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Heterogeneous particles

Adding reactivity: 
  new propelling mechanisms

Different sets of micro/nano robots

Confinement + asymmetric mobility 
                      no deformation

Actuated colloids
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Self-propelled colloids



Bibette et al

Confinement + asymmetric mobility 
                      no deformation

Magnetic field: Local acceleration

Asymmetry + local bending: wave

Top view

Doublet vs isolated

Larger aggregate

Tierno et al
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Good agreement

Fitting: height 
             rotational friction 

Low Ω :   increase rectification rate 
              change in orientation negligible

High Ω :   doublet aligns parallel to wall 
                decrease in asymmetry Controlled motion in microfluidic 

devices
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Free colloids 

    Self-assemble  
        Dipolar interactions

Modes of motion 
  Sensitive to geometry

Enhanced velocity with worm 
size
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Predicts 
   Enhancement 
   Saturation

Colloidal conveyor belt 
    Higher speed above the aggregateGeneralized phase diagram 

    relevant dimensionless parameters

Morphological transitions

Hydrodynamic theory 
    Stresses induced by images
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Hydrodynamic coupling

Sensitive to boundary conditions
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Pairs of rotating paramagnetic colloids

Negligible dipolar interaction

Hydrodynamic rotors
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Far field assumption 
     Fixed points unstable

Bound trajectories 
    net displacement wall-distorted?

Larger self-assemblies 
     periodic trajectories
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Bound trajectories 
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Generalized phase diagram 
    Identified relevant dimensionless parameters

Morphological transitions
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Morphological transitions
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3. SELF-DIFFUSIOPHORETIC COLLOIDS               

surface phoretic mobility

colloid/solute interaction potential (short-ranged)R

Colloidal phoresis

multiscale “transport phenomenon” 

velocity of a (spherical) particle of radius R 

self-propulsion
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Collective dynamics in “2D”: phoretic mobility?
Teurkhauff et al. PRL (2012)

Palacci et al. Science (2013)
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Attractive chemical swimmers

No hydrodynamics

Cluster formation
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Self assembled structured 
         Radial distribution functions

Clustering regime

With hydrodynamics Without hydrodynamics

No Hydro: larger friction
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Repulsive chemical swimmers

Towards a crystal structure

Faster dynamics 
   larger number of “defects”
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No hydrodynamics



Density fluctuations

A proper indicator to distinguish dynamical regimes? 
     Use variance of Voronoi tesselation
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No hydrodynamics
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Continuum model 
    Minimal symmetries / processes

basic ingredients 
   colloid concentration      -  propulsion 
   colloid orientation          - self propulsion 
                                         - chemoattractant/repellent 
   chemical concentration  - production/degradation             autophoresis 
                                          -asymmetric production 
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Chemoattractant

Colocalization colloid density / chemical concentration

Arrested growth

Chemorepellant
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Quantify instability

Fast reorientation

Slow reorientation 
      Oscillatory instability 
      Second instability mechanism

Janus instability 
   requires anisotropy
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Intrinsically out of equilibrium moving particles 
   Strong tendency to self organize 
  Sensitive to environment changes

Chemical swimmers 
  competition hydrodynamic/chemical interactions 

Phoretic mobility plays a relevant role 
   (Non-eq) transition from crystal to clusters

Chemical signaling mainly determines clustering 
   Hydrodynamics has a strong impact in kinetics 
   Prevents gravitational collapse?

Competing mechanisms for dynamic clusters 
   Hydrodynamics 
   retardation in polarization

4. CONCLUSIONS       

Magnetic colloids 
   hydro/magnetic competition 
   rich scenarios under confinement 
       variety of morphologies
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Mechanisms leading to dynamic rotating clusters

Clusters grow and coalesce 
              small mobility

Experimental evidence 
          more dynamic 
          clear rotation

Hydrodynamics + fixed directionality enough to promote rotating clusters

Fundamentals underlying cluster  
motion / rotation 
                       
 more generic mechanisms?
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2. Microswimmer suspension: Model

Lattice kinetic model:  “microscopic” dynamics

€ 

fi∑ = ρ

€ 

fi∑ ci = ρv

€ 

fi∑ cici = ρvv + P

Conserved variables 
Proper symmetries

Hydrodynamic equations

fi (r + ci ,t +1) = fi (r,t) −ω[ fi (r,t) − fi
eq (r,t)]

Colloid 
     rigid hollow surface  

collision  
         bounce-back 
                     
 molecular dynamicsHybrid scheme: 

Pre-selection of relevant degrees of freedom



3.Test case: chemotaxis
Directed motion of a colloidal particle   
in a linear concentration profile 

For constant mobility the propulsion  velocity

chemoattractant

chemorepellent

can be calculated exactly



Statistics and geometry of clusters



3. Self-phoretic swimmers in 3D

Large clusters 
  percolating 
  transient?



 (Hybrid) Lattice Boltzmann algorithm for multiphase fluids + (resolved) particles

Solvent

“Fuel”

in the limits

Advection-diffusion equation  
                                via finite differences

feedback on the fluid via a forcing term in the LB equilibria
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Colloidal particles

(AJC Ladd, J. Fluid Mech. 271,  285 (1994))

Lattice Boltzmann algorithm for multiphase fluids + (resolved) particles

Characteristic  unit vector 

bounce-back-on-links algorithm:  
mass/momentum conservation  
 between particle and fluid 

+ position dependent slip velocity  
   at the particle surface
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Pair velocities: Low Re Constraint: COM + orientation 
                   linear relation

Effective mobilities

Asymmetric particle/wall friction

For circular trajectory:

Net average velocity
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Diffusioosmosis

concentration interacts with a solid surface

Delocalized membrane?

concentration gradient along surface

Equilibrium away from wall 
          equality of chemical potential

longitudinal pressure gradient

unbalanced

Surface-induced flow

Slip velocity


