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Non-affine deformations

The breaking of local inversion symmetry is the 

cause for non-affinity. This is a key in 

disordered solids.

Q: But there are many non-centrosymmetric 

crystals: what about them?  

→ In fact, it is known since Kelvin (1890) that 

crystals with no inversion symmetry 

(piezoelectrics, e.g. quartz) all have a very low 

shear modulus!
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The associated addition to the elastic free energy 

is always negative (relaxation of local forces) 

and can be presented as: 
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The non-affine reduction of shear modulus can be calculated 

for harmonic central forces (with spring constant κ):  

)(2

0 czzr
V

N
G  

Born (1940) in 

affine model

Zaccone & Scossa-Romano PRB (2011)

Zaccone, Blundell, Terentjev PRB (2011)

Q: How limiting is this? What if there are 

constraints: non-central forces or excluded 

volume?

→ In a few cases (bond-bending & excl. 

volume) analytical solutions are possible.

Non-affine softening for harmonic   

central forces gives a factor  zc = 2d

Maths can be found in:

Non-affine deformations



We now know: )(2
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Relate (z-zc) to the density 

Thermal expansion cf. of a solid

Replace V by f, and integrate:
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Relate density to temperature 

The probability g(r) of having two 

soft particles separated by a vector 

of length r displays a divergence
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O’Hern, Silbert, Liu, Nagel, 2003
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This gives the temperature 

change of the shear modulus
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The increment 

which now gives                                   

What does the temperature do?



Comparing with glassy polymer (T<Tg)

We found: )(2
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The system must be free to 

expand.  In that case, a 

recent MD simulation for LJ 

glass has confirmed 

Polystyrene: Schmieder and Wolf, Koll.Z. 1953 

Fitting: 
= 52 N/m
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Wittmer et al., JCP 2013 

Zaccone & Terentjev PRL (2013)



Two examples of fluidization: 

1. How a rigid disordered solid (glass) approaches a 
melting point (G→0) on increasing temperature. This 
is essentially a “glass transition” examined from 
below Tg

2. How a rigid disordered solid (glass) yields and starts 
plastic flow at finite deformation rate. Why is there a   
‘stress overshoot’?

Plan for today:



Experiment on metallic glass

Lu, Ravichandran, Johnson, ActaMater. 2003

The linear modulus
The overshoot
The plastic flow stress

Can we fluidize the random solid by shear?



eff( ) exp[ / ]g r V kT 

Potential of mean force,

accounts also for the “cage”1/T

eff( , ) exp[ V / ( ) ]g kT h   r r

Particles escaping from the cage under 

shear (extensional sector) go to fill free 

volume spots (dilatancy is negligible)

Shear-induced cage deformation



Net decrease of ‘permanent’ contacts:

imbalance between extension sector 

(particles “pealed off”) and compression 

sector (“crowding”)

Only bonds which are ‘permanent’,

within the bonding minimum,

contribute to elasticity: fluctuating 

‘fluid’ contacts should be discarded
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Expected trend:

No. of permanent

contacts Z vs strain

(Z @ γ=0 is ~12)

?

Av. number of contacts z decreases with γ↑

Evolution of permanent Z can be measured in confocal microscopy

of colloidal glasses or in simulations (in progress)



z is calculated from g(r)

We saw it many times: )(2
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g(r) relaxes towards equilibrium “time is γ ”
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at constant rate

We obtain the contact number z

as a function of shear strain γ
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Stress non-linearity for a strain ramp 
(start-up shear)

(only central forces)



We substitute z():   2)(
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Within the simplest (Zener) model:                                           and 

That’s good, but we must not forget the 

stress relaxation (viscoelastic effect). 
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Stress non-linearity during a strain ramp 
(start-up shear)



Apply a constant shear ramp

and the glassy solid 

responds with the 

stress:
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Stress rise, overshoot and the plastic flow



Shear ramp:

Stress:
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Only two t-parameters are not measured experimentally by Johnson et al.

Stress rise, overshoot and the plastic flow

Zaccone, Schall, Terentjev PRB (2014)



Yielding of colloidal glasses:

comparing with experiments 

Dang, Rojman, Chikkadi, Bonn, Zaccone, Schall, preprint (2015)

free energy of deformation of colloidal glasses

FCC crystal

glass
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data from
P. Schall’s group
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We used the simplified model of central harmonic bonds and the 

linear theory of non-affine elastic deformations produces a 

useful form of the shear modulus, G~K[z-zc]

Examining how the average number of contacts z changes in 

different circumstances allows practical problems to be solved

1. Using thermal expansion ideas, and connecting z-f(T) via g(r), 

we produced a model of glass melting, as well as the Tg

2. Using the compression-extension sectors asymmetry in shear, 

we found z(γ) and were able to describe the yielding of 

metallic glass and the of colloidal glass in agreement with 

several experimental data-sets

Conclusion



Diffusion-advection: analytical solution
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ANALYTICAL SOLUTION: collision rate

analytical solution: 
Zaccone, et al. PRE (2009), 
PRL (2011)

36 R
Pe

kT




diffusion

recovered at Pe=∞

r

( )rv

R

max 2U Pe
rate e

  


energy barrier ↑



U(r)



Can we predict the cluster breakup rate? 

V

self-assembly breakup
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collective stress-transmission through the aggregate

first physical theory
of aggregate breakup rate

Conchuir & Zaccone, PRE 2013 
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K
b

Successful description of several experimental data

bond energy

no fitting parameters!

Kb

df

=0

instantaneous breakup
(no activation energy)

max cluster size surviving

different expt
and simul studies
from literature



Laurati, Egelhaaf, Zaccone (2015)

Yielding of colloidal glasses:

comparing with confocal microscopy (2)



Apply model to real world:

Johnson et. al, MRS Bull. (2007)

Rheological measurements for 
metallic glass alloys (ultra-
sonic)

controls the slope of

the shear modulus

Krausser, Samwer, Zaccone, PNAS (with referees) 20

Comparison with experimental data:
metallic glass (1)



Definition of fragility:

Johnson et. al, MRS Bull. (2007)

Krausser, Samwer, Zaccone, PNAS (with referees) 21

Comparison with experimental data:
metallic glass (2)



Parameters for overshoot fitting

COMPARISON WITH ALTERNATIVE THEORIES

• MCT with shear: 5-6 free parameters. Shear parameters        and       
have no clear physical meaning (cfr. discussion in Binder & Kob’s book). 
• STZ theory: ~4 parameters (effective T not well-defined)

c 



Z = 6.1

Z = 8

Vibrational DOS from random matrix theory



We found: )(2
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There is one more contribution 
for the G(T):  from phonon 
modes that shift their 
characteristic frequency on 
deformation 
[J. Frenkel 1946]

…but it turns out to be small
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We now know:

To formulate all this in a ‘normal language’
1. In order to be a rigid glass, the   system 

has to have                                   additional 
physical LJ bonds.

2. In a long polymer chain                  and so 
there should be at least                   of extra 
contacts per monomer.

because
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Fox and Flory, 1950

May be we can find Tg from G→0 ?



angle-resolved

rheo-SAXS

(Desy-Hamburg)

shear plane

p-wave symmetry in the experimental

angular correlation function (colloidal glass):

dipole field

plane where 

scattering

is measured

Theory predicts p-wave symmetry 

distortion in the plane beneath shear plane

which vanishes at yielding

(fully nonaffine response after yielding)

PREDICTION

VERIFIED!

coll. with Peter Schall (Amsterdam)

Cage distortion and yielding of colloidal glasses



Yielding of colloidal glasses:
Direct relation between nonaffine displacements

and stress-strain relation

Mean-squared
nonaffine displacements

Strain-induced loss of permanent
nearest-neighbours

Experimental data from confocal microscopy (S. Egelhaaf & M. Laurati)



Application: colloidal crystal melting in 3D

Colloidal crystals: the particles (~ 1 micron) and their dynamics can be followed by

confocal microscopy (unlike atoms)

Coll. with D. Weitz (Harvard) 



Strong thermal disorder: fluctuations
With colloids, melting is driven by the density φ. Upon approaching the melting point,

the dynamics of particles becomes highly disordered (thermal fluctuations)

clusters of highly mobile

particles

fractal dimension of the clusters ~1.75 critical exponents

Sprakel, Zaccone, Spaepen, Schall, Weitz, preprint 2014



(nonaffine!)

(old Born theory, affine)
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A new melting criterion

Born criterion (1939): crystals melt when the affine shear modulus vanishes

Our new criterion: crystals melt when the nonaffine shear modulus vanishes, 

due to thermal fluctuations!

Sprakel, Zaccone, Spaepen, Schall, Weitz, preprint 2014



Nonaffine theory
of amorphous materials 
can explain and describe

The difference in material strength
between crystals and glasses

The mechanical failure
of metallic glasses under strain

The glass transition and 
mechanical properties
of glassy polymers

The solid-liquid tr. of 3D crystals with no defects

Overview – disordered materials

The link between interatomic potential
and the fragility of metallic glasses



21st century materials:
a “disordered” revolution

superalloys

metallic glasses

cells’ cytoskeleton

AZ

Research Group

hydrogels

(tissues, drug-delivery

foods, cosmetics…)

SOFT HARD

solar cells

PhD Students:
J. Krausser
R. Milkus
Post-Docs (from 03.15):
M. Abnekar
H. Yamani



Experimental 
collaborators

2

1

5

3 4

6

7

89

1. Amsterdam 
Glasses, shear-banding
• P. Schall, D.Bonn

2. Munich   Bio-nanoaggregates
• P. Muller-Buschbaum
• A. Bausch

3. Cambridge   Gels, proteins
• T. Knowles 
• P. Cicuta, E. M. Terentjev

4. Berlin  Gels, nanoparticles
• M. Ballauff

5. Copenhagen + 6. Lund 
Proteins
• B. Vestergaard
• P. Schurtenberger

7. Goettingen Metals
• K. Samwer

8. Harvard  
Glasses, Metallic alloys
• D. Weitz, F. Spaepen

9. Amherst   Gels 
• H.H. Winter
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Mathematical approach: master kinetic equation
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Until now: equilibrium statistical mechanics (Flory-Stockmayer, AHS, percolation), 
no time-evolution, cannot link molecular level with macroscopic structure & properties

NEW APPROACH: master kinetic equations (NONEQUILIBRIUM!)

ijK 
assembly rate

kK 
disassembly rate

Arrhenius-Kramers
dependence on bond energy

diffusion-limited (Smoluchowski)
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Free energy of lattice deformation 
with disorder

internal work done by nonaffine motions 

at the expense of lattice energy of deformation

i

affine, “ordered” nonaffine, “disordered”

~ force acting on i

due to affine motions

of j neighbours
Zaccone & Scossa-Romano, PRB (2011)



Application (1): polymer glass transition

No theories available 

for G at T<Tg

At T>Tg: 

Doi-Edwards theory, tube theory

Zaccone & Terentjev, PRL 2013

polystyrene expt. data 

of Schmieder & Wolf, 1953 

~ cT T

scaling confirmed by MD simulations in J. Wittmer et al., JCP 2013

No fitting parameters!

A NA TF F F F   phonons also contribute to the elastic free energy

covalent

LJ-type



Application (2): crystal melting in 3D
Colloidal crystals: the particles (~ 1 micron) and their dynamics can be followed by

confocal microscopy (unlike atoms)

Coll. with David Weitz



Application (2): crystal melting in 3D
With colloids, melting is driven by the density φ. Upon approaching the melting point,

the dynamics of particles becomes highly disordered (thermal fluctuations)

clusters of highly mobile

particles

fractal dimension of the clusters ~1.75 critical exponents

Sprakel, Zaccone, Spaepen, Schall, Weitz, preprint 2014



(nonaffine!)

(old Born theory, affine)
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A new melting criterion
Born criterion (1939): crystals melt when the affine shear modulus vanishes

Our new criterion: crystals melt when the nonaffine shear modulus vanishes, 

due to thermal fluctuations!

Sprakel, Zaccone, Spaepen, Schall, Weitz, preprint 2014



Bimolecular association reactions
in crowded environments

r

• Attraction between A and B
• Hard-repulsion among A’s
• Liquid-like structure

Dorsaz et al. PRL 105, 120601 (2010)

How does the association rate
depend on the crowding packing fraction?

Governing equation (Smoluchowski diff. eq.)

collective diff.
effective force-field due to crowders:

changes with
r due to g(r) !


