Plastic flow of foams and emulsions in a channel:

experiments, theory and simulations

Andrea Scagliarini

Department of Physics and INFN, University of Rome "Tor Vergata"

CREDITS: Benjamin Dollet (Institut de Physique de Rennes) Mauro Sbragaglia (University of Rome "Tor Vergata")

FLOMAT2015, "Flowing Matter across the scales" Istituto Nazionale di Studi Romani, Rome, Italy 26th March 2015

Motivations

Soft-glassy materials (foams, emulsions, gels...)

Shear localisation in foams

√ Yield Stress (solid-like below)

√Non-newtonian (above yield)

✓Heterogeneities

✓ Effect of confinement

(G. Debrégeas et al, Phys. Rev. Lett. 87, 178306 (2001))

r

Wall friction: (local) continuum model with viscous drag

Non-local rheology

Plastic rearrangements: T1 event

(S. Cohen-Addad et al ARFM 45, 241 (2013))

(A. Kabla et al JFM **587**, 45 (2007))

Non-local effects: Kinetic Elasto-Plastic (KEP) model

$$\partial_t P_i + \dot{\gamma_i}^{(0)} \partial_{\sigma_i} P_i = \mathcal{L}(P, P)$$

(L. Bocquet et al, Phys. Rev. Lett 103, 036001 (2009))

continuum limit

$${\xi^2 \Delta f + (f_b(\sigma) - f) = 0} \ f \propto \Gamma \;\;$$
 rate of plastic events

diffusion equation for the FLUIDITY $\,f=\,$

KEP: results for a Couette flow

Flow in a channel: Velocity profiles

FACTS:

1) Exp and sim AGREE: Shear localisation with a characteristic length depending on the flow-rate/friction-parameter

ELASTICITY and

NON-LOCALITY

- 2) Exp and sim DISAGREE: Slip vs no-slip at the walls (different boundary conditions...)
- 3) Slip velocity much lower than predicted by local models (Janiaud et al, Phys. Rev. Lett. 97, 038302 (2006))

Connection with KEP: Rate of plastic events

(Non-local) fluidity equation

 $\xi^2 \Delta f(\mathbf{r}) = f(\mathbf{r}) - f_b[\sigma(\mathbf{r})] \qquad f = \frac{\gamma}{\sigma}$

shear-rate/shear-stress

Shear localisation length vs Plastic localisation length

(B. Dollet, AS, M. Sbragaglia, J. Fluid Mech. 766, 556-589 (2015))

Statement of the mathematical problem (for a Couette flow)

+

FORCE BALANCE Navier-Stokes (non-constant stress)

$$\frac{d\sigma}{dz} = \beta v(z)$$

How to simplify the problem?

bulk fluidity

Considering two asymptotic regimes:

<u>"Fluid" regime</u> $\sigma \gg \sigma_Y$ \longrightarrow $f_b(\sigma) \approx \frac{1}{K} = const$ <u>"Plastic" regime</u> $\sigma \approx \sigma_Y$ \longrightarrow $\sigma = \sigma_Y + \tilde{\sigma}$ $\tilde{\sigma} \ll \sigma_Y$ $f_b(\sigma) \approx \frac{\tilde{\sigma}}{K\sigma_Y}$

Analytics vs LB numerical simulations for a Couette flow

 $\sigma \gg \sigma_Y$

(AS, B. Dollet, M. Sbragaglia, Colloids Surf. A (2015) DOI: 10.1016/j.colsurfa.2015.01.090)

Summarizing...

1) Combined experimental/numerical/theoretical study of foams/emulsions flowing in a channel

2) First experimental measurement of the rate of plastic events in a Poiseuille flow of foams

- 3) Innovative numerical method combining two capabilities:
 - i) it provides realistic structures of foams/emulsions;
 - ii) it naturally incorporates elastic and viscous contributions to stresses

4) Shear localisation length grows with the characteristic length of rate of plastic events

- 5) Wall friction acts adding up as an extra-localisation mechanism
- 6) Agreement with analytical results for a Couette flow

