tor-
sional interactions, and which hence more closely mirrors
capsid assembly, in the accompanying paper.37

II. METHODS

A. Model

We make use of a minimal model, designed to contain
only the essential features required for targeted self-assembly
while allowing for efficient simulation. The model consists
of spherical particles patterned with attractive patches. They
are described by a modified Lennard-Jones potential, in
which the repulsive part of the potential is isotropic but the
attractive part is anisotropic and depends on the alignment of
patches on interacting particles. Specifically, the potential is
described by
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Vang is an angular modulation factor, which depends on the
orientations of the patches on the two interacting particles, as
well as the direction of the vector joining them. Specifically,

Vang!r̂ij,!i,! j" = Gij!r̂ij,!i"Gji!r̂ ji,! j" , !3"

where

Gij!r̂ij,!i" = exp&−
%kminij
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2"2 ' , !4"

" gives the width of the Gaussian, %kij is the angle between
patch vector k on particle i and the interparticle vector rij,
and kmin is the patch that minimizes the magnitude of this
angle. Hence, only the patches on each particle that are clos-
est to the interparticle axis interact with each other, and Vang
is 1 if the patches point directly at each other. One feature of
this potential is that as "→& the isotropic Lennard-Jones
potential is recovered. For computational efficiency the po-

tential is truncated and shifted at r=3"LJ, and the crossover
distance in Eq. !1" is adjusted so that it still occurs where the
potential is zero.

A particular particle is specified by a set of unit vectors
describing the positions of the attractive patches. For each of
our target structures, the patches are placed such that they
point directly at the neighboring particles in the target struc-
ture. Figure 1 shows the component particles and complete
clusters for each of our target structures, the Platonic solids.
Note that for these targets all the particles and patches are
equivalent. Somewhat similar patchy particle models
have been used to study gel formation,38,39 crystallization
of proteins40,41 and patchy colloids,42–44 and fiber
formation.45,46

B. Dynamical simulations

In the simulations of our model we wish to represent the
Brownian motion that colloids and nanoparticles undergo in
solution. As we do not include any solvent particles in our
coarse-grained description of the system, a simple and effi-
cient way to represent this dynamics is to use Monte Carlo
!MC" where the moves are restricted to be local, since this
ensures that the dynamics is diffusive.

In particular, we use Metropolis MC in the canonical
ensemble using periodic boundary conditions. The allowed
move types are small single-particle translations and rota-
tions. The translational moves are randomly chosen from a
cube centered on the selected particle. Rotational moves
make use of a quaternion description of the particle’s orien-
tation; the proposed quaternion is given by the renormalized
sum of the current quaternion and a smaller, randomly gen-
erated 4-vector.

One potential problem with using single-particle moves
is that, although free particles and clusters undergo diffusion
as required, the relative diffusion rates of clusters of different
sizes can be incorrect with the larger clusters diffusing too
slowly. However, in practice for systems where the main
mechanism of cluster growth is by monomer addition rather
than cluster-cluster aggregation, single-particle moves are
sufficient. Indeed, preliminary simulations using the virtual
move MC algorithm, which has been recently introduced by
Whitelam and et al. and is designed to overcome this prob-
lem by using cluster moves,47,48 show only minor differences
to those presented here. By contrast, we have found that such
an algorithm is crucial for systems designed to assemble hi-
erarchically.
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FIG. 1. Single particles and complete clusters for the different target struc-
tures: !a" tetrahedron, !b" octahedron, !c" cube, !d" icosahedrons, and !e"
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COLLOIDAL RECYCLING:
SYNTHESIS OF COMPLEX COLLOIDAL 
PARTICLES



RESHAPING RANDOM COLLOIDAL CLUSTERS

Charge stabilized 
PS colloids

~1μm diameter, 1% crosslink density, 
purchased from Magsphere

quench

random clusters

+ H2O
+ salt 

induce 
aggregation swelling

Meester, Verweij, vd Wel, Kraft, ACSNano (2016)



RESHAPING RANDOM COLLOIDAL CLUSTERS

Reshaping into patchy 
particles+ monomer

(styrene, 
1% w/w DVB)

quench

random clusters

+ H2O
+ salt 

induce 
aggregation swelling

Meester, Verweij, vd Wel, Kraft, ACSNano (2016)





PARTICLE SWELLING RECONFIGURES THE RANDOM 
CLUSTERS INTO UNIFORM PATCHY PARTICLES

random clusters

reshaping

N=1 N=2 N=3 N=4

N=5 N=6 N=7

Patchy particles



COALESCENCE DRIVEN RECONFIGURATION

Liquid droplet 
confines the spheres

Cluster minimize the 
second moment of the 

mass distribution

N=1 N=2 N=3 N=4 N=5 N=6

Insufficient swelling
➡ no / small liquid bridges
➡ no reconfiguration!

Liquid droplet 
coalescence drive 

rearrangement

S=2 S=8



WHAT ENABLES RECONFIGURATION? 

Van der Waals interaction energy W (D) = � Ar

12D

A =
3

4
kBT

✓
✏1 � ✏3
✏1 + ✏3

◆2

+
3h⌫e
16

p
2

(n2
1 � n2

3)
2

(n2
1 + n2

3)
3/2

with the Hamaker constant A (Lifshitz theory)
D

r

polystyrene spheres: ✏PS = 2.55 nPS = 1.557

✏w = 80 nw = 1.333polystyrene spheres in water : APS�w = 1.5 · 10�20J

D

r polystyrene spheres in styrene: 

600x reduction of van der Waals attraction due to liquid bridges! 

1 1

3

1 1
3

nst = 1.547✏st = 2.47 APS�st = 2.5 · 10�23J



COLLOIDAL RECYCLING

Reshaping into patchy 
particles

quench

random clusters

+ H2O
+ salt 

induce 
aggregation swelling



CLUSTER SIZE IS TUNABLE BY AGGREGATION TIME

time

t=1min t=4min t=10min



ONLY RESHAPING DURING SWELLING, NO FURTHER 
AGGREGATION

t=4min

random clusters patchy particles



COMPOSITE PS / PMMA COLLOIDAL MOLECULES

+ salt 
+ H2O

+ salt 
styrene /

MMA

Patchy particles

PS
PMMA

PS
PS

Meester, Verweij, vd Wel, Kraft, ACSNano (2016)



BEYOND DROPLET CONFINED CLUSTERS

“homemade” soft PS swollen with toluene

In clusters made up of softer particles and in the absence of cluster spanning droplets, 
entropy becomes important in determining the cluster shape! 



SUMMARY - RECYCLING COLLOIDAL AGGREGATES 
INTO PATCHY PARTICLES

Reorganization of random clusters of spheres

3 4

17

Meester, Verweij, van der Wel, Kraft, ACSNano 
(2016)

Control over size distribution

Variety of complex patchy particles
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Anisotropic interactions

self-assembly becomes more difficult with increasing target
size and whether particular geometric features make some
targets particularly difficult to assemble. In doing so, we will
pay particular attention to the main processes which compete
with successful assembly and how their impact on the yield
can be minimized. We hope that the design principles we
learn from this work will offer some guidance to ex-
perimental groups seeking to make practical synthetic self-
assembling systems.

Although the assembly process studied here is similar to
that of virus capsids, in that anisotropic particles come to-
gether to form closed, highly symmetric shell structures, the
interaction potential we use has no dependence on the tor-
sional angle between interacting particles. While this is
likely to be a good choice for modeling synthetic anisotropic
particles, it is not a good representation of the interactions
between proteins and leads to behavior not observed for sys-
tems of virus capsomers. We consider a model including tor-
sional interactions, and which hence more closely mirrors
capsid assembly, in the accompanying paper.37

II. METHODS

A. Model

We make use of a minimal model, designed to contain
only the essential features required for targeted self-assembly
while allowing for efficient simulation. The model consists
of spherical particles patterned with attractive patches. They
are described by a modified Lennard-Jones potential, in
which the repulsive part of the potential is isotropic but the
attractive part is anisotropic and depends on the alignment of
patches on interacting particles. Specifically, the potential is
described by

Vij!rij,!i,! j" = #VLJ!rij" , r ! "LJ,

VLJ!rij"Vang!r̂ij,!i,! j" , r # "LJ,
$

!1"

where VLJ, the Lennard-Jones potential, is given by

VLJ!r" = 4$%&"LJ

r
'12

− &"LJ

r
'6( . !2"

Vang is an angular modulation factor, which depends on the
orientations of the patches on the two interacting particles, as
well as the direction of the vector joining them. Specifically,

Vang!r̂ij,!i,! j" = Gij!r̂ij,!i"Gji!r̂ ji,! j" , !3"

where

Gij!r̂ij,!i" = exp&−
%kminij

2

2"2 ' , !4"

" gives the width of the Gaussian, %kij is the angle between
patch vector k on particle i and the interparticle vector rij,
and kmin is the patch that minimizes the magnitude of this
angle. Hence, only the patches on each particle that are clos-
est to the interparticle axis interact with each other, and Vang
is 1 if the patches point directly at each other. One feature of
this potential is that as "→& the isotropic Lennard-Jones
potential is recovered. For computational efficiency the po-

tential is truncated and shifted at r=3"LJ, and the crossover
distance in Eq. !1" is adjusted so that it still occurs where the
potential is zero.

A particular particle is specified by a set of unit vectors
describing the positions of the attractive patches. For each of
our target structures, the patches are placed such that they
point directly at the neighboring particles in the target struc-
ture. Figure 1 shows the component particles and complete
clusters for each of our target structures, the Platonic solids.
Note that for these targets all the particles and patches are
equivalent. Somewhat similar patchy particle models
have been used to study gel formation,38,39 crystallization
of proteins40,41 and patchy colloids,42–44 and fiber
formation.45,46

B. Dynamical simulations

In the simulations of our model we wish to represent the
Brownian motion that colloids and nanoparticles undergo in
solution. As we do not include any solvent particles in our
coarse-grained description of the system, a simple and effi-
cient way to represent this dynamics is to use Monte Carlo
!MC" where the moves are restricted to be local, since this
ensures that the dynamics is diffusive.

In particular, we use Metropolis MC in the canonical
ensemble using periodic boundary conditions. The allowed
move types are small single-particle translations and rota-
tions. The translational moves are randomly chosen from a
cube centered on the selected particle. Rotational moves
make use of a quaternion description of the particle’s orien-
tation; the proposed quaternion is given by the renormalized
sum of the current quaternion and a smaller, randomly gen-
erated 4-vector.

One potential problem with using single-particle moves
is that, although free particles and clusters undergo diffusion
as required, the relative diffusion rates of clusters of different
sizes can be incorrect with the larger clusters diffusing too
slowly. However, in practice for systems where the main
mechanism of cluster growth is by monomer addition rather
than cluster-cluster aggregation, single-particle moves are
sufficient. Indeed, preliminary simulations using the virtual
move MC algorithm, which has been recently introduced by
Whitelam and et al. and is designed to overcome this prob-
lem by using cluster moves,47,48 show only minor differences
to those presented here. By contrast, we have found that such
an algorithm is crucial for systems designed to assemble hi-
erarchically.

(b) (c) (d) (e)(a)

FIG. 1. Single particles and complete clusters for the different target struc-
tures: !a" tetrahedron, !b" octahedron, !c" cube, !d" icosahedrons, and !e"
dodecahedron.
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self-assembly becomes more difficult with increasing target
size and whether particular geometric features make some
targets particularly difficult to assemble. In doing so, we will
pay particular attention to the main processes which compete
with successful assembly and how their impact on the yield
can be minimized. We hope that the design principles we
learn from this work will offer some guidance to ex-
perimental groups seeking to make practical synthetic self-
assembling systems.

Although the assembly process studied here is similar to
that of virus capsids, in that anisotropic particles come to-
gether to form closed, highly symmetric shell structures, the
interaction potential we use has no dependence on the tor-
sional angle between interacting particles. While this is
likely to be a good choice for modeling synthetic anisotropic
particles, it is not a good representation of the interactions
between proteins and leads to behavior not observed for sys-
tems of virus capsomers. We consider a model including tor-
sional interactions, and which hence more closely mirrors
capsid assembly, in the accompanying paper.37

II. METHODS

A. Model

We make use of a minimal model, designed to contain
only the essential features required for targeted self-assembly
while allowing for efficient simulation. The model consists
of spherical particles patterned with attractive patches. They
are described by a modified Lennard-Jones potential, in
which the repulsive part of the potential is isotropic but the
attractive part is anisotropic and depends on the alignment of
patches on interacting particles. Specifically, the potential is
described by

Vij!rij,!i,! j" = #VLJ!rij" , r ! "LJ,

VLJ!rij"Vang!r̂ij,!i,! j" , r # "LJ,
$

!1"

where VLJ, the Lennard-Jones potential, is given by

VLJ!r" = 4$%&"LJ

r
'12

− &"LJ

r
'6( . !2"

Vang is an angular modulation factor, which depends on the
orientations of the patches on the two interacting particles, as
well as the direction of the vector joining them. Specifically,

Vang!r̂ij,!i,! j" = Gij!r̂ij,!i"Gji!r̂ ji,! j" , !3"

where

Gij!r̂ij,!i" = exp&−
%kminij

2

2"2 ' , !4"

" gives the width of the Gaussian, %kij is the angle between
patch vector k on particle i and the interparticle vector rij,
and kmin is the patch that minimizes the magnitude of this
angle. Hence, only the patches on each particle that are clos-
est to the interparticle axis interact with each other, and Vang
is 1 if the patches point directly at each other. One feature of
this potential is that as "→& the isotropic Lennard-Jones
potential is recovered. For computational efficiency the po-

tential is truncated and shifted at r=3"LJ, and the crossover
distance in Eq. !1" is adjusted so that it still occurs where the
potential is zero.

A particular particle is specified by a set of unit vectors
describing the positions of the attractive patches. For each of
our target structures, the patches are placed such that they
point directly at the neighboring particles in the target struc-
ture. Figure 1 shows the component particles and complete
clusters for each of our target structures, the Platonic solids.
Note that for these targets all the particles and patches are
equivalent. Somewhat similar patchy particle models
have been used to study gel formation,38,39 crystallization
of proteins40,41 and patchy colloids,42–44 and fiber
formation.45,46

B. Dynamical simulations

In the simulations of our model we wish to represent the
Brownian motion that colloids and nanoparticles undergo in
solution. As we do not include any solvent particles in our
coarse-grained description of the system, a simple and effi-
cient way to represent this dynamics is to use Monte Carlo
!MC" where the moves are restricted to be local, since this
ensures that the dynamics is diffusive.

In particular, we use Metropolis MC in the canonical
ensemble using periodic boundary conditions. The allowed
move types are small single-particle translations and rota-
tions. The translational moves are randomly chosen from a
cube centered on the selected particle. Rotational moves
make use of a quaternion description of the particle’s orien-
tation; the proposed quaternion is given by the renormalized
sum of the current quaternion and a smaller, randomly gen-
erated 4-vector.

One potential problem with using single-particle moves
is that, although free particles and clusters undergo diffusion
as required, the relative diffusion rates of clusters of different
sizes can be incorrect with the larger clusters diffusing too
slowly. However, in practice for systems where the main
mechanism of cluster growth is by monomer addition rather
than cluster-cluster aggregation, single-particle moves are
sufficient. Indeed, preliminary simulations using the virtual
move MC algorithm, which has been recently introduced by
Whitelam and et al. and is designed to overcome this prob-
lem by using cluster moves,47,48 show only minor differences
to those presented here. By contrast, we have found that such
an algorithm is crucial for systems designed to assemble hi-
erarchically.

(b) (c) (d) (e)(a)

FIG. 1. Single particles and complete clusters for the different target struc-
tures: !a" tetrahedron, !b" octahedron, !c" cube, !d" icosahedrons, and !e"
dodecahedron.

175101-2 Wilber, Doye, and Louis J. Chem. Phys. 131, 175101 !2009"
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BROWNIAN MOTION OF ANISOTROPIC PARTICLES
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SYNTHESIS OF ANISOTROPIC PARTICLES

• RITC dyed PMMA r=1.1μm

Manoharan, V.N. et al., 2003.  Science, 301(5632), pp.483
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DETERMINATION OF THE DIFFUSION CONSTANT 
MATRIX FROM 3D CONFOCAL MICROSCOPY

Confocal microscopy of 
fluorescent PMMA particles

Analyze trajectory and rotations using IDLTrack particle positions 
using IDL or Trackpy
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THE HYDRODYNAMIC FRICTION MATRIX
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DIMERS: UNIAXIAL PARTICLES

• Mirror symmetries for three 
perpendicular planes 
(orthotropic shape)

Symmetries Experiments
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UNIAXIAL PARTICLES - DIMERS WITH LONGER BOND 
LENGTH
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BIAXIAL PARTICLES 

• Discrete rotational symmetries 

• Mirror symmetries for two 
perpendicular planes 

ω1
Symmetries

no coupling

ω4

Translation

H22

H11 H33

z
y

x z

y
x

Hydrodynamic friction matrix

H =

0

BBBBBB@

H11 0 0 0 0 0
0 H22 0 0 0 0
0 0 H33 0 0 0
0 0 0 H44 0 0
0 0 0 0 H55 0
0 0 0 0 0 H66

1

CCCCCCA

Rotation

H55

H44 x

y

z z

y

H66

x

Experiments
Confocal data

10x real speed

Hexp(trimer) =

0

BBBBBB@

27.2 �0.1 0. 6. 0. 0.
�0.1 27.6 0. �0.6 �2.7 0.
0. 0. 27. 0. 0. �2.6
6. �0.6 0. 82.8 0.5 0.
0. �2.7 0. 0.5 76.7 0.
0. 0. �2.6 0. 0. 75.4

1

CCCCCCA

D
r,x,y

= 0.023 rad2/s

Dr,z = 0.024 rad2/sDt,y = 0.0665µm2/s

Dt,y = 0.0685µm2/s

Dt,z = 0.068µm2/s

Shape symmetries are well represented in the 
hydrodynamic friction matrix

Numerical calculations

H(trimer) =

0

BBBBBB@

29.1 0 0 0 0 0
0 27.1 0 0 0 0
0 0 27.1 0 0 0
0 0 0 100.2 0 0
0 0 0 0 79.2 0
0 0 0 0 0 79.7

1

CCCCCCA

Kraft et al. PRE 88 (2013)



BIAXIAL PARTICLES WITH DISCRETE ROTATIONAL SYMMETRY

• Discrete, helicoidal rotational 
symmetries (φ→φ+Δφ, with 
0<Δφ<π)

• Mirror symmetry 
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ASYMMETRIC PARTICLES

• Coupling between translation and rotation
• Coupling between rotational diffusion directions
• Particle shape is reflected in the hydrodynamic 

friction matrix
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FIG. 2. (Color online) Time evolution of ten representative correlation functions Cij(t) for the irregular trimer determined in
experiments (upper row) and predicted from a simulation (lower row) based on the idealized hydrodynamic friction tensor (see
Fig. 1). The insets in the lower left plot show the same quantities on linear scales.

are 2.2 µm between the big and the medium sphere as
well as between the big and the small sphere, and 1.7 µm
between the medium and the small sphere.

Apart from temperature T and solvent viscosity �, the
Brownian dynamics of a single rigid colloidal particle
depends only on its shape and size, which enter in the
6⇤6-dimensional symmetric hydrodynamic friction ten-
sor H [5, 6]. The latter relates the translational velocity
⌘v and the angular velocity ⌘⇥ of the particle to the hy-
drodynamic drag force ⌘F and torque ⌘T that the particle
experiences in the viscous solvent: ⌘K = ��H⌘v with
⌘K = (⌘F , ⌘T ) and ⌘v = (⌘v, ⌘⇥).
There are two possibilities for determining H for a

given particle. It can either be obtained from its shape
and size by a hydrodynamic calculation that involves
solving the Stokes equation with stick boundary condi-
tions for the solvent at the particle surface [6], or it can be
extracted from appropriate equilibrium short-time corre-
lation functions. We have used the software Hydrosub

[16] to follow the first route, where we used the exper-
imentally determined particle shape, idealized by fused
spheres, as input [17]. For a trimer and a tetramer of
equal spheres as well as for an irregular trimer, results
are shown in Fig. 1 [18]. For convenience, we have chosen
the coordinate systems in such a way that the center of
mass of a particle coincides with the origin of coordinates
and the particle’s planes of symmetry coincide with the
coordinate planes, whenever this is possible. This choice
of particle-fixed coordinate systems leads to a particu-

larly simple structure of the hydrodynamic friction ten-
sor with many vanishing non-diagonal elements [6]. The
remaining non-vanishing elements are highlighted in Fig.
1.
The second route to access H is to measure the tra-

jectory of the Brownian particle with full orientational
resolution, i. e., the combined knowledge of the center-of-
mass position ⌘x(t) and the three mutually perpendicular
normalized orientation vectors ûi(t) with i = 1, 2, 3 in
dependence of time t. The key idea is now to consider a
set of appropriate dynamical cross-correlation functions

Cij(t) =  Xi(t)Xj(t)⌦ (1)

with i, j ⌅ {1, . . . , 6}, where  · ⌦ denotes a noise aver-
age and the six-dimensional positional-orientational dis-
placement vector ⌘X(t) = (�⌘x(t),�û(t)) is defined by
�⌘x(t) = ⌘x(t) � ⌘x(0) and �û(t) = 1

2

P3
i=1 ûi(0) ⇤ ûi(t),

where the latter is the appropriate expression for orien-
tational displacements. The short-time limit of this set
of cross-correlation functions gives access to the hydro-
dynamic friction tensor H via

D =
1

2
lim
t⇥0

dC(t)

dt
, H =

kBT

�
D�1 , (2)

where D denotes the (generalized) di⇥usion tensor and
kB Boltzmann’s constant. A larger value for an element
of H therefore means a higher hydrodynamic friction and
thus a slower di⇥usion. From this second route, based on
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Colloids

1 µm

EXPERIMENTAL DETERMINATION OF THE 
HYDRODYNAMIC FRICTION MATRIX

✓First* 3D measurement of the full 
hydrodynamic friction matrix and diffusion 
matrix of anisotropic particles with different 
symmetries

✓Particle symmetries determine symmetries in 
hydrodynamic friction matrix

✓Good agreement between experiments and 
numerical predictions
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