Particles in turbulence

Irreversibility in the statistics
of inertial particles in a flow

Localization-delocalization phase transition

Twisted logic: particles first, turbulence second. Reason — integration.



One particle in a flow
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Already in the limit of small inertia, one sees preferential concentration and sling effect
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Turbulent BL

Particle near a wall



Spatially smooth flow
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One-dimensional model
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Equivalent in 1d to Anderson localization:
localization length = Lyapunov exponent
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F —the flux of probability to ¢ = —oo, the frequency of collisions.

The resurrecting solutions o(t) jJumping instantaneously from —oo to +oo correspond here
to the solutions for (o7, ou), where or passes through zero with a non-vanishing speed,
I.e. to the crossing of close particle trajectories with faster particles overcoming slower

ones. Alternatively, every event z - 0,0 = z — —oo IS the collision-reflection from a
wall or another particle.

The solution with the flux - how non-equilibrium and irreversible it is?



Temporal correlation of fluctuations in equilibrium
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Fluctuation-dissipation theorem

Let O%(z) fora =1,..., A be a collection of (classical) observables. With the shorthand

notation Of for the single-time functions O%(x;) of the dynamical process z;, the response
function and the two-time correlation function in a steady state are, respectively,
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where (—)p, denotes the dynamical expectation obtained from the steady state by replacing
the time-independent Hamiltonian H(z) by a slightly perturbed time-dependent one
H(z) — h,O%(z). The FDT asserts that, when the unperturbed state is the equilibrium at
inverse temperature (3, then

BTIRD(t — s) = ,L™(t — ). (1.2)



Modified fluctuation dissipation theorem
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All systems driven by a white noise are in equilibrium
In the Lagrangian frame in the phase space



Let us return to particles and describe their distribution in space

When the dust settles

Path coalescence transition (two particles)
|_ocalization-delocalization transition (particle near a minimum)
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The rate of caustic creation.




Thermo- and turbo-phoresis

T
%
— Maxwell: inertial particles
in a temperature gradient
X move on average towards
minimum down the gradient.
T

/ Belan & GF: very inertial particles
fly through the maximum, so that
the net flux is from the minimum

Ai_/ up the gradient.

Ttie best way out o always thnough.
Robert Frost




Transition under inelastic collisions
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Phase transition AN1,I)+InBF(I) =0
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Numerical simulations (1) I =1.25147 , (2) 1.21545, (3) 1.20939.

sor J=1 1 .
(log z)

30 - o .

20 b e -

(1) 5 =021, (2) 0205, (3) 0.20 ol T -

150

I
g |

. 1 ST
=737 ] (4)1.20332 and (5) 1.19144 ]

100

(log 2) .
° T - — I | t

1 1 1 1 1 1
20000 30000 40000 50000 60000 70000 80000 90000 100000

h — ‘\-"-'\-\

/

-100 T~

(4) 0.195 (5) 0.19 T~

-150 1 I I 1
0 5000 10000 15000 20000 25000




T
Phase transition upon the change of St = —
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Conclusions

 Nonlinear systems driven by a thermal noise can
be non-equilibrium I.e. have a current in phase
space. In the Lagrangian frame, they are in
equilibrium (to compare with turbulence tomorrow)

 |nertial particles undergo phase transitions upon
the change of inertia parameters and restitution
coefficient.

Dust does not always settle on the walls.



Fluid Mechanics

The multi-disciplinary field of fluid mechanics is one of the most actively
developing fields of physics, mathematics and engineering. In this book,
the fundamental ideas of fluid mechanics are presented from a physics
perspective.

Using examples taken from everyday life, from hydraulic jumps in a
kitchen sink to Kelvin—-Helmholtz instabilities in clouds, the book provides
readers with a better understanding of the world around them. It teaches
the art of fluid-mechanical estimates and shows how the ideas and methods
developed to study the mechanics of fluids are used to analyse other systems
with many degrees of freedom in statistical physics and field theory.

Aimed at undergraduate and graduate students, the book assumes no
prior knowledge of the subject and only a basic understanding of vector
calculus and analysis. It contains 32 exercises of varying difficulties, from
simple estimates to elaborate calculations, with detailed solutions to help

readers understand fluid mechanics.

Gregory Falkovich is a Professor in the Department of Physics of Complex
Systems, Weizmann Institute of Science. He has researched in plasma,
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