

Breakup of finite size colloidal aggregates in turbulent flow

ROYAL INSTITUTE OF TECHNOLOGY

Matthäus Bäbler

Dept. Chemical Engineering and Technology, KTH Stockholm, Sweden

In collaboration with:

D. Saha (TU Eindhoven)

M. Soos (UCT Prague)

M. Holzner (ETH Zurich)

B. Lüthi (Photrack AG)

A. Liberzon (Tel Aviv Univ.) W. Kinzelback (ETH Zurich) And

L. Biferale (Univ. Rome) A.S. Lanotte (CNR Lecce)

COST Workshop – *Lagrangian transport: from complex flows to complex fluids,* Lecce, March 7-10, 2016

ROYAL INSTITUTE OF TECHNOLOGY

 Processing of industrial colloids, flocculation in (waste)water treatment

Pictures: M. Soos, D. Marchisio, J. Sefcik, AIChE J. (2013) and Soos, et al., J. Colloid Interface Sci. (2008)

ROYAL INSTITUTE OF TECHNOLOGY

Picture: Getty images (2015-03-22), Göktepe et al. Fuel Process. Technol. (2016)

- Processing of industrial colloids, flocculation in (waste)water treatment
- Dispersion of powder agglomerates (inhalation drugs, powder burners)

Lecce, 2016-03-07

ROYAL INSTITUTE OF TECHNOLOGY

- Processing of industrial colloids, flocculation in (waste)water treatment
- Dispersion of powder agglomerates (inhalation drugs, powder burners)
- Evolution and transport of sediments and marine snow in natural waters

Picture: Satellite image River Plate Estuary, 2010-03-10 (www.eosnap.com, 2014-03-12)

Aggregate breakup in turbulence

ROYAL INSTITUTE OF TECHNOLOGY

Tracer particles High speed cameras

Lüthi, Tsinober, Kinzelbach, J. Fluid Mech. 528 (2005) 87

Stationary turbulence,

monitored by 3D PTV

Experimental setup

- ROYAL INSTITUTE OF TECHNOLOGY
- Stationary turbulence, monitored by 3D PTV
- Inject a single preformed aggregate

Lüthi, Tsinober, Kinzelbach, J. Fluid Mech. 528 (2005) 87

Experimental setup

ROYAL INSTITUTE OF TECHNOLOGY

- Stationary turbulence, monitored by 3D PTV
- Inject a single preformed aggregate
- Follow the aggregate until (and beyond) breakup
- Determine local flow conditions that prevail at breakup

Lüthi, Tsinober, Kinzelbach, J. Fluid Mech. 528 (2005) 87

Experimental setup

Liberzon, Guala, Lüthi, Kinzelbach, Phys. Fluids 17 (2015) 031707

Aggregates

- Made out of polystyrene colloids, $d_p = 420 \text{ nm}$
- Grown *in-situ* in the feed pipe, under oscillatory flow
- $d_{\text{agg}} = 1.4 \pm 0.4 \text{ mm}$ Fractal dimension $d_f \sim 2.2$

Breakup experiments

ROYAL INSTITUTE OF TECHNOLOGY

Example of a breakup experiment

- $R_{\lambda} \approx 117$
- $\langle \varepsilon \rangle \approx 19 \text{ cm}^2/\text{s}^3$
- $\eta \approx 0.15 \text{ mm}$
- $d_{\text{agg}} \approx 1.4 \text{ mm}$

Breakup experiments

Hydrodynamic stress

ROYAL INSTITUTE OF TECHNOLOGY

Aggregate motion

- $d_{\rm agg} / \eta \approx 9 \pm 3$
- Aggregate Stokes number

$$St = \frac{1}{18} \frac{\rho_{\text{agg}}}{\rho_f} \left(\frac{d_{\text{agg}}}{\eta}\right)^{3/4}$$
$$= 0.3 \pm 0.1$$

Aggregate motion is influenced by inertia

Hydrodynamic stress

Filter size to estimate *u*

ROYAL INSTITUTE OF TECHNOLOGY

Aggregate motion

- $d_{\rm agg} / \eta \approx 9 \pm 3$
- Aggregate Stokes number

$$St = \frac{1}{18} \frac{\rho_{\text{agg}}}{\rho_f} \left(\frac{d_{\text{agg}}}{\eta}\right)^{3/4}$$
$$= 0.3 \pm 0.1$$

Aggregate motion is influenced by inertia

Breakup mechanism: limiting cases

ROYAL INSTITUTE OF TECHNOLOGY

Soft aggregates (slow breakup)

Bond breakup due to thermal motion of the colloids [1].

- Depends on the duration the aggregate is subject to hydrodynamic stress.
- If true: weak aggregates (=large aggregates) break earlier than stronger ones.

Brittle aggregates (fast breakup)

Breakup caused by an abrupt breakup of bonds [2].

- Occurs when the hydrodynamic stress exceeds a critical threshold.
- If true: the hydrodynamic stress at breakup correlates with the aggregate size.

[1] B. O Conchuir, A. Zaccone, *PRE* **87** (2013) 032310 [2] M. Vanni, A. Gastaldi, *Langmuir* **27** (2011) 12822

Experimental results

ROYAL INSTITUTE OF TECHNOLOGY

Time lag from release to breakup

Shear stress at breakup

Drag stress at breakup

ROYAL INSTITUTE OF TECHNOLOGY

Accumulation of shear stress

Accumulation of drag stress

$$\bar{\sigma}_i = \frac{1}{\Delta t} \int_{t_b - \Delta t}^{t_b} \sigma_i \, dt \qquad \Delta t \sim \tau_\eta$$

ROYAL INSTITUTE OF TECHNOLOGY

3D PTV with large aggregates

- Hydrodynamic stress dominated by drag
- Breakup is caused by weak accumulation of stress

Sub-Kolmogorov aggregates

ROYAL INSTITUTE OF TECHNOLOGY

3D PTV with large aggregates

 Hydrodynamic stress dominated by drag Drag originates from the finite aggregate size

Sub-Kolmogorov aggregates

 Stress on small aggregates (in liquid) dominated by shear

 Breakup is caused by weak accumulation of stress

ROYAL INSTITUTE OF TECHNOLOGY

3D PTV with large aggregates

 Hydrodynamic stress dominated by drag

 Breakup is caused by weak accumulation of stress

Bonds within the aggregate store elastic energy

Sub-Kolmogorov aggregates

- Stress on small aggregates (in liquid) dominated by shear
- Small aggregates exhibit faster response

Aggregate breakup in turbulence

Numerical experiments

ROYAL INSTITUTE OF TECHNOLOGY

 Stationary turbulent flow, release of few pre-formed aggregates

OF TECHNOLOGY

Numerical experiments

 $\begin{array}{l} R < \eta \\ \rho_a \gg \rho_f \end{array}$

- Stationary turbulent flow, release of few pre-formed aggregates
- Aggregates are small and heavy
 - Move as if they were heavy point particles

OF TECHNOLOGY

Numerical experiments

 $\begin{array}{l} R < \eta \\ \rho_a \gg \rho_f \end{array}$

- Stationary turbulent flow, release of few pre-formed aggregates
- Aggregates are small and heavy
 - Move as if they were heavy point particles
 - Subject to shear and drag stress

K.A. Kusters (1991), Bagster and Tomi, Chem. Eng. Sci. (1974)

Numerical experiments

- OF TECHNOLOGY
- Stationary turbulent flow, release of few pre-formed aggregates
- Aggregates are small and heavy
 - Move as if they were heavy point particles
 - Subject to shear and drag stress
- Predefined rule for breakup

Numerical experiments

- ROYAL INSTITUTE OF TECHNOLOGY
- Stationary turbulent flow, release of few pre-formed aggregates
- Aggregates are small and heavy
 - Move as if they were heavy point particles
 - Subject to shear and drag stress
- Predefined rule for breakup

Aggregate breakup rate

$$f_{\sigma_{\rm cr}} = \frac{1}{\langle \tau_{\sigma_{\rm cr}} \rangle}$$

Babler, Biferale, Lanotte (2012)

OF TECHNOLOGY

Numerical experiments

 Turbulent trajectories for heavy point particles in HIT are available on <u>http://turbase.cineca.it</u> (as part of *EuHIT* program)

- Resolution
 2048³
- $Re_{\lambda} = 400$

Aggregate breakup rate

$$f_{\sigma_{\rm cr}} = \frac{1}{\langle \tau_{\sigma_{\rm cr}} \rangle}$$

Babler, Biferale, Lanotte (2012)

OF TECHNOLOGY

We studied the breakup of finite size aggregates made out of fully destabilized polystyrene colloids in homogeneous isotropic turbulence by means of 3D-PTV.

Major findings are:

- Hydrodynamic stress is dominated by drag.
- Breakup is caused by weak accumulation of stress.

Both these findings are an effect of the large aggregate size.

Ref. D. Saha, **M.U.B.**, M. Holzner, M. Soos, B. Lüthi, A. Liberzon, W. Kinzelbach, *Langmuir* (2016) <u>doi:10.1021/acs.langmuir.5b03804</u>

Conclusions

ROYAL INSTITUTE OF TECHNOLOGY

Numerical simulations of small and brittle aggregates show that the breakup rate as a function of aggregate strength exhibits power law behavior for weak aggregates, followed by a sharp cut-off as the aggregate strength increases.

- Power law is controlled by the smooth part of the flow whose statistics are close to Gaussian.
- The sharp cut-off is causes by rare intermittent turbulent events.

ROYAL INSTITUTE OF TECHNOLOGY

Acknowledgements

- Swedish Research Council VR, grant nr 2012-6216
- EU-COST Action MP1305 *Flowing Matter*

ROYAL INSTITUTE OF TECHNOLOGY

3D PTV with large aggregates

 Hydrodynamic stress dominated by drag

 Breakup is caused by weak accumulation of stress Drag originates from the finite aggregate size

Finite stress propagation inside the aggregate

Sub-Kolmogorov aggregates

- Stress on small aggregates (in liquid) dominated by shear
- Small aggregates exhibit faster response

Lecce, 2016-03-07

ROYAL INSTITUTE OF TECHNOLOGY

Aim: Investigating the mechanism of breakup in turbulence by monitoring individual breakup events in well controlled experiments

Aim of this work

Aim of this work

