Tumbling of small non-spherical particles in a shear flow

B. Mehlig ${ }^{1)}$
based on joint work with J. Einarsson ${ }^{\text {I }}$, F. Candélier ${ }^{2)}$, F. Lundell ${ }^{3)}$ \& J. R.Angilella ${ }^{4)}$
1)Department of Physics, University of Gothenburg, Sweden
${ }^{3}$)KTH, Stockholm, Sweden
4)Université de Caen, France

Effect of weak fluid inertia on Jeffery orbits,
J. Einarsson, F. Candélier, F. Lundell, J. R.Angilella \& B. Mehlig, submitted to Phys. Rev. E

Shear flow

Shear flow $\boldsymbol{u}(y)=s y \hat{\boldsymbol{x}}$, flow-gradient matrix $\mathbf{A}=\left[\begin{array}{lll}0 & s & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
Degenerate orientational dynamics of small axisymmetric particles: Jeffery orbits (tumbling). Jeffery, Proc. Roy. Soc. London Ser. A 102, 161 (1922)

Expect that perturbations have strong effect.

Although this limit may
seem to be of limited interest, ...
these small changes can have a strong
 (or even dominant) cumulative effect on the particle's position or orientation. This occurs for the class of so-called "indeterminate" particle motions, in which no position or orientation is intrinsically favored under "standard conditions."

> L. G. Leal

Ann. Rev. Fluid Mech. 1980.

Tumbling in simple shear

Axisymmetric particles in shear flow rotate periodically (Jeffery orbits). Infinitely many degenerate periodic orbits. Jeffery, Proc. Roy. Soc. London Ser. A 102, 161 (1922)

Micron-sized glass rods in a micro-channel flow.
——forward, ------backwards.

$n_{z}=1$: log-rolling,
$n_{z}=0$: tumbling. Symmetry axis n spends a long time aligned with flow-direction \hat{x}.

Dimensionless parameters
 Axisymmetric particles: shape parameter $\Lambda=\left(\lambda^{2}-1\right) /\left(\lambda^{2}+1\right)$ (aspect ratio $\lambda=a / c$).

Fluid inertia: $\operatorname{Re}_{\mathrm{s}}=a^{2} s / \nu$ shear Reynolds number
ν kinematic viscosity
s shear rate

Particle inertia: $\mathrm{St}=\frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{f}}} \mathrm{Re}_{\mathrm{s}}$
Stokes number
ρ_{p} particle density
ρ_{f} fluid density

Brownian rotation: $\mathrm{Pe}=s / \mathcal{D}$ where \mathcal{D} rotational diffusion constant Péclet number Jeffery equation obtained for small particles for $\mathrm{Re}_{\mathrm{s}}=0, \mathrm{St}=0, \mathrm{Pe}=\infty$.

Degeneracy: must consider effect of perturbations. Here: $\operatorname{Re}_{s}>0$.

Inertial effects - particles in flows

Particle- and Navier Stokes equations coupled by boundary conditions.

Phys. Fluids 26, 883 (1983); doi: 10.1063/1.864230
Equation of motion for a small rigid sphere in a nonuniform flow Marin R. Maxey ${ }^{4}$

dames d. Riley

Maxey-Riley equation, correction to Stokes law
J. Fluid Mech. (1965), vol. 22, part 2, pp. 385-400

The lift on a small sphere in a slow shear flow
By P. G. SAFFMAN

Saffman lift on small sphere due to shear.

> J. Fluid Mech. (2005), vol. 535, pp. 383-414.
> Inertial effects on fibre motion in simple shear flow

By G. SUBRAMANIAN AND DONALD L. KOCH
Tumbling of a neutrally buoyant fibre in shear flow, slender-body limit.

Log-rolling unstable.
P. G. Saffman, J. Fluid Mech. 1, 540 (1956)

Tumbling of a nearly spherical neutrally buoyant particle in shear.

Log-rolling stable.

Effective equation of motion

Neutrally buoyant spheroid.
Find effective vector field, correction to Jeffery's equation (caveat: caustics)

$$
\dot{\boldsymbol{n}}=\underset{\text { Jeffery }}{\boldsymbol{F}_{0}(\boldsymbol{n})}+\underset{\text { particle inertia }}{\operatorname{St}} \boldsymbol{F}_{1}(\boldsymbol{n})+\underset{\text { fluid inertia }}{\operatorname{Re}_{5} \boldsymbol{F}_{2}(\boldsymbol{n})}+\ldots
$$

$\boldsymbol{F}_{1}(\boldsymbol{n})$ known. Einarsson, Angilella \& Mehlig, Physica D 278-279, 79 (2014)
Now $\boldsymbol{F}_{2}(\boldsymbol{n})$. Difficulty: need to calculate torque on particle.
Requires solving Navier Stokes equations.
Perturbation theory in $\operatorname{Re}_{\mathrm{s}}$, St , neglect terms of order $\mathrm{St} \mathrm{Re}_{\mathrm{s}}, \mathrm{St}^{2}, \operatorname{Re}_{\mathrm{s}}^{2}, \ldots$.
Still very difficult problem. Solve it by exploiting the symmetries of problem.

Equations of motion

Orientational motion of neutrally buoyant spheroid

$$
\dot{n}_{i}=\varepsilon_{i j k} \omega_{j} n_{k}, \quad \operatorname{St}\left(I_{i j} \dot{\omega}_{j}+\dot{I}_{i j} \omega_{j}\right)=T_{i} \quad \text { Summation convention. }
$$

angular velocity ω_{j}, particle inertia tensor $I_{i j}=A^{I}\left(\delta_{i j}-P_{i j}\right)+B^{I} P_{i j}$ with $P_{i j}=\delta_{i j}-n_{i} n_{j}, A^{I}$ and B^{I} are moments of inertia along and \perp to n.

Hydrodynamic torque T_{i} determined by integrating fluid stresses over particle surface \mathcal{S}. Requires solving Navier Stokes equations. Dimensionless variables (scales: time $T=s^{-1}$, length $L=a$, velocity $U=s a$, pressure $P=\mu s$):

$$
\begin{gathered}
\operatorname{Re}_{\mathrm{s}}\left(\partial_{t} u_{i}+u_{j} \partial_{j} u_{i}\right)=-\partial_{i} p+\partial_{j} \partial_{j} u_{i} \\
\partial_{i} u_{i}=0, u_{i}=\varepsilon_{i j k} \omega_{j} r_{k} \text { for } r \in \mathcal{S}, \\
u_{i}=u_{i}^{(\infty)} \text { as } r \rightarrow \infty .
\end{gathered}
$$

p pressure, ω particle angular velocity, $u_{i}^{(\infty)}$ shear in dimensionless variables.

Perturbation theory

Use 'reciprocal theorem' to compute hydrodynamic torque.
Lovalenti \& Brady, J. Fluid Mech. 256, 56I (I993)
Result (simple shear flow)

$$
T_{k}=T_{k}^{(0)}-\operatorname{Re}_{\mathrm{s}} \int_{\mathcal{V}} \mathrm{d} v \tilde{U}_{i k}(\underbrace{\partial_{t} u_{i}}_{\substack{\text { unsteady } \\ \text { flity }}}+\underbrace{u_{j} \partial_{j} u_{i}}_{\substack{\text { convective } \\ \text { fluid inereitia }}})
$$

Integral over volume
\mathcal{V} outside particle.
The coefficients $\tilde{U}_{i k}$ are obtained by solving auxiliary Stokes problem. Above relation is exact. But unknown u_{i}, solution of Navier Stokes equations. Perturbation theory: $\mathrm{St}=\mathrm{Re}_{\mathrm{s}}=0$ - solutions to evaluate T_{k} to leading order.

Then expand:

$$
\omega_{i}=\omega_{i}^{(0)}+\operatorname{St} \omega_{i}^{(\mathrm{St})}+\operatorname{Re}_{\mathrm{s}} \omega_{i}^{\left(\operatorname{Re}_{\mathrm{s}}\right)}+\ldots
$$

Insert into angular-momentum equation. Find: $\omega_{i}^{(0)}$ Jeffery angular velocity, $\omega_{i}^{(\mathrm{St})}$ particle-inertia contribution, $\omega_{i}^{\left(\mathrm{Re}_{\mathrm{s}}\right)}$ fluid-inertia contribution, depends on volume integral. Difficult to calculate. Integrand depends non-linearly on n.

Symmetries

Make use of the symmetries of the problem. Simple shear flow $\mathbb{A}^{\infty}=\mathbb{S}^{\infty}+\mathbb{O}^{\infty}$.

```
incompressibility: }\mp@subsup{S}{ii}{\infty}=
symmetry of \mathbb{S}
antisymmetry of }\mp@subsup{\mathbb{O}}{}{\infty}\mathrm{ :
steady shear: }\quad\mp@subsup{O}{ij}{\infty}\mp@subsup{O}{jk}{\infty}=-\mp@subsup{S}{ij}{\infty}\mp@subsup{S}{jk}{\infty},\mp@subsup{O}{ij}{\infty}\mp@subsup{S}{jk}{\infty}=-\mp@subsup{S}{ij}{\infty}\mp@subsup{O}{jk}{\infty
normalisation of \boldsymbol{n}:\quad\mp@subsup{n}{i}{}\mp@subsup{\dot{n}}{i}{}=0
inversion symmetry: invariance under }\mp@subsup{n}{i}{}->-\mp@subsup{n}{i}{},\mp@subsup{\dot{n}}{i}{}->-\mp@subsup{\dot{n}}{i}{
```

Symmetries constrain form of equation of motion.

$$
\begin{aligned}
\dot{n}_{i} & =O_{i q}^{\infty} n_{q}+\Lambda\left[S_{i p}^{\infty} n_{p}-\left(n_{p} S_{p q}^{\infty} n_{q}\right) n_{i}\right] \\
& +\beta_{1}\left(n_{p} S_{p q}^{\infty} n_{q}\right) P_{i j} S_{j k}^{\infty} n_{k}+\beta_{2}\left(n_{p} S_{p q}^{\infty} n_{q}\right) O_{i j}^{\infty} n_{j} \\
& +\beta_{3} P_{i j} O_{j k}^{\infty} S_{k l}^{\infty} n_{l}+\beta_{4} P_{i j} S_{j k}^{\infty} S_{k l}^{\infty} n_{l} .
\end{aligned}
$$

First row: Jeffery equation. Remainder: St- and Re_{s}-corrections, determined by only four scalar functions

$$
\beta_{\alpha}=\operatorname{St} \beta_{\alpha}^{(\mathrm{St})}(\lambda)+\operatorname{Re}_{\mathrm{s}} \beta_{\alpha}^{\left(\operatorname{Re}_{\mathrm{s}}\right)}(\lambda) \text { for } \alpha=1, \ldots, 4
$$

Can be calculated.

Results

Stability of log-rolling and tumbling orbits.
Linear stability analysis at small Re_{s}.
Stability exponents $\gamma_{\mathrm{LR}}, \gamma_{\mathrm{T}}$

log rolling

tumbling
__ stability exponent

- - - contribution from fluid inertia
....... contribution from particle inertia

Conclusions

Orientational dynamics of neutrally buoyant axisymmetric particle in shear. Stability analysis of Jeffery orbits at infinitesimal Re_{s}. Results:
-log-rolling unstable for prolate particles, tumbling in shear plane stable. -for oblate particles (but not too disk-like) stabilities are reversed -fluid inertia contributes more strongly than particle inertia -both unsteady and convective fluid inertia matter. It would be qualitatively wrong to neglect either.

To do:
-analyse orientational motion for small but finite Re_{S}. Rosén, Lundell \& Aidun (2014) -wall effects
-settling $\rho_{\mathrm{p}} \neq \rho_{\mathrm{f}}$ (more difficult)
-unsteady flows (more difficult)
-turbulence (much more difficult)

