
Microswimmers in Flow 
Salima Rafaï 

Laboratoire Interdisciplinaire de Physique, CNRS Grenoble



C. Current status of dry active matter 1160
III. Active Gels: Self-driven Polar
and Apolar Filaments in a Fluid 1161

A. Hydrodynamic equations of active gels 1161

1. Entropy production 1161

2. Conservation laws 1161

3. Thermodynamics of polar systems 1162

4. Fluxes, forces, and time reversal 1162

B. Linear theory of active polar and nematic gels 1163

1. Constitutive equations 1163

2. Microscopic interpretation of the
transport coefficients 1163

3. Viscoelastic active gel 1164

C. Active polar gels 1164

1. Polarity effects 1164

2. Noise in active gels 1164

3. Multicomponent active gels 1164

D. Active defects 1165

E. Current status on active gels 1166
IV. Hydrodynamic Consequences of Activity 1167

A. Instabilities of thin liquid active films 1167

1. Spontaneous flow of active liquid films 1167

2. Instabilities of thin films 1168

B. Polar active suspensions with inertia 1171

C. Rheology 1171

1. Linear rheology of active isotropic matter 1172

2. Linear rheology of active oriented matter 1174

3. Nonlinear rheology of active nematics 1175

D. Applying the hydrodynamic theory to
phenomena
in living cells 1176

V. Derivation of Hydrodynamics from
Microscopic Models of Active Matter 1177

A. Microscopic models 1177

1. Self-propelled particles 1178

2. Motors and filaments 1179

B. From stochastic dynamics to macroscopic equations 1179

1. Smoluchowski dynamics 1180

2. From Smoluchowski to hydrodynamics 1181

3. An example: Derivation of continuum equations
for aligning Vicsek-type particles 1181

4. Hydrodynamic interactions 1182

C. Current status of microscopic theories
of active matter 1183

VI. Conclusions, Outlook, and
Future Directions 1184

Acknowledgments 1185

References 1185

I. INTRODUCTION

The goal of this article is to introduce the reader to a
general framework and viewpoint for the study of the me-
chanical and statistical properties of living matter and of
some remarkable nonliving imitations on length scales from
subcellular to oceanic. The ubiquitous nonequilibrium con-
densed systems that this review is concerned with (Toner, Tu,
and Ramaswamy, 2005; Jülicher et al., 2007; Joanny and
Prost, 2009a; Ramaswamy, 2010) have come to be known
as active matter. Their unifying characteristic is that they are

composed of self-driven units, active particles, each capable
of converting stored or ambient free energy into systematic
movement (Schweitzer, 2003). The interaction of active par-
ticles with each other, and with the medium they live in, gives
rise to highly correlated collective motion and mechanical
stress. Active particles are generally elongated and their
direction of self-propulsion is set by their own anisotropy,
rather than fixed by an external field. Orientational order is
thus a theme that runs through much of the active-matter
narrative as can be seen, for instance, in the image of a swarm
of myxobacteria, shown in Fig. 1. The biological systems of
interest to us include in vitro mixtures of cell extracts of
biofilaments and associated motor proteins (see Fig. 2), the
whole cytoskeleton of living cells, bacterial suspensions (see
Fig. 3), cell layers (see Fig. 4), and terrestrial, aquatic (see
Fig. 5), and aerial flocks. Nonliving active matter arises in
layers of vibrated granular rods, colloidal or nanoscale par-
ticles propelled through a fluid by catalytic activity at their
surface (see Fig. 6), and collections of robots. A distinctive,
indeed, defining feature of active systems compared to more
familiar nonequilibrium systems is the fact that the energy
input that drives the system out of equilibrium is local, for
example, at the level of each particle, rather than at the

FIG. 1 (color). Liquid-crystalline order in a myxobacterial flock.
Figure from Gregory Velicer (Indiana University Bloomington) and
Juergen Bergen (Max-Planck Institute for Developmental Biology).

FIG. 2. Patterns organized in vitro by the action of multimeric
kinesin complexes on microtubules, imaged by dark-field micros-
copy. The concentration of motor proteins increases from left to
right. (a) A disordered array of microtubules. The other two images
display motor-induced organization in (b) spiral and (c) aster
patterns. The bright spots in the images correspond to the minus
end of microtubules. These remarkable experiments from Surrey
et al. (2001) led the way to the study of pattern formation in active
systems. Adapted from Surrey et al., 2001.
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Living microswimmers

❖ Full name: Chlamydomonas Reinhardtii!
❖ Microalga!
❖ Size: 10 µm!
❖ Shape : Quasi-spherical!
❖ Gender : Puller-type!
❖ Velocity ~100µm/s!
❖ favorite drinking: freshwater + nutrients

E. Coli Gonyaulax Sperm cell Paramecia
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The complex random walk of Chlamy
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M. Garcia, S. Berti, P.Peyla & S.Rafaï 
Phys. Rev. E (R) (Z011)
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A persistent random walk



Chlamy & phototaxis
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Phototaxis & Poiseuille flow
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Poiseuille flow in rectangular channels
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Phototaxis & Poiseuille flow: Photofocusing

Light Control of the Flow of Phototactic Microswimmer Suspensions 
X. Garcia, S.Rafaï & P.Peyla (Z013) Phys. Rev. Lett. 110 , 138106
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Photofocusing: a reversible effect
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A non linear model: swimming 
speed Vswim+ flow speed u

Poiseuille flow in rectangular channels
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Poiseuille flow in rectangular channels
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Modeling with full hydrodynamics

3D Fluid Particle Dynamics 
Peyla et al. J. Fluid Mech.  2012

Phantom flagella model 
Mehandia & Nott  

J. of Fluid Mech. 2008 
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FIG. 1. A chlamydomonas model: a spherical bead (the cell
body) is bonded to two parallel forces �f exerted by the flag-
ella on the fluid and to the force 2f exerted by the body on
the fluid. The swimmer must be force free and torque free

forces is an averaging over one period of the break stroke
[? ]. Since each microswimmer is an isolated body, it
must be force free and torque free in the absence of an
external field of force like gravity or a magnetic filed.
A swimmer moves in the fluid due to its own velocity
and can also be transported and rotated by the external
flow and by the presence of the other swimmers through
hydrodynamic interactions. In order to model the photo-
tactic property, each microswimmer is reoriented toward
a given direction (i.e. the direction of the light source) af-
ter a given reorientation time rate ⌧�1. Experimentally,
⌧ is typically of about 1 seconds. The microswimmers
are suspended in a Newtonian fluid of viscosity ⌘0 in a
long channel of length ` with a squared section (see fig-
ure) of lateral size 2w. No-slip conditions are used at the
fluid/walls and fluid/particle interfaces. In order to ne-
glect the e↵ect of wall confinement, we choose w ⇠ 8.5R.
Note that this value is much smaller than in experiments
where w/R ⇠ 50. A pressure gradient is used in order to
impose a flow within the channel (i.e. a Poiseuille flow in
the absence of particles). Note that the Reynolds number
associated with each swimmer is small enough Re ⇠ 0.2
(the real Re number is 10�4 [? ]) to consider a Stokes
flow of an incompressible fluid.

The numerical method we use is the Fluid Particle Dy-
namics [? ] which we have used before for 3D passive
or active suspensions [? ? ? ? ]. This method is also
known as penalty method in applied mathematics [? ].
In the previous papers, tests on this method have been
performed to prove its reliability, for a detailed review
see [? ]. It consists of replacing solid particles by fluid
particles with an inner viscosity ⌘p much higher than the
outer fluid viscosity ⌘0 (⌘p/⌘0 = 100). The stokes equa-
tion is then solved on the entire domain: inside and out-
side the particles, thus avoiding particle tracking. The
translational velocity of the ith particle, < v >i is ob-
tained by averaging the velocity v on the volume of par-
ticle number i. The symbol < . >i means that aver-
aging is done over the volume of the particle number
i. It is also convenient to calculate the angular velocity
< ⌦ >i= 1/2 < r ⇥ v >i. A time step �t is defined
and at each iteration, the out-of-lattice sphere number i
is moved by the quantity �ri =< v >i �t. Then, the field
of viscosity ⌘(r) is recalculated from the new positions of
the sphere centers. Time t is then simply t = n�t where
n is the number of iterations.

Despite the smallness of the Re number, we solve the
Navier-Stokes equation (and not the Stokes equation) on
the whole domain with a field of viscosity ⌘(r):

⇢
Dv

Dt
= �rP +r.[⌘(r)(rv +rvt)] + f , (1)

snapshots.jpg

FIG. 2. A suspension of 50 swimmers in a channel with a
squared cross section. The flow is from left to right. Light
source is upstream (left). a) Initial state (t/⌧ = 0), b) self-
focusing (t/⌧ = 28), c) clustering (t/⌧ = 50), d) merging
(t/⌧ = 60)

with the incompressibility constrain (r.v = 0). The vol-
ume force f is the set of forces generated by each swim-
mer. This resolution can be done with several methods
(finite elements, finite di↵erences, lattice Boltzmann, ...).
In our case, we choosed the finite di↵erences on a MAC
grid [? ] with a cubic mesh of size � = 1. In order to en-
sure numerical stability, we take �t = 10�3. The volume
forces exerted by each swimmer on the fluid (fig. 1) are
bonded to the spherical particle. Therefore, for the ith

particle, we need to know both its translational velocity
< v >i to determine its position and its angular veloc-
ity < ⌦ >i to determine its orientation at any time t in
order to reposition the set of forces belonging to particle
i.

A single swimmer, described by the above model,
moves in a fluid at rest with a velocity proportional to
the force : v0 = M f . The swimmer’s mobility M is such
that M = (6⇣⇡⌘R)�1 where ⇣ is a dimensionless param-
eter which depends on the geometry of the set of forces
around the swimmer. For example with a single force ap-
plied on the spherical body, we would have ⇣ = 1. Here,
with the set of three forces bonded to the sphere, we
found ⇣ ⇠ 1.14 in our simulations. This numerical value
is very close to the analytical value ⇣ = 32/29 = 1.10 de-
rived with the Green’s function theory [? ] in an infinite
fluid.

We initially begin the simulation with a suspension
of swimmers modeled as described above and homoge-
neously distributed across a channel (see figure 2a) with

A first model

M M M
M

Chlamy
= 

Sphere
+

multipole of forces

Model:

3D Fluid particle dynamics
- Tanaka & Araki, PRL, 2000
- Peyla, EPL 2007,Davit & Peyla, EPL 2008

Penalization method
Tanaka 2D (PRL 2000),  
Peyla 3D (EPL 2007)"

Navier Stokes + Active forces

consistent with  
Experimental hydrodynamic field  
Drescher et al. Phys Rev Lett 2010



Clustering

Full hydrodynamics numerical simulations (FPD method)

Self-focusing and jet instability of a microswimmer suspension 
L. Jibuti et al. (2014)  Phys. Rev. E, 90, 063019  
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Perspectives 
together with Philippe Peyla (Prof. UJF)

Effect of hydrodynamic interactions on the dispersion of µswimmers

numerics experiments

Matthieu Martin PhD 
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Experimental evidence of clustering?

Johannes Greber PhD 
(Bayreuth)
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