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a b s t r a c t

We investigate invasions from a biological reservoir to an initially empty, heterogeneous habitat in the

presence of advection. The habitat consists of a periodic alternation of favorable and unfavorable

patches. In the latter the population dies at fixed rate. In the former it grows either with the logistic or

with an Allee effect type dynamics, where the population has to overcome a threshold to grow. We

study the conditions for successful invasions and the speed of the invasion process, which is

numerically and analytically investigated in several limits. Generically advection enhances the down-

stream invasion speed but decreases the population size of the invading species, and can even inhibit

the invasion process. Remarkably, however, the rate of population increase, which quantifies the

invasion efficiency, is maximized by an optimal advection velocity. In models with Allee effect,

differently from the logistic case, above a critical unfavorable patch size the population localizes in a

favorable patch, being unable to invade the habitat. However, we show that advection, when intense

enough, may activate the invasion process.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Invasions of alien species are widespread phenomena, in princi-
ple affecting every ecosystem, usually with dramatic consequences
on the native community, constituting a major threat to biodiversity
(Vitousek et al., 1997; Mooney and Hobbs, 2000; Pimentel et al.,
2000). At the scale of interest for management purposes, i.e. the
geographic scale, invasive species move across a heterogeneous
landscape characterized by favorable and unfavorable areas. The
presence of abiotic heterogeneity, in fact, characterizes most of
natural habitats and plays a key role in invasion processes, influen-
cing their rate of spread and outcome (Shigesada and Kawasaki,
1997; Hastings et al., 2005; Melbourne et al., 2007).

Alongside with the empirical interest for the problem, several
modeling efforts have been dedicated to the understanding and
prediction of the spatial spread of invading organisms in hetero-
geneous environments. Within the framework of reaction–diffu-
sion models, building on the pioneering theoretical works of
Skellam (1951) and Kierstead and Slobodkin (1953) on the
‘‘critical patch size’’ problem, Shigesada et al. (1986) gave a
seminal contribution considering the invasion (propagation) of a
population through a periodic heterogeneous environment (see
also Weinberger, 2002; Kinezaki et al., 2003). The problem was
ll rights reserved.
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extended including advective transport to study persistence and
propagation of passively dispersing populations in oceans (Mann
and Lazier, 1991; Abraham, 1998) or rivers (Speirs and Gurney,
2001; Pachepsky et al., 2005; Lutscher et al., 2006). The impor-
tance of the interplay between heterogeneity and advection has
been recently reviewed by Ryabov and Blasius (2008). Moreover,
the role of both advection and landscape spatial structure is
clearly relevant also to the dispersal of plants (Hastings et al.,
2005), whose seeds are transported by winds.

In this paper, we focus on the interplay between abiotic hetero-
geneity and advection in invasions. We describe the dynamics in
terms of an advection–reaction–diffusion model, which allows for
mathematical tractability and quantitative predictions, e.g., on the
spreading rates.

We consider an infinite system where a population stably
saturates the carrying capacity on one side of the system and
possibly invades the remaining part of the environment, which is
assumed to be heterogeneous. Our setting is quite general and
widely applicable. In particular, it is relevant to situations in
which one has a practically infinite biological reservoir of a
species invading an empty territory characterized by abiotic
heterogeneity. For instance, the above setting may be relevant
to situations in which invasions can suddenly become possible for
the removal of a climatic barrier due to climate changes (Mooney
and Hobbs, 2000). Another relevant case is when a species stably
populating a lake invades an effluent characterized by a certain
degree of heterogeneity and stream velocity. This is one of the key
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early stage processes related to the spatial control of invasions in
lakes’ networks (Havel et al., 2002). Other examples concern the
spreading of wind-pollinated plants in a heterogeneous environ-
ment (Davis et al., 2004) or spores carried by the wind (Kot et al.,
1996).

More specifically, the habitat consists of a periodic alternation
of unfavorable and favorable patches, as in Shigesada et al. (1986).
The population dies at a fixed rate in unfavorable regions, and
grows in favorable ones according to either a logistic or an Allee
effect dynamics. We are interested in determining the conditions
for invasions to be possible and in understanding how invasion
speed and efficiency depend on the mechanisms at play.

With the logistic dynamics, in the absence of advection, this
problem was pioneered by Shigesada et al. (1986), while Lutscher
et al. (2006) considered both advection and heterogeneity in
reference to the ‘‘drift paradox’’ problem (Speirs and Gurney,
2001). Going beyond these works, we find asymptotic expressions
for both the invasion speed and the rate of increase of the
population size. The latter quantity essentially estimates the rate
at which the number of invading individuals grows and, thus,
provides a suitable measure of the efficiency of the spreading
process. Indeed, especially in invasive species control, it is
important to quantify the potentiality of growth of an alien
population, and not only the speed at which it colonizes the
territory. We anticipate that, remarkably, larger invasion speeds
do not necessarily imply more efficient invasions.

The logistic case (decreasing per capita growth rate) is then
contrasted with the case of positive density dependence corre-
sponding to a demographic Allee effect (Allee, 1938; Dennis,
1989), which accounts for a reduced reproductive power at low
densities. The importance of Allee effects for the invasion and
control of non-native species was emphasized by Taylor and
Hastings (2005) and Tobin et al. (2011). It is interesting to
mention that even in homogeneous habitats the presence of the
Allee effect can decrease the invasion speed or even halt the
population spreading if the initially occupied area is too small
(Lewis and Kareiva, 1993) (see also Vercken et al., 2011 for recent
field observations). We find that the interplay between hetero-
geneity and advection becomes very subtle in the presence of the
Allee effect. In fact it may happen that a persisting population,
unable to invade new territory, becomes able to spread in the
presence of strong advection. This effect should be taken as a
cautionary note from the standpoint of controlling invasive
species, telling us that advective transport should be considered.
For instance, after strong weather events, or in regions character-
ized by prevailing winds, neglecting the effects of advection could
lead to the erroneous prediction of a population unable to invade,
whereas it actually propagates over the territory.

The material is organized as follows. In Section 2 we present
the model, and in Section 3 we qualitatively discuss its phenom-
enology. Sections 4 and 5 present and discuss the main results on
invasions with the logistic and the Allee effect model, respec-
tively. Finally, in Section 6 we summarize the results.
2. Model

The evolution of the population, yðx,tÞ, is governed by the
advection–reaction–diffusion equation:

@tyþv@xy¼D@2
xyþ f ðy,xÞ: ð1Þ

The diffusion coefficient D and the advection velocity v are
assumed to be constant. Heterogeneity is introduced in the growth
term, f ðy,xÞ, which depends on the position x. The habitat consists
of a periodic alternation of unfavorable and favorable patches of
sizes ‘u and ‘f , respectively. In the elementary cell ½0 : L� (where
L¼ ‘uþ‘f denotes the spatial period), we take

f ðy,xÞ ¼
guðyÞ, 0rxo‘u,

gf ðyÞ, ‘urxoL:

(
ð2Þ

In the unfavorable regions the population is assumed to die at a
constant rate ru, so that guðyÞ ¼�ruy ðru40Þ. In the favorable
regions we consider two dynamics. The first is the classical logistic
model (with carrying capacity normalized to one):

gf ðyÞ ¼ rfyð1�yÞ, ð3Þ

rf being the intrinsic growth rate. Eq. (1) with the logistic term but
without advection was first studied by Shigesada et al. (1986).
Recently, Lutscher et al. (2006) included advection focusing on the
‘‘drift paradox’’ problem.

Second, accounting for a positive correlation between popula-
tion density and per capita growth rate at small densities—the
Allee effect (Allee, 1938; Dennis, 1989)—we consider the thresh-
old model:

gf ðyÞ ¼ rf maxfðy�ycÞð1�yÞ,0g, ð4Þ

prescribing that the population grows only when y4yc (other-
wise it stays constant). Notice that (4) recovers (3) for yc ¼ 0.
We remark that the model (4) represents an intermediate case
between weak and strong Allee effect (Courchamp et al., 2008, see
also Section 5 for further discussions). To the best of our knowl-
edge, models with Allee effects have been mostly investigated in
homogeneous habitats (Petrovskii and Li, 2003). In heterogeneous
habitats we are aware of only a few studies with integro-
difference models incorporating different dispersal kernels (see,
e.g., the recent work by Dewhirst and Lutscher, 2009; Pachepsky
and Levine, 2011).

We now specify the settings in which Eq. (1) is studied. We
consider model (1) with boundary condition yð0,tÞ ¼ 1, mimicking
the case in which on the left of the origin ðxo0Þ the population
constantly saturates the carrying capacity, while the population is
initially absent in the x40 region, i.e. yðx,0Þ ¼ 0 for x40. With
this choice for the boundary conditions the invasion process must
be considered from left to right (i.e. from the biological reservoir
at xr0 to the positive real axis). In this case depending on the
sign of the advection velocity we can consider (downstream)
invasions with the flow (i.e when v40) or (upstream) invasions
against the flow (i.e. when vo0).

It is useful to formulate the model in non-dimensional vari-
ables. To this aim we exploit known results about the logistic
growth model without advection, namely the standard FKPP
equation (Fisher, 1937; Kolmogorov et al., 1937). The FKPP
equation develops traveling fronts characterized by the propaga-
tion speed v0 ¼ 2

ffiffiffiffiffiffiffiffi
Drf

p
and width x0 ¼

ffiffiffiffiffiffiffiffiffiffi
D=rf

p
. It is then natural to

measure lengths in units of x0, time in units of the inverse growth
rate in the favorable patches 1=rf , and the advection velocity in
units of v0. We thus define the non-dimensional variables
x0 ¼ x=x0, t0 ¼ trf , u¼ v=v0. Dropping the primes, Eq. (1) made
non-dimensional reads

@tyþ2u@xy¼ @2
xyþ f ðy,xÞ: ð5Þ

The factor 2 in the advection term results from our choice to fix
u¼1 as the non-dimensional propagation speed in the homo-
geneous FKPP system. We can now introduce E¼ ru=rf which is
the death over growth rate ratio, and lf ,u ¼ ‘f ,u=x0 which are the
non-dimensional sizes of the patches (L¼L=x0 ¼ luþ lf ). In this
way, with reference to Eq. (2) we have guðyÞ ¼�Ey and

gf ðyÞ ¼ yð1�yÞ ð6Þ
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for the logistic model, while with an Allee effect it becomes

gf ðyÞ ¼maxfðy�ycÞð1�yÞ,0g: ð7Þ

3. Model phenomenology

We now present the basic phenomenology of the model,
discussing also the main differences between logistic and Allee
effect growth models. A successful invasion implies the develop-
ment, far from the boundary, of a traveling front, characterized by
a stationary and spatially periodic bulk (Fig. 1a). In such a case the
total population in the invaded habitat,

R1
0 dxyðx,tÞ, asymptoti-

cally increases linearly with time (inset of Fig. 1a). Faster growing
populations mean more effective invasions. Conversely, Fig. 1c
shows a typical case of unsuccessful invasion: no traveling front
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Fig. 1. Population evolution with logistic dynamics and boundary condition (BC) yð0,t
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develops and the total population remains bounded in the limit of
long times (compare the insets in Fig. 1a and c).

For positive advection velocities, the problem of identifying
the conditions for successful invasions is directly related to
determining under which conditions Eq. (5) with (6) in a finite
system (of size nL with n integer) with periodic boundary
conditions (yð0,tÞ ¼ yðnL,tÞ) admits a non-vanishing stationary
solution, starting from a generic non-zero initial condition. This
is clearly shown by the perfect superposition of the bulk of the
traveling front with the stationary solution of the periodic
boundary condition problem (Fig. 1b). The reason for this link is
that the bulk region of the traveling front (which is stationary and
spatially periodic) satisfies the same boundary value problem of
the finite system with periodic boundary conditions (BC). There-
fore, to determine whether downstream invasions are successful
it is enough to study whether persistence is possible in the finite
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system with periodic BC. Conversely, an unsuccessful invasion
implies that in the finite system the population goes extinct,
exponentially in time (inset of Fig. 1d).

As we will see in the following, for small patch sizes, the
qualitative behavior of the different growth models is very
similar: invasions benefit from larger favorable regions and their
speed increases accordingly; moreover, the presence of advection
enhances the downstream invasion speed but decreases the
population size of the invading species, eventually halting the
invasion (see Fig. 1).

Conversely, for large enough unfavorable patches, dramatic
differences appear. In the Allee effect model, the population can
persist in the absence of advection but localized in a region of
finite size, if it initially occupied that area (see Fig. 2c), being
unable to invade new territories. This is quite different from the
logistic model where invasions and persistence are always linked.
Even more striking is the role of advection. Fig. 2a and b shows
that suitable values of the advection velocity can activate the
invasion of an otherwise localized population.

In the following we present the results for the logistic and
Allee effect model separately as the level of analytical under-
standing is quite different. The possibility to use the linear
analysis framework in the logistic model, indeed, allows us to
systematically derive the conditions for invasions and asymptotic
expressions for the invasion speed and efficiency. This approach
cannot be used for the Allee effect model, which is studied mainly
numerically and with heuristic arguments.
4. Results for the logistic growth model

4.1. Persistence in a closed periodic system

In this section we focus on the conditions for persistence in a
closed system with periodic BC, which correspond to those for
successful downstream invasion. Moreover, when the population
is able to persist, we study how its size behaves as a function of
the advection velocity. It is worth noticing that the closed system
setting is interesting also in consideration of recent experiments
where bacterial populations are grown in heterogeneous condi-
tions (Dahmen et al., 2000; Lin et al., 2004; Perry, 2005).

4.1.1. Critical patch size and critical advection

Starting from a population different from zero in a single
favorable patch, with periodic BC, Eq. (5) with (6) admits either
the trivial solution y¼ 0, meaning that the habitat is unable to
sustain the population, or an asymptotically stationary non-
vanishing solution, when persistence is possible. To determine
the conditions for the latter, it is sufficient to identify when the
solution y¼ 0 becomes linearly unstable, as briefly sketched in
Appendix A.

For lu and E fixed it is possible to show the existence of both a
critical size of the favorable patch, lnf , such that extinction occurs if
lf r lnf , and a critical advection velocity uc such that for a range of
values of lf the system goes extinct if u4uc . The implicit relation
between the critical values reads

coshðuLÞ�cosð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
lf Þ coshð

ffiffiffiffiffiffiffiffiffiffiffiffi
Eþu2

p
luÞ

¼
E�1þ2u2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�u2ÞðEþu2Þ

p sinð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
lf Þ sinhð

ffiffiffiffiffiffiffiffiffiffiffiffi
Eþu2

p
luÞ: ð8Þ

The above equation was also found by Lutscher et al. (2006) using
boundary conditions different from ours. Notice that for 9u941
the term

ffiffiffiffiffiffiffiffiffiffiffiffi
1�u2
p

becomes imaginary, and in Eq. (8) the identities
sinðizÞ ¼ i sinhðzÞ and tanðizÞ ¼ i tanhðzÞ must be employed. We
also remark that Eq. (8) is left unchanged by the substitution
u-�u due to the symmetries of model (5) with periodic BC.
Therefore, we can limit the analysis to uZ0.

Concerning the critical size of the favorable patch, in the case
of small unfavorable regions (lu51) the advection has not a great
effect: at the leading order, lnf � Elu, i.e. the dependence on u is
negligible. However, for large unfavorable patch sizes, we have
(see also Speirs and Gurney, 2001; Ryabov and Blasius, 2008)

lim
lu-1

lnf ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

1�u2
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
Eþu2

1�u2

r
,

showing that advection worsens the survival conditions. This
effect can be deduced noticing that the advection term changes
the growth/death rate into

EðxÞ-EðxÞ�u2, ð9Þ

where EðxÞ is the spatially dependent growth rate, taking the
values 1 and �E in the favorable and unfavorable patches,
respectively: essentially the effective growth rate is decreased
by u2 while the effective death rate is increased by the same
amount. Eq. (9) can be derived from (5) via the transformation
yðx,tÞ-yðx,tÞeux (Dahmen et al., 2000; Ryabov and Blasius, 2008).
However, this transformation changes the value of the density at
the boundaries making the solution of the periodic BC case more
cumbersome.

When lf 4 lnf , the population can be driven to extinction by
intense advection, exceeding a critical velocity uc that can be
computed from Eq. (8). Fig. 3 shows in gray the region in
parameter space ðlf ,uÞ where the population is able to survive,
for E and lu fixed. We can identify three regions (as labeled on the
top of Fig. 3): (I) for lf r lnf the population goes extinct for any
value of u; (II) for lnf o lf rElu survival is possible below a critical
velocity uc; for lf-Elu we have that uc-1; (III) for lf 4Elu the
average growth rate is positive and the population survives for
any value of u.
4.1.2. Effects of advection velocity on the population size

Now we study how the size of the population depends on the
advection velocity in order to characterize the transition from
survival to extinction and to derive some results to be used later
(Section 4.2). In particular, we are interested in the behavior of
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the average biomass defined as

B¼ lim
t-1

/yðx,tÞS� lim
t-1

1

L

Z L

0
yðx,tÞ dx, ð10Þ

in the limit of large times, when the solution is stationary. In the
above expression, thanks to the periodicity of yðx,tÞ, we consid-
ered the biomass present in an elementary cell. Given the habitat
properties, the biomass is a function of the advection velocity u,
B¼ BðuÞ.

With periodic boundary conditions, B is an even function of u,
BðuÞ ¼ Bð�uÞ, so that, assuming that B(u) is a smooth function, for
u51 we expect

BðuÞ ¼ Bð0Þ½1�Zu2þOðu4Þ�, ð11Þ

with Z some positive constant, as confirmed by numerical simula-
tions (dotted curves in Fig. 4). The biomass decreases with u

because the net effect of advection is to increase/decrease the
death/growth rate, as from Eq. (9). Eq. (11) agrees with results of
Dahmen et al. (2000) for the linearized dynamics. Even though
they also claim that with the complete equation non analytic
behaviors (i.e. Bð0Þ�BðuÞp9u9) may appear due to the nonlinearity.
However, our simulations always confirmed (11).

The behavior (11) holds both in region II and III of Fig. 3.
In region III, where survival is possible for any value of the
advection velocity, we have that in the limit u-1 the average
biomass attains a finite limiting value given by (see Appendix B)
BðuÞ ¼D=lf þOðD=u2Þ, where D¼ lf�Elu, is nothing but the average
growth rate times L. Curve (a) in Fig. 4 shows B(u) at the transition
between region II and III, i.e. for D¼ 0. In this case uc ¼1, so that
Bðu-1Þ¼ 0 and the function:

BðuÞ ¼
Bð0Þ

1þbu2
ð12Þ

provides a very good fit of B(u) for any value of u. Notice that
Eq. (12) implies (11) with Z¼ b.

In region II, the critical velocity uc is finite and, by definition,
BðuÞ-0 when u-uc . As typical in phase transitions, we should
expect BðuÞ � ðuc�uÞn for uc�u51, with n some exponent char-
acterizing the extinction transition. Assuming a smooth behavior
it is reasonable to expect n¼ 1, as confirmed by the inset of Fig. 4
and supported by analytical approaches by Dahmen et al. (2000)
valid in the limit lu-1. Finally, assuming the simplest functional
form consistent with the symmetries and regularity properties of
B(u) we end up with the expression:

BðuÞ ¼ Bð0Þ
1�ðu=ucÞ

2

1þbu2
, ð13Þ

which is consistent with (11) for u51 giving Z¼ bþu�2
c , and with

(12) for uc-1. Curves (b) and (c) in Fig. 4 show B(u) for two
values of lf within region II. For both values one can observe the
very good agreement between numerical data and Eq. (13).
The above results show to what extent advection decreases
the average population size, and provide a characterization
of the advection-induced population extinction.

4.2. Effects of heterogeneity and advection on the invasion speed

and efficiency

As discussed in Section 3, Eq. (8) also provides the condition
for downstream invasions (i.e. when u40) from a reservoir
(on the left) to a heterogeneous habitat (on the right, as in
Fig. 1a). As for upstream invasions (i.e. when uo0), it is necessary
to understand when Eq. (5) admits solutions which develop a
periodic traveling front advancing with a positive speed up, for
long times and far from the boundary. In the following, we show
how the speed up can be derived, and discuss the general
conditions for invasions.

Assuming that, far from the boundaries, a traveling front
develops, following Shigesada et al. (1986) we can write
yðx,tÞ ¼YðzÞgðxÞ, where z¼ x�2upt accounts for propagation with
velocity up (the factor 2 deriving from our choice of the non-
dimensional variables, see Section 2). The function YðzÞ describes
the traveling front modulated by a periodic function gðxÞ ¼ gðxþLÞ

due to the habitat periodicity. For the computation of the invasion
speed we can use the linearized dynamics assuming that the
traveling component has an exponential leading edge YðzÞpe�sz.
As detailed in Appendix C, we end up with an implicit relation
between the invasion speed up and the shape parameter s of the
traveling front (see also Lutscher et al., 2006)

Dðup,s;uÞ ¼ coshðq0LÞ�coshðquLuÞ coshðqf lf Þ

�
q2

uþq2
f

2quqf

sinhðquluÞ sinhðqf lf Þ ¼ 0, ð14Þ

where q0 ¼ uþs, qu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þEþ2sup

p
and qf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�1þ2sup

p
.

From (14) one derives upðs;uÞ and the invasion speed can be
obtained by computing minsfupðs;uÞg. As far as we know, there is
no analytical expression for the minimum, and numerical com-
putations must be employed. In the sequel, with some abuse of
notation we will denote with s(u) the value of s for which the
minimum is realized and with up(u) the minimal speed.

The gray area in Fig. 5 displays the region in the plane (lf ,u)
where invasions are possible. Such a region was numerically
determined by solving Eq. (14) and finding the values of lf and u

for which the propagation speed upðuÞ ¼minsfupðs;uÞg exists and
is positive. For u40 the curve, separating white and gray regions,
coincides with that derived from Eq. (8) (shown in Fig. 3).
For uo0, it approaches the asymptote u¼�1 for large lf. Indeed
for very large favorable patches the system should recover the
homogeneous habitat result up ¼ 1þu, so that invasions are
impossible for uo�1 (Lutscher et al., 2006).

We now focus on the invasion speed up for downstream
invasions ðu40Þ. The upstream case was considered in details
by Lutscher et al. (2006). Simulations (not shown) suggest that for
u51 the invasion speed behaves linearly in u, i.e.

upðuÞ � upð0Þþau, ð15Þ
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both in regions II and III. The above result holds also for small
negative u. To determine a the first step is to expand Dðup,s;uÞ in
powers of u. At the first order the expansion yields

Dðup,s;uÞ ¼Dðup,s;0Þþ f ðsÞuþOðu2Þ ¼ 0, ð16Þ

with f ðsÞ ¼ L sinhðLsÞ. For small u the minimum of (16) is realized at
upðuÞ ¼ upð0Þþdup and sðuÞ ¼ sð0Þþds, with dup,ds� OðuÞ. Expand-
ing now Eq. (16) in dup and ds, one gets

dup ¼�
f ðsð0ÞÞ

@upDðup,s;0Þ9upð0Þ,sð0Þ

" #
u¼ au: ð17Þ

From the numerical values of upð0Þ and sð0Þ, we computed the value
of a obtaining a perfect agreement with simulations.

We now consider the behavior of the invasion speed for large
advection velocities. When lf is chosen in region II the invasion is
halted for u4uc . In region III, the population can invade the
habitat for any u and the invasion speed approaches another
linear behavior for ub1. In Fig. 6, we contrast two cases: when
lf ¼ Elu and lf 4Elu, inside region III.
As discussed in Section 4.1.2, when lf ¼ Elu, the average
biomass vanishes (BðuÞ-0) for u-uc ¼1. It is thus reasonable
to expect that the contribution to the invasion speed comes only
from advection. Therefore, asymptotically we expect up-u as
shown in Fig. 6, though the convergence of up�u to zero can be
rather slow (Fig. 6a). Conversely, inside region III, up�u reaches a
finite value for u-1 (Fig. 6a). As heuristically derived in
Appendix D, for ub1 one expects

upðuÞ�u¼D=lf , ð18Þ

where D¼ lf�Elu. Strictly speaking, the above result holds in the
limit of u-1 and lf-1 but, as shown in Fig. 6(b), it is in fairly
good agreement with the numerical results also for finite values of lf.

To summarize, in region III the invasion speed up is well
approximated by two different linear behaviors:

upðuÞCupð0Þþau for small u,

upðuÞCD=lf þu for large u,

(
ð19Þ

where a is given by Eq. (17).

4.2.1. Invasion speed in rapidly and slowly varying environments

We now study the invasion speed in two limiting cases for
which some analytical results can be obtained, namely when the
habitat is finely fragmented ðlu,f 51Þ or subdivided in large
patches (lu,f b1 with g¼ lf =lu fixed).

When lf ,u51, expanding Eq. (14) at the lowest order, one
obtains the explicit expression:

upðs;uÞ �
s

2
þ

D
L

� �
1

2s
þu, ð20Þ

Retaining higher order terms, it is possible to show that the
dependence of up on u is linear up to the fourth order in lf ,u, where
a term proportional to u2 appears. Minimizing Eq. (20) yields

upðuÞ ¼
ffiffiffiffiffiffiffiffiffi
D=L

p
þu, ð21Þ

as also obtained with homogenization techniques (Lutscher et al.,
2006). Eq. (21) shows that for finely fragmented habitats the
intrinsic propagation speed is as in the homogeneous habitat once
the growth rate is substituted with the average growth rate D=L,
as found by Shigesada et al. (1986) for u¼0. Moreover, Eq. (21)
implies that for lu,f-0, a in Eq. (15) is equal to unity. We finally
observe that Eq. (21) holds only for DZ0, that is in region III of
Fig. 3. Indeed for lu,f-0 region II shrinks to zero.

In the limit of very large patch sizes, lf ,u-1, from Eq. (14) we
obtain

q0L¼ quluþqf lf , ð22Þ

where q0 ¼ uþs, qu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þEþ2sup

p
and qf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�1þ2sup

p
(see

Appendix C). It is interesting to compute the limit maintaining
the ratio g¼ lf =lu constant so that Eq. (22) becomes
q0ð1þgÞ ¼ quþgqf , which has the explicit form:

ð1þgÞðuþsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þEþ2ups

q
þg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�1þ2ups

q
: ð23Þ

The above formula does not depend on lu and lf separately but
only on their ratio g, meaning that for lu,f-1 the propagation
speed up approaches a limit value that depends only on g and E.
The limits gb1 and g51 are quite trivial and consistent with
intuition. In both cases, neglecting sub-leading terms, squaring
both sides of (23) one finds up(s). In the former limit, lf b lu
(negligible unfavorable patches), the homogeneous result
upðuÞ ¼ 1þu is retrieved. In the latter, lub lf (negligible favorable
patches), the condition for the minimum of upðs;uÞ is realized for
imaginary values of s, meaning that invasions are not possible.

In the special case g¼ 1 and u¼ 0, Eq. (23) becomes
2s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2upsþE

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ups�1

p
, from which it is easy to derive the
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invasion speed:

upð0Þ ¼ 2
1þE2þð1�EÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þEþE2
p

ð1�Eþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þEþE2
p

Þ
3=2

: ð24Þ

Notice that, once the proper correspondence between notations is
made, the result (24) coincides with that obtained by Hamel et al.
(2010) using a different technique. Further specializing to the case
of equal growth and death rates ðE¼ 1Þ Eq. (24) reduces to
upð0Þ ¼ 21=23�3=4.

In the presence of advection with u51, the computation for
g¼ 1 and E¼ 1 can be easily extended obtaining upðuÞ ¼ 21=23�3=4

þ

ð2=3Þu that is Eq. (15) with a¼ 2=3. For ub1, we were unable to
obtain analytical results, but we expect the phenomenology dis-
cussed in Fig. 6 to apply.

In Fig. 7 we show the invasion speed up, obtained by numeri-
cally solving (14) for u¼0, at varying lu,f with g¼ lf =lu ¼ 1 and 1.5.
We also show the asymptotic values for lu,f-0 and lu,f-1.
In rapidly varying environments upð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg�EÞ=ð1þgÞ

p
while in

slowly varying ones upð0Þ goes to the finite value (23) which for
g¼ 1 is given by (24).
4.2.2. Efficiency of the invasion process as a function of the

advection velocity

The invasion speed up measures the velocity of population
advancement. We now focus on the rate of increase of the
population size (inset of Fig. 1a), which provides a measure of
the efficiency of the invasion process. The suitable quantity to
look at is the rate of increase of the total biomass:

BrðuÞ ¼
d

dt

Z 1
0

yðx,tÞdx,

which is the slope of the curve shown in the inset of Fig. 1a.
Fig. 8 shows that there is an optimal advection velocity which

maximizes the rate Br(u). So that, in spite of the fact that larger
advection velocities imply larger invasion speeds, the efficiency of
the invasion process is maximized at a specific value un of the
advection velocity. This means that even though for u4un the
invasion speed increases, the number of invading individuals
decreases, which implies a less effective invasion.
We now provide a heuristic argument to explain the origin of
an optimal advection velocity. At stationarity, the population,
advancing at constant speed up(u), increases its size at a rate

BrðuÞ ¼ BðuÞupðuÞ, ð25Þ

where B(u) is the average biomass (10). For u51, B(u) is well
described by Eq. (11), i.e. B(u) decreases quadratically with u. On
the other hand, as from Eq. (15), the invasion speed increases
linearly with u. Using the above considerations and Eq. (25), we
obtain that the increase in invasion speed will dominate at very
small u while the quadratic decrease of B(u) will dominate at
larger u, producing the bell shaped behavior observed in Fig. 8.

The above argument is based on a low order Taylor expansion
which, in principle, could cease to be valid for values of u at which
the maximum of Br(u) is attained. We numerically found that the
behavior reported in Fig. 8 is general and that, typically, the
maximum of Br(u) is realized for values of u for which the Taylor
expansion is still a valid approximation.

4.3. Discussions

Shigesada et al. (1986) have shown that even when the
average growth rate is negative (i.e. D¼ lf�Eluo0) there exists
a critical size of the favorable patches above which a population
can invade new territories. We have shown that the main effect of
advection is to increase the critical size lnf for the invasion to be
possible. In particular, there always exists a critical advection
velocity uc above which no invasion is possible, unless the average
growth rate is positive.

As for the invasion speed, we recover the results obtained for
u¼0 by Shigesada et al. (1986), and for ua0 by Lutscher et al.
(2006), who focused on upstream propagation (i.e. in our setting
uo0). However, here, we mainly focused on the downstream
invasion speed, i.e. when the advection velocity favors the inva-
sion ðu40Þ. Our analysis shows that, provided uouc , advection
always increases the invasion speed. In particular, both for small
and large advection velocities u the invasion speed is linear in u

but with different prefactors (see Eq. (19)). In some interesting
environmental limits, moreover, we analytically computed the
invasion speed. Our results agree with those found with different
techniques by Hamel et al. (2010), and are interesting in view of
the ensuing discussion on Allee effects.

Our results on the dependence of the population size (the
biomass) on advection extend similar ones derived by Dahmen
et al. (2000) in the limit of large unfavorable patches. Although
the invasion speed is enhanced by advection, the biomass
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decreases at increasing the advection velocity. As a consequence,
a faster invasion speed does not necessarily imply a more efficient
invasion process. Indeed, the suitable quantity to judge about the
effectiveness of the invasion process is the rate of increase of the
biomass. We found the remarkable new result of an optimal
advection velocity maximizing such rate and, hence, the efficiency
of the invasion process. This maximum originates from the
opposite role of advection on the invasion speed up and on the
biomass B(u): the former increases linearly with u while the latter
decreases quadratically with u. The balance between these two
behaviors leads to a maximum in the invasion efficiency.
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5. Results for the Allee effect growth model

Some features of the logistic model seem quite unreasonable
from an ecological point of view. For instance, as shown in Fig. 7,
the invasion speed approaches an asymptotic value when the
sizes of the patches are enlarged holding fixed their ratio,
regardless of the size of hostile regions (i.e. even for lu-1).
Intuition would suggest that extremely large unfavorable regions
should slowdown, and eventually suppress, invasions, as
observed, e.g., in soil organisms (Bailey et al., 2000). A slowdown
of the invasion process should be expected, indeed, anytime there
is a positive correlation between population density and per

capita growth rate, i.e. in the presence of Allee effects (Allee,
1938; Dennis, 1989). In general, one speaks of Allee effect when
for small densities the growth rate is negative—strong Allee effect
— or positive, but smaller than for larger density—weak Allee
effect (Wang and Kot, 2001). Relevant works and their relations
with our problem are discussed in the next section (in particular,
see Table 1).

We consider the Allee effect threshold model (7), that we
recall here

gf ðyÞ ¼maxfðy�ycÞð1�yÞ,0g: ð26Þ

This model corresponds to a situation in between the strong and
weak Allee effect and is convenient because it reduces to the
logistic model (6) for yc ¼ 0, easing the comparison. At the end of
this section we will briefly discuss different Allee effect models.

Studying the problem without advection allows us to identify the
main consequence of the Allee effect, namely the existence of a
critical unfavorable patch size lnu above which invasion is impossible
for any size of the favorable region and the population can persist
localized as shown in Fig. 2. At stationarity, in the bulk of the traveling
front we have that, if yM is the value at the beginning of an
unfavorable patch, then at the end of the unfavorable region
the density will reach the value ym ¼ yM expð�

ffiffiffi
E
p

luÞ. Given the
growth term (26), for the population to propagate we must require
Table 1
Models with Allee effects related to the present work. The models in the upper part of

table are integro-difference models. Further details about models of Allee effects in in

Our work aims at investigating conditions for persistence and invasion in heterogeneo

Focus on Habitat Dispersal

Invasion Homogeneous Diffusion (short range)

Invasion, persistence, localization Homogeneous Diffusionþadvection (shor

Persistence Heterogeneous Diffusion (short range)

Invasion, localization, persistence Heterogeneous Diffusionþadvection (shor

Invasion, localization, persistence Heterogeneous Dispersal kernel (long rang

(special case: diffusion)
that ymZyc (see also Dewhirst and Lutscher, 2009 for a similar
argument applied to an integro-difference model), which implies the
inequality

lur lnu ¼
1ffiffiffi
E
p log

yM

yc

� �
ð27Þ

for the unfavorable patch size. In general, yM cannot be estimated
analytically; however, setting yM ¼ 1 gives a reasonable upper bound.

The existence of lnu is evident from Fig. 7 where symbols denote
the results of numerical simulations obtained with the growth
model (26), holding constant g¼ lf =lu and increasing the patch
sizes. For small sizes the qualitative behavior of the model (26) is
similar to that of the logistic model: up increases with L.
A dramatic difference appears at large sizes: for the logistic model
the invasion speed reaches an asymptotic value, while for the
Allee effect one it decreases and, eventually, the invasion process
is halted when lu � lnu, regardless the size of the favorable patch.

In Fig. 9, we show the behavior of the system without
advection in the plane ðlu,lf Þ, for two values of yc . As already
discussed, for the logistic growth model there exists a critical
favorable patch size lnf above which the population can survive
and invade new territories. The critical value lnf remains finite for
lu-1 as found by Ludwig et al. (1979), Shigesada et al. (1986)
and also in this paper. With the Allee effect growth model (26) the
the table are advection–reaction–diffusion models; those in the bottom line of the

vasion dynamics can be found in Tables 3.5 and 3.6 of Courchamp et al. (2008).

us environments with advection.

References

Lewis and van den Driessche (1993), Hastings (1996),

Wang and Kot (2001)

tþ long range) Lewis and Kareiva (1993), Petrovskii and Li (2003),

Almeida et al. (2006)

Shi and Shivaji (2006)

tþ long range) This work

e) Dewhirst and Lutscher (2009), Pachepsky and Levine (2011)
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phenomenology is different and more interesting. When the size
of the unfavorable patches is small (i.e. lu51) the system
essentially behaves as the logistic model: the unfavorable patch
is so small that typically the decrease in density will not cause the
population to fall below yc . From a quantitative point of view, lnf is
slightly larger than the logistic value (the effect being more
pronounced for larger yc), though this cannot be fully appreciated
from Fig. 9 due to the scale. The main qualitative change with
respect to the logistic case manifests when the size of the
unfavorable patches approaches the value lnu given in Eq. (27).
For unfavorable patches at least this large, propagation becomes
impossible for any size of the favorable patches, even though the
population does not necessarily go extinct. Indeed, as highlighted
in the inset of Fig. 9, a new region in the plane ðlu,lf Þ appears,
where the population can persist locally but cannot propagate
(see Fig. 2): it localizes in a single favorable patch (if initially it
was in that patch). For this localization regime to exist it is
necessary that lf is wide enough to sustain the population, as
theoretically derived in the homogeneous case by Lewis and
Kareiva (1993) and found in field data by Vercken et al. (2011).

Therefore, without advection but with the Allee effect growth
term (26), we have that the population goes extinct if lf o lnf ,
propagates if lf 4 lnf but luo lnu, and localizes in a single favorable
patch when this is large enough to sustain the population (lf 4 lnf )
but the unfavorable patch is too large to allow the propagation,
i.e. luZ lnu.

We now discuss the effects of advection. For small unfavorable
patch sizes, lu51, since the model with Allee effect behaves quite
similar to the logistic model, also the effect of advection on the
dynamics is very similar between the two models. A critical
advection velocity uc exists, above which the population goes
extinct. However, for larger unfavorable patches, while in the
absence of advection propagation is inhibited and the population
remains localized (light gray region in the inset of Fig. 9),
sustained advection induces the remarkable qualitative changes
observed in Fig. 2. In Fig. 10 we show a numerical measurement
of the invasion speed up as a function of u for a habitat with
unfavorable and favorable patch sizes, lu and lf, respectively,
chosen in the localization region of the system without advection.
As it can be seen, while the population remains localized at small
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symbols). The last transition is possible only thanks to advection.
advection velocities, it suddenly becomes able to propagate
invading the whole environment when the velocity of the medium
becomes large enough. An intuitive explanation for such a beha-
vior is that, thanks to advection, the population can now travel
through the unfavorable patch more rapidly, finally reaching the
next favorable patch with a density above the threshold yc , i.e.
advection enhances the value lnu above which no propagation is
possible. In fact, at stationarity, in the unfavorable region it is easy
to see that the density behaves as yðxÞ ¼ yM exp½ ðu�

ffiffiffiffiffiffiffiffiffiffiffiffi
Eþu2
p

Þx�.
Therefore, the same argument which lead to Eq. (27) now yields

lnuðuÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

Eþu2
p

�u
log

yM

yc

� �
:

The above formula predicts that lnuðuÞ grows with u, so that even if
in a medium at rest the population is localized, i.e. lu4 lnuð0Þ, in
advective media there will be a value of the advection velocity
such that lur lnuðuÞ, allowing the population to propagate, as
shown in Fig. 10. Once invasion is permitted by advection, the
propagation speed and the rate of increase of biomass behave
similar to the same quantities in the logistic model (compare
Fig. 10 (main figure) with Fig. 6 (main figure), and Fig. 10a with
Fig. 8). The results shown in the inset (b) of Fig. 10 further
illustrate the importance of advection in such model. There, we
show the measured propagation velocity up as a function of lf, for
constant advection u and keeping lu4 lnuð0Þ fixed, so that in the
absence of advection the population would be localized even if
lf 4 lnf . As one can see two transitions are observed: from extinc-
tion to localized, mainly due to the increase of lf; from localized to
propagating, which is possible only thanks to advection.

It is interesting here to note that something similar happens if
we consider a spatially dependent diffusion coefficient, as done by
Shigesada et al. (1986) for the logistic growth model. In particular,
without advection (u¼0) and denoting with d¼Du=Df the ratio
between diffusivities in the unfavorable and favorable patches,
Eq. (27) modifies in lnu �

ffiffiffiffiffiffiffiffi
d=E

p
lnðyM=ycÞ. This result tells us that a

larger diffusivity in the unfavorable regions (d41) allows the
population to propagate also with larger unfavorable patch sizes.
Therefore, if we fix the size of the unfavorable patch, either
increasing the diffusivity or the advection, the residence time in
the unfavorable patch decreases leading to a smaller depletion in
population density.

Through this section we limited the numerical analysis to the
Allee effect model (26) which is intermediate between the case of
weak and strong Allee effect. It is thus worth to test the
robustness of the above findings by considering different Allee
effect models.

In Fig. 11 we show the evolution of invasions obtained with
three different models of the Allee effect, either in the absence
(Fig. 11a) or in the presence (Fig. 11b) of advection when lu4 lnu.
In particular, we compare model (26) with two models of Allee
effect, namely the standard cubic term used to model strong Allee
effects (Lewis and Kareiva, 1993; Petrovskii and Li, 2003; Almeida
et al., 2006):

gf ðyÞ ¼ yð1�yÞðy�ycÞ, ð28Þ

and a slight modification of the model introduced by Wang and
Kot (2001)

gf ðyÞ ¼
by, 0ryryc ,

yð1�yÞ, yc oyr1:

(
ð29Þ

The latter can model either strong ðbo0Þ or weak (if 0obo1 and
1�yc 4b) Allee effect. The marginal case b¼0, for small values of
yc , is practically indistinguishable from the Allee effect model
(26). Fig. 11a shows that with u¼0 invasions are unsuccessful in
all the considered models. For model (29) we only show the case
b¼�1. However, the result (not shown) holds also for positive
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(not too large) values of b, meaning that also with weak Allee
effects the population can be localized. Advection (Fig. 11b) is
able to activate the invasion process in all cases but for the cubic
model (28). The origin of such a difference is readily under-
standable from Fig. 11c where we show the density-dependent
per capita growth rate gf ðyÞ=y in the above models compared with
the logistic case (the gray line). As one can see, the growth rate for
the cubic model, although positive, remains very small for a large
interval above the threshold value yc . As a consequence, even if
the population reaches the favorable region with y4yc , it cannot
propagate. In the other cases the growth rate is large enough to
allow the population to grow and propagate.

Concluding, the phenomenology of the advection-induced
invasion is rather general in the presence of (either weak or
strong) Allee effect, but critically depends on the growth rate
realized close to the threshold value yc . In perspective, it would be
interesting to investigate what habitat/advection conditions
ensure successful invasions for different kinds of Allee effects.

5.1. Discussions

To put in perspective our results on the Allee effect model it is
useful first to briefly recall some known results from the litera-
ture. The study of Allee effects has received considerable interest
in the past, with growing modeling efforts in recent years, when
its importance for invasions and conservation issues have started
to be well recognized (Taylor and Hastings, 2005; Courchamp
et al., 2008; Tobin et al., 2011). For convenience of the reader, we
summarize relevant works related to our problem in Table 1.

In the case of homogeneous environments and without advec-
tion, most studies have shown that the success of an invasion
depends not only on the initial density, but also on the size of the
initially occupied area (Lewis and Kareiva, 1993; Lewis and van
den Driessche, 1993; Kot et al., 1996; Wang and Kot, 2001).
Asymptotic rates of spread are typically reduced (see, e.g., Lewis
and Kareiva, 1993), mostly because of the interplay between
dispersal mechanisms and the reduced reproductive power at low
densities. In discrete-space models (e.g., in Keitt et al., 2001) the
interesting phenomenon of population localization (also called
range pinning) occurs. The presence of advection can lead to
nontrivial results when combined with density-dependent migra-
tion (Petrovskii and Li, 2003; Almeida et al., 2006).

In the case of heterogeneous habitats, with few exceptions
(see, e.g., Shi and Shivaji, 2006, who extended the critical patch
size problem to the case of weak Allee effects), most works
focused on integro-difference models (Dewhirst and Lutscher,
2009), sometimes accounting also for the effect of discreteness of
the population (Pachepsky and Levine, 2011). These studies agree
on the fact that the presence of Allee effects combined with
habitat fragmentation generally penalizes the success of invasions
or, at least, slows them down. In particular, crucial for the success
of the invasion process is the size of bad patches (Dewhirst and
Lutscher, 2009) with respect to the dispersal range. Moreover, the
results of these models depend also on the choice of the dispersal
kernel, which is typically poorly known (Hastings et al., 2005).

Our results show that logistic and Allee effect models qualita-
tively display the same features both in the presence and in the
absence of advection when the unfavorable patches are not too
large, including the nontrivial existence of an optimal advection
velocity maximizing the invasion efficiency. However, in the Allee
effect case, unlike the logistic model, if the unfavorable patches
become too large invasions can be halted. When the Allee effect is
included, in fact, if both lu and lf are large, the population can
persist locally, but is unable to invade other patches, since it
cannot cross unfavorable regions without being too severely
damped. This means that while in the logistic case the thresholds
for persistence and for invasions coincide, these are in general
different when Allee effects are present. The same observation
was made in the context of integro-difference models (Dewhirst
and Lutscher, 2009) and it is substantiated also by field observa-
tions (Bailey et al., 2000, see also Hastings et al., 2005 and
references therein).

Advection, however, can alter this picture: if its intensity
exceeds a threshold value, the invasion process can be activated,
provided that a large enough growth rate is realized at the
population density when entering the favorable patches. This
peculiar effect of advection, which as far as we know was not
previously put into light, has obvious ecological implications for
invasive species management strategies. For instance, the idea to
induce Allee effects to control the invasion of alien species, which
can be implemented in several ways (Tobin et al., 2011), should
be pursued with extreme care in the presence of advection.

In summary, our results on persistence and invasion in the
presence of Allee effects extend previous works done in the
framework of reaction–diffusion models (with homogeneous
habitat) and positively correlate also with the results of integro-
difference models, emphasizing the subtle role of advection
which was missed in that kind of models.
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6. Conclusions

In this paper, we focused on the role of advection on invasions
in heterogeneous environments characterized by favorable and
unfavorable patches.

On the one hand, we have shown that in the presence of habitat
heterogeneity sufficiently intense advection can halt the invasion
process. Moreover, we argued that the efficiency of the invasive
process is properly quantified in terms of the rate of increase of the
invading population. In particular, we found that the latter is
maximal at intermediate values of the advection velocity.

On the other hand we have shown that in the presence of Allee
effects, advection may be beneficial to the invasion process
turning a persistent but non invading population into an
invading one.

An important aspect in evaluating biological invasions, which
has not been considered in our work, is related to the discrete
nature of a population, which is made of individuals (Durrett and
Levin, 1994; Okubo and Levin, 2001). We expect that considering
also discrete effects may add further nontrivial effects due to
demographic stochasticity, in particular close to the transition
between successful and unsuccessful invasions. Works in these
direction have started to appear (Snyder, 2003; Pachepsky and
Levine, 2011). It would be interesting to study the effect of
advection also in the presence of demographic stochasticity.
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Appendix A. Conditions for persistence in a periodic system

Due to the habitat periodicity, and with the periodic BC, we
can limit the analysis to the unit cell ½0 : LÞ. Denoting with W a
perturbation around the solution y¼ 0, we have that W is ruled by
the linearized version of Eq. (5):

@tWþ2u@xW¼ @2
xWþEðxÞW, ðA:1Þ

where EðxÞ ¼�E in the unfavorable patches and EðxÞ ¼ 1 in the
favorable ones. In the linear analysis framework, at leading order,
one expects that W¼ eLtcðxÞ so that population extinction is a
stable solution if Lo0 and an unstable one if L40. When
unstable, the asymptotic solution will be a stationary and spa-
tially periodic solution cðxÞ as in Fig. 1a, otherwise if Lo0 it
decays exponentially as Wðx,tÞ ¼cðxÞe�9L9t (see inset of Fig. 1c).
Plugging W¼ eLtcðxÞ into (A.1) we obtain the characteristic
equation for the stationary state:

@2
xc�2u@xcþðEðxÞ�LÞc¼ 0, ðA:2Þ

whose general solution is given by

cuðxÞ ¼ Au
1exlðuÞ

1 þAu
2exlðuÞ

2 , 0rxo lu,

cf ðxÞ ¼ Af
1exlðf Þ

1 þAf
2exlðf Þ

2 , lurxoL, ðA:3Þ

where

lðuÞ1;2 ¼ u7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþLþu2

p
¼ u7buðLÞ,

lðf Þ1;2 ¼ u7 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�L�u2

p
¼ u7 ibf ðLÞ ðA:4Þ

are the eigenvalues associated to Eq. (A.2). For a solution to exist
it is sufficient to impose the continuity of densities cu,f ðxÞ and
fluxes Ju,f ðxÞ ¼ ½2u�@x�cu,f ðxÞ at the boundaries between favorable
and unfavorable regions. Notice that the conditions on fluxes are
required when using space-dependent diffusion coefficient, as, for
example, in Shigesada et al. (1986) and Lutscher et al. (2006).
For constant diffusion coefficient, as here, it is enough to impose
the continuity of derivatives of c.

Using Eq. (A.3) and imposing the aforementioned continuity
conditions we obtain a linear system for the four constants Au,f

1;2.
Requiring that this linear system has a nontrivial solution we
obtain

coshðuLÞ�cosðbf ðLÞlf Þ coshðbuðLÞluÞ

¼
b2

uðLÞ�b2
f ðLÞ

2buðLÞbf ðLÞ
sinðbf ðLÞlf Þ sinhðbuðLÞluÞ: ðA:5Þ

The largest value of L solving the above equation determines
the stability properties of the solution y¼ 0. In particular, fixing
the values of lu, E and u, it is possible to show that LZ0 whenever
lf Z lnf , where lnf solves Eq. (A.5) with L¼ 0 (Shigesada et al., 1986;
Nagylaki, 1975), i.e. Eq. (8). For lf o lnf the population always goes
extinct. An equivalent critical value exists for the advection
velocity, see main text. Let us notice that with u¼0, the above
condition reduces to that found by Shigesada et al. (1986), i.e.ffiffiffi
E
p

tanhð
ffiffiffi
E
p

lu=2Þ ¼ tanðlf =2Þ. For lu51, the above equation tells us
that lnf � Elu. Notice that the average growth rate is given by
ðlf�EluÞ=L and that for lf 4Elu survival of the population is
guaranteed by the fact that the average growth rate is positive.
As the size of the unfavorable patches grows the critical (favor-
able) patch size approaches the limit value lnf ¼ 2 arctan

ffiffiffi
E
p

corresponding to the result of Ludwig et al. (1979). The case
E-1, i.e. infinite mortality, corresponds to the KISS critical patch
size lnf ¼ p (Skellam, 1951; Kierstead and Slobodkin, 1953).

Appendix B. Derivation of the asymptotic expression for
biomass

At stationarity, for ub1 we can disregard the diffusive term in
Eq. (5) obtaining:

y0 ¼
�Ey=ð2uÞ, 0rxo lu,

yð1�yÞ=ð2uÞ, lurxoL,

(
ðB:1Þ

where the prime represents the derivative with respect to x. Then,
denoting with yM ¼ yð0Þ and ym ¼ yðluÞ the values of y at the
beginning of the unfavorable and favorable regions, respectively
(which correspond to the maximum and minimum realized
values of y), Eq. (B.1) is solved by

yðxÞ ¼

yM exp �
Ex
2u

� �
, 0rxo lu,

ym exp
x�lu
2u

� �

1�ym 1�exp
x�lu
2u

� �� �, lurxoL:

8>>>>>>><
>>>>>>>:

ðB:2Þ

Now imposing the periodicity yM ¼ yðLÞ and noticing that ym ¼ yM

expð�Elu=ð2uÞÞ we find that

yM ¼

exp
D
2u

� �
�1

exp
D
2u

� �
�exp

D�lf
2u

� �, ðB:3Þ

where D¼ lf�Elu. The above expression provides a meaningful
solution only for D40, i.e. in region III where extinction never
takes place. Moreover, for u-1 Eq. (B.3) can be expanded to
show that it reaches a finite limit yM ¼D=lf ð1þOð1=uÞÞ. Integrat-
ing (B.2) in ½0 : L� one obtains an explicit expression for B(u),
which expanded for large u gives BðuÞ ¼D=lf þOðD=u2Þ.
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Appendix C. Derivation of the dispersion relations

For long times, as shown in Fig. 1, the bulk of the traveling
front is a periodic function, yðx,tÞ ¼ yðxþL,tþTÞ, where L coincides
with the habitat spatial period and T is the temporal period; the
invasion (propagation) speed is then given by L/T. With the
chosen BC the propagation proceeds in the positive x direction.
To derive the propagation speed we can write yðx,tÞ ¼YðzÞgðxÞ
with z¼ x�2upt¼ xþL�2upðtþTÞ and gðxÞ ¼ gðxþLÞ being a per-
iodic function which modulates the traveling front (Shigesada
et al., 1986). We can now take YðzÞpe�sz meaning that, apart
from the periodic modulation g(x), the leading edge is exponen-
tially decaying. Plugging the above expressions in the linearized
Eq. (5) yields the equation for g:

g00�2ðuþsÞg0 þ½EðxÞþ2ðu�upÞsþs2�g ¼ 0: ðC:1Þ

If EðxÞ ¼ 1, g is constant and the homogeneous case is recovered.
The linear equation (C.1) has the general solution guðxÞ ¼ cu

1em
ðuÞ
1

xþ

cu
2em

ðuÞ
2

x and gf ðxÞ ¼ cf
1em

ðf Þ
1

xþcf
2em

ðf Þ
2

x in the unfavorable and favorable
patches, respectively and

mðuÞ1;2 ¼ uþs7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þEþ2sup

q
¼ q07qu,

mðf Þ1;2 ¼ uþs7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�1þ2sup

q
¼ q07qf :

Imposing the continuity conditions as in Appendix A, we find four
equations for the coefficients cf ,u

1;2, and requiring the existence of a
nontrivial solution, we find that the dispersion relations (14)
must be satisfied. Notice that (14) was also found by Lutscher
et al. (2006) using different BC. Moreover for u¼0 Eq. (14)
reduces to the equation found by Shigesada et al. (1986).
Appendix D. Invasion speed in the limit of large advection

The values of upðuÞ�u and yM (the maximum value of the
population density) can be written in general as upðuÞ�u¼

f ðu,E,lf ,luÞu0 and yM ¼ gðu,E,lf ,luÞy0, where u0 ¼ 1 and y0 ¼ 1 are
the values in a homogeneous environment. Taking the ratio
between the above equations wee obtain:

upðuÞ�u¼
f ðu,E,lf ,luÞ

gðu,E,lf ,luÞ
yM :

Now, if we conjecture that the decrease of the difference upðuÞ�u

with u is mainly controlled by the dependence of yM on u, we can
make the strong assumption that f ðu,E,lf ,luÞ=gðu,E,lf ,luÞ � 1, which
is true at least for lf-1 as both functions tend to 1. Using Eq.
(B.3) of Appendix B in the limit u-1, which implies yM ¼D=lf ,
we finally obtain upðuÞ�u¼D=lf : This equation is true in the limit
of u-1 and lf-1 but also for finite values of lf it is in fairly good
agreement with the numerical results (see Fig. 6b).
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