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Method overview

Direct numerical simulations are often not feasible due to extreme
computational requirements

How to do this mathematically without free parameters?
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U. Lācis A continuum model of poroelastic beds – 10 of 20



Governing equations
Interface conditions
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3Lācis, U. & Bagheri, S., A framework for computing effective boundary conditions at the
interface between free fluid and a porous medium, J. Fluid Mech. 812, 866-889 (2017)
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U. Lācis A continuum model of poroelastic beds – 12 of 20



Governing equations
Interface conditions, velocity

3
~u = ∂t~v −

K
µ
·∇p− + L :

[
∇~u+ (∇~u)T

]
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Interface conditions, velocity

~u = ∂t~v −
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]
Generalized BJ4 condition without any empirical parameters3

4Beavers, G. S. & Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid
Mech. 30(01), 197-207 (1967)
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~u = ∂t~v −
K
µ
·∇p− + L :

[
∇~u+ (∇~u)T

]
Generalized BJ3 condition without any empirical parameters3

I Permeability K ∼ l2 and slip length L ∼ l, disappears as l→ 0
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Governing equations
Interface conditions, stress

I Natural way to match free fluid and poroelastic material
I We propose to use the total stress continuity[

Cef : 1
2

(
∇~v + (∇~v)T

)
−αp−

]
· n̂ =

[
−pδ + 1

Re

(
∇~u+ (∇~u)T

)]
· n̂
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U. Lācis A continuum model of poroelastic beds – 15 of 20



Response to flow vortex
Flow field5

x

y

z

H

0

−d

−H/2

H/2

Uw
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5Lācis, U., Zampogna, G. A. & Bagheri, S., A computational continuum model of poroelastic
beds, Proc. R. Soc. A. 473, 20160932 (2017)
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U. Lācis A continuum model of poroelastic beds – 17 of 20



Limitations and applicability
What we cannot capture

Scale separation

breaks down

Flow

l = s+

I Illustration through breakdown of riblet drag reduction6

6Bechert, D. W., et al., Experiments on drag-reducing surfaces and their optimization with an
adjustable geometry, J. Fluid Mech. 338, 59-87 (1997)
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What we can describe

Flow

I Riblet drag reduction linear part7

7Luchini, P., Manzo, F., & Pozzi, A., Resistance of a grooved surface to parallel flow and
cross-flow, J. Fluid Mech. 228, 87-109 (1991)
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Limitations and applicability
What we can describe

Flow

I Riblet drag reduction linear part7

I Current model can add – (anisotropic) porosity, (anisotropic) elasticity
I Examples in nature – mostly anisotropic

7Luchini, P., Manzo, F., & Pozzi, A., Resistance of a grooved surface to parallel flow and
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I Model can not capture micro-scale variations
I Model is valid for linear regime in drag reduction curve
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Applying the developed model

I Adding porosity to riblets8

I Testing anisotropic poroelastic models
I Most examples from nature – anisotropic

Extending the model

I Complement the model with two-phase flow
I Investigate response to shear, pressure, ...
I Understand stability from system energy
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8Yogaraj, S., ongoing work with NEK5000
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Thank you for your attention!

Questions and discussion
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