
Particles in turbulence 

Irreversibility in the statistics  
of inertial particles in a flow 

 
Localization-delocalization phase transition 

Twisted logic: particles first, turbulence second. Reason – integration. 
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𝜏𝜏 ≪ 𝜏𝜏𝑐𝑐 , 1/𝛻𝛻𝛻𝛻 

Already in the limit of small inertia, one sees preferential concentration and sling effect 
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Particle near a wall 



Spatially smooth flow 



Equivalent in 1d to Anderson localization:  
localization length = Lyapunov exponent 

One-dimensional model 
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The resurrecting solutions σ(t) jumping instantaneously from −∞ to +∞ correspond here 
to the solutions for (δr, δu), where δr passes through zero with a non-vanishing speed, 
i.e. to the crossing of close particle trajectories with faster particles overcoming slower 
ones. Alternatively, every event 𝑧𝑧 → 0,𝜎𝜎 = 𝑣𝑣

𝑧𝑧
→ −∞ is the collision-reflection from a 

wall or another particle. 
 
The solution with the flux - how non-equilibrium and irreversible it is? 

𝐹𝐹 – the flux of probability to 𝜎𝜎 = −∞, the frequency of collisions.  



Temporal correlation of fluctuations in equilibrium 

 



Fluctuation-dissipation theorem 



Modified fluctuation dissipation theorem 

current 

In the Lagrangian reference frame with the velocity 



All systems driven by a white noise are in equilibrium  
in the Lagrangian frame in the phase space 



Let us return to particles and describe their distribution in space 
 

When the dust settles 
Path coalescence transition (two particles) 

Localization-delocalization transition (particle near a minimum) 



The rate of caustic creation. 



Thermo- and turbo-phoresis 
T 

x 

Maxwell: inertial particles  
in a temperature gradient 
move on average towards 
minimum down the gradient. 

x 

Belan & GF: very inertial particles 
fly through the maximum, so that  
the net flux is from the minimum  
up the gradient. 

The best way out is always through.   
Robert Frost 



Transition under inelastic collisions 



Phase transition 

Rough wall p(β) 



Numerical simulations 



Phase transition upon the change of 𝑆𝑆𝑆𝑆 =
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Conclusions 
• Nonlinear systems driven by a thermal noise can 

be non-equilibrium i.e. have a current in phase 
space. In the Lagrangian frame, they are in 
equilibrium (to compare with turbulence tomorrow)  

 
• Inertial particles undergo phase transitions upon 

the change of inertia parameters and restitution 
coefficient.  

     
    Dust does not always settle on the walls. 
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