Tumbling of small non-spherical particles in a shear flow

B. Mehlig¹⁾

based on joint work with J. Einarsson¹⁾, F. Candélier²⁾, F. Lundell³⁾ & J. R. Angilella⁴⁾

¹⁾Department of Physics, University of Gothenburg, Sweden
 ³⁾KTH, Stockholm, Sweden
 ⁴⁾Université de Caen, France

Effect of weak fluid inertia on Jeffery orbits, J. Einarsson, F. Candélier, F. Lundell, J. R. Angilella & B. Mehlig, submitted to Phys. Rev. E

Shear flow

Shear flow $\boldsymbol{u}(y) = sy\hat{\boldsymbol{x}}$, flow-gradient matrix $\mathbf{A} = \begin{bmatrix} 0 & s & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Degenerate orientational dynamics of small axisymmetric particles: Jeffery orbits (tumbling). Jeffery, Proc. Roy. Soc. London Ser. A **102**, 161 (1922)

Expect that perturbations have strong effect.

Although this limit may

seem to be of limited interest, ...

... these small changes can have a strong (or even dominant) cumulative effect on the particle's position or orientation. This occurs for the class of so-called "indeterminate" particle motions, in which no position or orientation is intrinsically favored under "standard conditions." L. G. Leal

Ann. Rev. Fluid Mech. 1980.

Tumbling in simple shear

Axisymmetric particles in shear flow rotate periodically (Jeffery orbits). Infinitely many degenerate periodic orbits. Jeffery, Proc. Roy. Soc. London

Micron-sized glass rods in a micro-channel flow.

— forward, ----- backwards.

 $\begin{array}{l} n_z = 1 : \text{log-rolling,} \\ n_z = 0 : \text{tumbling. Symmetry axis } n \text{ spends a long} \\ \text{time aligned with flow-direction } \hat{\mathbf{x}} \ . \end{array}$

Dimensionless parameters

Axisymmetric particles: shape parameter $\Lambda = (\lambda^2 - 1)/(\lambda^2 + 1)$ (aspect ratio $\lambda = a/c$).

Fluid inertia: $\text{Re}_{s} = a^{2}s/\nu$

shear Reynolds number

Particle inertia: $St = \frac{\rho_p}{Re_s}$ $\rho_{\rm f}$ Stokes number

 ν kinematic viscosity shear rate

 $\rho_{\rm p}$ particle density $\rho_{\rm f}$ fluid density

Brownian rotation: $Pe = s/\mathcal{D}$ where \mathcal{D} rotational diffusion constant Péclet number

Jeffery equation obtained for small particles for $Re_s = 0$, St = 0, $Pe = \infty$.

Degeneracy: must consider effect of perturbations. Here: $Re_s > 0$.

Inertial effects - particles in flows

Particle- and Navier Stokes equations coupled by boundary conditions.

Phys. Fluids 26, 883 (1983); doi: 10.1063/1.864230 Equation of motion for a small rigid sphere in a nonuniform flow Martin R. Maxey⁴⁹ Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 James J. Riley Flow Research Company, Kent, Washington 98031

Maxey-Riley equation, correction to Stokes law

J. Fluid Mech. (1965), vol. 22, part 2, pp. 385-400 The lift on a small sphere in a slow shear flow

By P. G. SAFFMAN

Saffman lift on small sphere due to shear.

J. Fluid Mech. (2005), vol. 535, pp. 383-414. Inertial effects on fibre motion in simple shear flow

By G. SUBRAMANIAN AND DONALD L. KOCH

Tumbling of a neutrally buoyant fibre in shear flow, slender-body limit.

Log-rolling unstable.

P. G. Saffman, J. Fluid Mech. 1, 540 (1956)

Tumbling of a nearly spherical neutrally buoyant particle in shear.

Log-rolling stable.

Effective equation of motion

Neutrally buoyant spheroid.

Find effective vector field, correction to Jeffery's equation (caveat: caustics)

 $\dot{\boldsymbol{n}} = \boldsymbol{F}_0(\boldsymbol{n}) + \operatorname{St} \boldsymbol{F}_1(\boldsymbol{n}) + \operatorname{Re}_{\mathrm{s}} \boldsymbol{F}_2(\boldsymbol{n}) + \dots$ Jeffery particle inertia fluid inertia

 $F_1(n)$ known. Einarsson, Angilella & Mehlig, Physica D 278-279, 79 (2014)

Now $F_2(n)$. Difficulty: need to calculate torque on particle.

Requires solving Navier Stokes equations.

Perturbation theory in Re_{s} , St, neglect terms of order $\text{St} \text{Re}_{s}$, St^{2} , Re_{s}^{2} ,....

Still very difficult problem. Solve it by exploiting the symmetries of problem.

Equations of motion

Orientational motion of neutrally buoyant spheroid

 $\dot{n}_i = \varepsilon_{ijk}\omega_j n_k$, $\operatorname{St}(I_{ij}\dot{\omega}_j + \dot{I}_{ij}\omega_j) = T_i$ Summation convention.

angular velocity ω_j , particle inertia tensor $I_{ij} = A^I (\delta_{ij} - P_{ij}) + B^I P_{ij}$ with $P_{ij} = \delta_{ij} - n_i n_j$, A^I and B^I are moments of inertia along and \perp to n.

Hydrodynamic torque T_i determined by integrating fluid stresses over particle surface S. Requires solving Navier Stokes equations. Dimensionless variables (scales: time $T = s^{-1}$, length L = a, velocity U = sa, pressure $P = \mu s$):

$$\begin{aligned} \operatorname{Re}_{\mathrm{s}}(\partial_{t}u_{i}+u_{j}\partial_{j}u_{i}) &= -\partial_{i}p + \partial_{j}\partial_{j}u_{i} \\ \partial_{i}u_{i} &= 0, \ u_{i} = \varepsilon_{ijk}\omega_{j}r_{k} \text{ for } \boldsymbol{r} \in \mathcal{S}, \\ u_{i} &= u_{i}^{(\infty)} \text{ as } \boldsymbol{r} \to \infty. \end{aligned}$$

p pressure, ω particle angular velocity, $u_i^{(\infty)}$ shear in dimensionless variables.

Perturbation theory

Use `reciprocal theorem' to compute hydrodynamic torque.

Lovalenti & Brady, J. Fluid Mech. 256, 561 (1993)
Subramanian & Koch, J. Fluid Mech. 535, 383 (2005) $T_k = T_k^{(0)} - \operatorname{Re}_{s} \int_{\mathcal{V}} dv \, \tilde{U}_{ik} (\underbrace{\partial_t u_i}_{unsteady} + \underbrace{u_j \partial_j u_i}_{fluid inertia})$ Integral over volume
 \mathcal{V} outside particle.The coefficients \tilde{U}_{ik} are obtained by solving auxiliary Stokes problem. Above

relation is exact. But unknown u_i , solution of Navier Stokes equations. Perturbation theory: $St = Re_s = 0$ - solutions to evaluate T_k to leading order.

Then expand:

$$\omega_i = \omega_i^{(0)} + \operatorname{St} \omega_i^{(\operatorname{St})} + \operatorname{Re}_{\operatorname{s}} \omega_i^{(\operatorname{Re}_{\operatorname{s}})} + \dots$$

Insert into angular-momentum equation. Find: $\omega_i^{(0)}$ Jeffery angular velocity, $\omega_i^{(\text{St})}$ particle-inertia contribution, $\omega_i^{(\text{Re}_s)}$ fluid-inertia contribution, depends on volume integral. Difficult to calculate. Integrand depends non-linearly on n.

Symmetries

Make use of the symmetries of the problem. Simple shear flow $\mathbb{A}^{\infty} = \mathbb{S}^{\infty} + \mathbb{O}^{\infty}$.

incompressibility:	$S_{ii}^{\infty} = 0$
symmetry of \mathbb{S}^{∞} :	$S_{ij}^{\infty} = S_{ji}^{\infty}$
antisymmetry of \mathbb{O}^{∞} :	$O_{ij}^{\infty} = -O_{ji}^{\infty}$
steady shear: $O_{ij}^{\infty}O_{jk}^{\infty} = -S_{ij}^{\infty}S_{jk}^{\infty}, \ O_{ij}^{\infty}$	$S_{jk}^{\infty} = -S_{ij}^{\infty}O_{jk}^{\infty}$
normalisation of n :	$n_i \dot{n}_i = 0$
inversion symmetry: invariance under n_i –	$\rightarrow -n_i, \dot{n}_i \rightarrow -\dot{n}_i$

Symmetries constrain form of equation of motion.

$$\dot{n}_i = O_{iq}^{\infty} n_q + \Lambda [S_{ip}^{\infty} n_p - (n_p S_{pq}^{\infty} n_q) n_i] + \beta_1 (n_p S_{pq}^{\infty} n_q) P_{ij} S_{jk}^{\infty} n_k + \beta_2 (n_p S_{pq}^{\infty} n_q) O_{ij}^{\infty} n_j + \beta_3 P_{ij} O_{jk}^{\infty} S_{kl}^{\infty} n_l + \beta_4 P_{ij} S_{jk}^{\infty} S_{kl}^{\infty} n_l .$$

First row: Jeffery equation. Remainder: St- and Re_s -corrections, determined by only four scalar functions

$$\beta_{\alpha} = \operatorname{St}\beta_{\alpha}^{(\operatorname{St})}(\lambda) + \operatorname{Re}_{s}\beta_{\alpha}^{(\operatorname{Re}_{s})}(\lambda)$$
 for $\alpha = 1, \ldots, 4$.

Can be calculated.

Department of Physics

GÖTEBORGS UNIVERSITET

Results

Stability of log-rolling and tumbling orbits.

Linear stability analysis at small Re_s .

Stability exponents $\gamma_{\rm LR}, \gamma_{\rm T}$

Conclusions

Orientational dynamics of neutrally buoyant axisymmetric particle in shear. Stability analysis of Jeffery orbits at infinitesimal Re_s . Results:

alles and a search

-log-rolling unstable for prolate particles, tumbling in shear plane stable.
-for oblate particles (but not too disk-like) stabilities are reversed
-fluid inertia contributes more strongly than particle inertia
-both unsteady and convective fluid inertia matter. It would be qualitatively wrong to neglect either.

To do:

-analyse orientational motion for small but finite ${Re}_{s}$. Rosén, Lundell & Aidun (2014) -wall effects

-settling $ho_{
m p}
eq
ho_{
m f}$ (more difficult)

-unsteady flows (more difficult)

-turbulence (much more difficult)

Lovalenti & Brady, J. Fluid Mech. **256**, 561 (1993)