

Turbulent skin-friction drag reduction from the energetic viewpoint

Davide Gatti

Fluids and Structures: Interaction and Modeling 2017, Naples, Itally

Turbulent skin-friction drag

Turbulent skin-friction drag reduction!

4

Transition delay

[Source: Alex Duchmann, SLA]

Turbulent skin-friction drag reduction!

Transition delay

Turbulent drag reduction

[E. Blume, RAND document 1969]

 Re_B

6

Different control approaches

NASA.gov (1993)

Passive: no power required by control

additives morphology slip

Active, predetermined (only actuators)

wall movements wall blowing and suction body force

Gatti et al. (EXIF), 2015

Active, reactive (sensors and actuators)

optimal control theory feed-back control feed-forward control

Kasagi et al. (Ann. Rev. Fluid Mech.), 2009

The drag reduction experiment

bulk velocity: U_b

pressure gradient: $-\frac{dp}{dx} = \frac{\tau_w}{h}$ skin-friction coefficient: $C_f = \frac{2\tau_w}{\rho U_b^2}$

pumping power (per unit area): $\mathbf{P}_{p} = -\frac{\mathrm{d}p}{\mathrm{d}x}hU_{b}$

drag reduction rate:

$$\mathbf{R} = 1 - \frac{c_f}{c_{f,0}}$$

The choice of flow condition (1)

Navier-Stokes equations alone do not pump fluid through the duct

Forcing term needed to mimic pump

Many arbitrary choices possible

- Often equivalent on physical grounds
- Different on practical grounds
 - Different realizations, same statistics

The choice of flow condition (2)

Important choice in flow control!

"Turbulent fluctuations are destroyed"

Spanwise wall oscillations Constant Flow Rate (CFR) $Re_b = 6400$ $R \approx 30\%$

Important choice in flow control!

"Turbulent fluctuations are destroyed"?

Important choice in flow control!

successful control
$$\mathbf{R} = 1 - \frac{c_f}{c_{f,0}} > 0$$
 manifests differently

With control: either different Re_{τ} or different Re_B

 $C_f \neq P_p$: successful control can increase pumping power!

15

16 24.05.2017 Dr.-Ing. Davide Gatti – Turbulent skin-friction drag reduction from the energetic viewpoint

Total Energy (cost) vs. Time

Comparison of different flow conditions

Checkpoint: what you should not forget

How to drive the flow (CFR, CPG, CPI)?
necessary and important choice
affects the results and their interpretations
different manifestations of "drag reduction"

Constant Power Input

possible choice close to real conditions (pump)
power input (energy transfer rate) is kept constant
relevant for various applications

Checkpoint: what you should not forget

Constant Power Input

- possible choice close to real conditions (pump)
- power input (energy transfer rate) is kept constant
- relevant for various applications

The drag reduction experiment from the energetic viewpoint

CPI ideal framework to study energy transfer rates

 ΔZ 2hcontrol power input U(v)P_c pumping how does control affect power energy transfer phenomena?

21 24.05.2017 Dr.-Ing. Davide Gatti – Turbulent skin-friction drag reduction from the energetic viewpoint

Integral energy budget

Reynolds decomposition:

$$u(x, y, z, t) = \overline{u}(y) + u'(x, y, z, t)$$

 $\frac{1}{2}\rho\bar{u}^2$ mean kinetic energy (MKE) budget:

 $P_p = P_{uv} + \Phi$

 $\frac{1}{2}\rho \overline{u'^2}$ turbulent kinetic energy (TKE) budget: $P_{uv} = \epsilon$

> global energy budget: $P_p = \Phi + \epsilon$

The drag reduction experiment from the energetic viewpoint

CPI ideal framework to study energy transfer rates

turbulent ϵ + mean Φ kinetic energy dissipation rate

How does drag reduction affect energy transfer rates?

a (seemingly) trivial question with a non trivial answer

- Frohnapfel et al., (2007):

e needs to be reduced to achieve drag reduction

 Martinelli, F., (2009): drag reduction obtained via feedback control aimed at minimizing ε

Spanwise wall oscillations

drag reduction

control power γ fraction

$$L/U_b$$

$$= \frac{P_c}{P_t} = 0.098$$
$$\frac{U_b}{U_{b,ref}} = 1.028$$

drag reduction

control power $\gamma =$ fraction

2h

$$\frac{P_c}{P_t} = 0.098$$
$$\frac{U_b}{U_{b,ref}} = 1.028$$

R = 23.9%

tarbulent e + mean Φ kinetic energy dissipation rate

 $\frac{U_b}{U_{b,ref}} = 1.094$

The energy box

29 24.05.2017 Dr.-Ing. Davide Gatti – Turbulent skin-friction drag reduction from the energetic viewpoint

The energy box

The energy box

TKE dissipation rate ϵ increases

The energy box: lesson

Drag reduction \Leftrightarrow reduction of TKE production rate P_{uv}

Drag reduction \neq increase of MKE dissipation rate Φ

At CPI effect of control on energy transfer rates unveiled!! Sometimes Π_c is a good alternative to Π_p

We made another (probably) unaware choice!

The drag reduction experiment from the energetic viewpoint

Conclusions

How to drive the flow?

is an important and necessary choice

CPI is a possible alternative...

...necessary to study systems energetically

Drag reduction from the energetic viewpoint
requires CPI to highlight nontrivial behaviours
'Reynolds' decomposition of dissipation is also an arbitrary choice!

THANKS for your kind attention!

for questions, complaints, ideas: davide.gatti@kit.edu

35 24.05.2017 Dr.-Ing. Davide Gatti – Turbulent skin-friction drag reduction from the energetic viewpoint