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Tumbling of small non-spherical 
particles in a shear flow



Shear flow  
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Shear flow                    , flow-gradient matrix                           .   
   
Degenerate orientational dynamics of small 
axisymmetric particles: Jeffery orbits (tumbling).

Expect that perturbations have strong effect.       
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Tumbling in simple shear
Axisymmetric particles in shear flow rotate periodically (Jeffery orbits).
Infinitely many degenerate periodic orbits. 

            
       

Micron-sized glass rods                 : log-rolling,
in a micro-channel flow.                : tumbling. Symmetry axis    spends a long 
                                                     time aligned with flow-direction    .
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ẑ

(and ⌦̂)

n-dynamics

slow

fast

nz =1
nz =0 n

x̂

J. Einarsson, B. Mihiretie et al., 
arxiv:1503.03023 (2015)

forward,             backwards.
                     

Jeffery, Proc. Roy. Soc. London 
Ser.  A 102, 161 (1922)



Department of Physics

Dimensionless parameters
Axisymmetric particles: shape parameter                                 
(aspect ratio              ). 

Fluid inertia:                                               kinematic viscosity
                                                                 shear rate

Particle inertia:                                            particle density
                                                                  fluid density

Brownian rotation:                    where         rotational diffusion constant

Jeffery equation obtained for small particles for             ,            ,            .

Degeneracy: must consider effect of perturbations. Here:              .
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Inertial effects - particles in flows
Particle- and Navier Stokes equations coupled by boundary conditions.

Maxey-Riley equation,
correction to Stokes law

Saffman lift on small sphere
due to shear.
                                   

Tumbling of a neutrally buoyant
fibre in shear flow, 
slender-body limit. 

Log-rolling unstable.

Tumbling of a nearly spherical
neutrally buoyant particle in shear.
 
Log-rolling stable.                                 
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Effective equation of motion
Neutrally buoyant spheroid.

Find effective vector field, correction to Jeffery’s
equation (caveat: caustics)

           known.          

Now           . Difficulty: need to calculate torque on particle. 

Requires solving Navier Stokes equations. 

Perturbation theory in       ,     , neglect terms of order           ,       ,       ,... .   

Still very difficult problem. Solve it by exploiting the symmetries of  problem. 
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Einarsson,  Angilella & Mehlig, Physica D 278-279, 79 (2014)
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Equations of motion
Orientational motion of neutrally buoyant spheroid

                             ,

angular velocity      ,  particle inertia tensor                                             with
                        ,      and     are moments of inertia along and    to    .

Hydrodynamic torque      determined by integrating fluid stresses over particle
surface     . Requires solving Navier Stokes equations. Dimensionless variables
(scales: time            , length         , velocity            , pressure            ):

   pressure,      particle angular velocity,          shear in dimensionless variables.

ṅi = �ijk�jnk St(Iij�̇j + İij�j) = Ti
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Perturbation theory
Use `reciprocal theorem´ to compute hydrodynamic torque.

Result (simple shear flow)

The coefficients       are obtained by solving auxiliary Stokes problem.  Above
relation is exact. But unknown    , solution of Navier Stokes equations.
Perturbation theory:                     - solutions to evaluate     to leading order.

Then expand:     

Insert into angular-momentum equation. Find:         Jeffery angular velocity,
        particle-inertia contribution,            fluid-inertia contribution, depends
on volume integral. Difficult to calculate. Integrand depends non-linearly on    .

Lovalenti & Brady, J. Fluid Mech. 256, 561 (1993) 
Subramanian & Koch, J. Fluid Mech. 535, 383 (2005)
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Symmetries
Make use of the symmetries of 
the problem. Simple shear flow
                          .

Symmetries constrain form of equation of motion.

First row: Jeffery equation. Remainder:     - and       -corrections, determined
by only four scalar functions

                                                           for                     .

Can be calculated.
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Results
Stability of log-rolling and tumbling orbits.

Linear stability analysis at small       .

Stability exponents       ,  

log rolling                          tumbling
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Conclusions
Orientational dynamics of neutrally buoyant axisymmetric particle in shear.
Stability analysis of Jeffery orbits at infinitesimal       . Results: 

  -log-rolling unstable for prolate particles, tumbling in shear plane stable.
  -for oblate particles (but not too disk-like) stabilities are reversed
  -fluid inertia contributes more strongly than particle inertia
  -both unsteady and convective fluid inertia matter. It would be qualitatively
   wrong to neglect either.

To do:
  -analyse orientational motion for small but finite       . 
  -wall effects
  -settling              (more difficult)
  -unsteady flows (more difficult)
  -turbulence (much more difficult)
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Lovalenti & Brady, J. Fluid Mech. 256, 561 (1993) 


