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Scalar absorption by particles advected in a turbulent flow
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We investigate the effects of turbulent fluctuations on the Lagrangian statistics of
absorption of a scalar field by tracer particles, as a model for nutrient uptake by suspended
nonmotile microorganisms. By means of extensive direct numerical simulations of an
Eulerian-Lagrangian model we quantify, in terms of the Sherwood number, the increase
of the scalar uptake induced by turbulence and its dependence on the Peclet and Reynolds
numbers. Numerical results are compared with classical predictions for a stationary shear
flow extended here to take into account the presence of a restoring scalar flux. We find
that mean-field predictions agree with numerical simulations at low Peclet numbers but
are unable to describe the large fluctuations of local scalar uptake observed for large Peclet
numbers. We also study the role of velocity fluctuations in the local uptake by looking at the
temporal correlation between local shear and uptake rate and we find that the latter follows
fluid velocity fluctuations with a delay given by Kolmogorov timescale. The relevance of
our results for aquatic microorganisms is also discussed.
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I. INTRODUCTION

Mass or heat transfer in multiphase systems is a problem of great interest for both theory
and applications. Several industrial processes involve fluids with suspended particles that undergo
chemical reactions, where particles exchange mass or heat with the surrounding fluid [1–3]. Fluid
flows also mediate the uptake of nutrients and other biochemicals by suspended (unicellular) mi-
croorganisms [4,5]. Previous works have shown that small-scale turbulence enhances the transport
of nutrients into the cell [4,6]. Such increase in the nutrient flux is typically negligible for bacteria
while it can be significant for larger cells such as eukaryotic phytoplankton. However, these studies
have considered turbulence as an average, time independent, shear flow, while velocity and scalar
fields in turbulent flows exhibit strong fluctuations and develop large gradients that are completely
overlooked by a mean field description [7]. Consequently, the effects of turbulent fluctuations
and their intermittency on cellular uptake are largely unknown. By stirring the nutrient patches,
turbulence creates inhomogeneities and complex landscapes of nutrient [8] that make the uptake
problem nontrivial. Moreover, the variability induced by small-scale turbulence may affect the
ecological strategies in terms of growth and reproduction rates [9].

Previous numerical simulations have studied the problem of cellular uptake using different
approaches. For instance, continuous (Eulerian) models for describing the concentration of both
nutrients and (a population of) absorbers have been used for studying phytoplankton dynamics
[10,11] and for quantifying the interaction between motility and turbulence in bacterial chemotaxis
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[12,13] but do not provide information on the uptake by a single particle. Discrete, Lagrangian
models have also been used for computing the uptake of nutrient in a still fluid or in simple laminar
flows [14,15], thus disregarding the unsteadiness of turbulent flows.

In this work, we numerically study the effects of turbulent fluctuations on nutrient uptake by
using a mixed Lagrangian-Eulerian approach. The nutrient is represented by a continuous, passive
scalar field, while the absorbers are represented by Lagrangian particles. Both the nutrient and the
absorbers are transported by a realistic turbulent flow obtained by the integration of the Navier-
Stokes equations at high resolution. Scalar absorption is implemented by volumetric sinks centered
at the particle positions, which has been shown to give accurate results in the absence of a flow or
in simple laminar flows [16]. To maintain a statistically stationary state in a finite volume, nutrient
is replenished by a uniform source (a chemostat, which models the upwelling from a nutrient rich
reservoir [10,17]). For an accurate comparison with simulations, we extend the analytical results of
the uptake enhancement by a shear flow [18] to the presence of a restoring flux.

The remainder of the manuscript is organized as follows. In Sec. II, we introduce the model and
briefly describe the analytical derivation of nutrient uptake in the presence of a uniform restoring
source. In Sec. III, we summarize the numerical implementation of the model and the parameters
used in the simulations. In Sec. IV, we discuss the numerical results and their comparison with the
analytical prediction based on the mean field model. Finally, Sec. V is devoted to conclusions and
discussions. The Appendices detail the analytical results.

II. MATHEMATICAL MODELS AND THEORETICAL RESULTS

A. Model equations

We consider the general problem of N discrete particles—the absorbers—transported by an
incompressible velocity field u(x, t ) together with a passive scalar field c(x, t )—the nutrient
concentration. Particles are considered as point tracers whose position X i evolves according to

Ẋ i = u(X i, t ), i = 1, . . . , N. (1)

The velocity field is a solution of the incompressible Navier-Stokes equation

∂t u + u · ∇u = −∇p + ν�u + f , (2)

where ν is the kinematic viscosity, p the pressure, and f a body forcing injecting energy at rate ε

on average equal to the energy dissipation rate, so to establish a statistically steady turbulent state.
The nutrient is advected by the flow, diffuses with diffusivity D, is absorbed by the particles, and
uniformly restored at a rate μ to maintain, on average, a constant concentration c0; its evolution
reads

∂t c + u · ∇c = D�c −
N∑

i=1

βiδ(x − X i ) c − μ(c − c0). (3)

In applications to plankton into the ocean, the uniform nutrient flux models the vertical advection
from a deep reservoir—a chemostat—with constant concentration [17]. Following Ref. [16],
absorption from the ith particle is modeled through a volumetric absorption rate, βi, and not via
absorbing boundary conditions at the particle surface. According to this model, the instantaneous
uptake of ith particle is given by

κi(t ) =
∫

d3xβiδ(x − X i )c(x, t ). (4)

The numerical implementation of this model has been calibrated and tested by using configurations
of one, two, or more absorbers in still fluid and a laminar shear flow for which analytical results are
available [16]. Our main interest here is to quantify the effect of turbulence on the uptake rate at the
level of the single particle. Specifically, by denoting with κμ the asymptotic uptake rate obtained
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with the same chemostat but in the absence of the flow (i.e., when only diffusion is at play), we aim
at quantifying the statistics of instantaneous Sherwood number, defined as Sh(t ) = κi(t )/κμ and its
average, and how they depend on the relevant parameters of the problem.

In the absence of a flow (see Appendix A), the effect of the chemostat is to exponentially
cut-off the modification of the concentration field with a screening length ξ = √

D/μ, therefore
reducing diffusive interactions between particles that without the chemostat are long ranged. As
a consequence, the usual Smoluchovsky rate at μ = 0, κs = 4πDRc0, for an absorbing spherical
particle of radius R is modified into Eq. (A3), which we rewrite here

κμ = κs(1 + R/ξ ). (5)

By inverting Eq. (5), we obtain that a particle absorbing the nutrient with rate κμ has radius

R = ξ

2

(√
1 + κμ

πDξc0
− 1

)
, (6)

which can be used to define an effective radius for the point-particle model.
The instantaneous particle Peclet number, quantifying the importance of advection by the flow

over diffusive transport, is then defined as Pe(t ) = γ R2/D, where γ (t ) measures the instantaneous
turbulent shear rate at the particle position defined as γ = (2S2)1/2, where Si j = 1

2 (∂iu j + ∂ jui )
is the symmetric velocity gradient tensor at the particle position. It is useful to consider also the
nominal Peclet number Peη = γηR2/D, where γη = 1/τη is the inverse of the Kolmogorov time τη =
(ν/ε)1/2. We remark that, since γ is a concave function of the energy dissipation rate, due to Jensen
inequality we have 〈γ 〉 � γη and therefore 〈Pe〉 � Peη. We also notice that, by introducing the
Schmidt number Sc = ν/D and the Kolmogorov length η = (ν3/ε)1/4, the nominal Peclet number
can be expressed as Peη = (R/η)2Sc. The latter expression shows that, since the model requires
R � η, the maximum attainable value of Peη is given by Sc. In the following, with some abuse
of notation, when there is no ambiguity, we will often indicate the average Peclet and Sherwood
numbers as Pe and Sh, respectively.

B. Theory of nutrient uptake in the presence of a chemostat

Classical results on the effect of a flow on nutrient uptake, obtained assuming a constant
concentration at infinity, predict two different regimes for small and large Pe [6],

Sh =
{

1 + 0.28 Pe1/2 Pe � 1,

0.55 Pe1/3 Pe � 1,

(7a)

(7b)

obtained, respectively, assuming a linear shear flow with a point sink [18,19] and making use of
boundary-layer theory [18,20]. In the following, we briefly show how the small Pe result Eq. (7a)
can be generalized to the presence of a chemostat; details of the computation can be found in
Appendix B. Note that the computation is based on a constant shear flow so that Pe should be
interpreted as the average Peclet number, which in this case coincides with the instantaneous one.

We consider the concentration field c(r, t ) relative to the center of a particle of radius
R. The boundary conditions are c(R, t ) = 0 (perfect absorption on the particle surface) and
limr→∞ c(r, t ) = c0. The main effect of the velocity field u is to change the uptake rate by deforming
the shape of the concentration profile with respect to the purely diffusive case. Following Ref. [18],
we consider a particle smaller than the smallest scale in the flow (i.e., R < η), so that the velocity
field around it can be expressed as a linear shear. We decompose the concentration field into a
mean profile and a fluctuating one c′(r, t ) that represents the deviations from the diffusive, spherical
symmetric solution

c(r, t ) = c0

(
1 − κ (t )

4πDrc0(1 + R/ξ )
e−(r−R)/ξ

)
+ c′(r, t ), (8)

where κ (t ) represents the total (still unknown) flux to the particle.
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TABLE I. Simulation parameters: Run index, resolution M, chemostat rate μ, kinematic viscosity ν, energy
E = 〈|u2|〉/2, rms velocity U = (2E/3)1/2, integral timescale T = E/ε, Kolmogorov timescale τη = (ν/ε)1/2,
integral length scale L = U T , Kolmogorov length scale η = (ν3/ε)1/4, Batchelor length scale B = η/Sc1/2,
screening length ξ = (D/μ)1/2, shear rate γη = 1/τη, Taylor Reynolds number Reλ = U 2(15/νε)1/2, Schimdt
number Sc = ν/D, and αη = μτη. In all runs the energy injection rate is fixed at ε = 0.1, and k f = 1.5.

Run M μ ν E U T τη L η B ξ Reλ Sc αη

A1 128 0.2 1.6 × 10−2 0.59 0.63 5.9 0.40 3.70 0.08 0.025 0.089 38 10 0.08
A2 256 0.2 6.4 × 10−3 0.65 0.66 6.5 0.25 4.28 0.04 0.013 0.057 66 10 0.05
A3 512 0.2 2.5 × 10−3 0.67 0.67 6.7 0.16 4.48 0.02 0.006 0.035 109 10 0.03
A4 512 0.3 2.5 × 10−3 0.67 0.67 6.7 0.16 4.48 0.02 0.006 0.028 109 10 0.05

B1 128 0.2 6.4 × 10−3 0.64 0.65 6.4 0.25 4.18 0.04 0.04 0.179 65 1.0 0.05
B2 1024 0.2 3.9 × 10−4 0.70 0.68 7.0 0.06 4.78 0.005 0.005 0.045 287 1.0 0.01

In the absence of a flow (u = 0) we have c′ = 0 and κ = κμ, as given by Eq. (5). In the presence
of a flow, the relative increase of nutrient uptake, given by the Sherwood number Sh(t ) = κ (t )/κμ, is
readily obtained imposing the condition c(R, t ) = 0 in Eq. (8) which gives Sh(t ) = 1 + c′(R, t )/c0.
The asymptotic (and here averaged) value of the Sherwood number, in the limit t → ∞ can be
obtained by extending the analysis of Ref. [18], which for Pe � 1 yields (see Appendix A for
details)

Sh = 1 + χ (α)Pe1/2, (9)

where

χ (α) = 1

(4π )1/2

∫ ∞

0
dz e−αz

√
z

24 + z2
, (10)

with α = μτη the relative timescale between stirring and nutrient supply. For α = 0, Eq. (10)
recovers Batchelor’s result, χ (0) = √

π/(61/44) � 0.283. For α > 0 the function decreases with
α, meaning that the effect of the chemostat is to reduce the contribution of stirring to the nutrient
uptake. This is somehow expected since with a fast chemostat [with α = O(1)] the nutrient around
the particle is uniformly restored before the flow deforms the isoconcentration surfaces.

III. DIRECT NUMERICAL SIMULATIONS

We solve Eqs. (2) and (3) via direct numerical simulation (DNS) on a triply periodic cubic
domain of side L = 2π using up to M3 = 10243 grid points with a 2/3 dealiased pseudospectral
solver and second-order Runge-Kutta time marching. The forcing in Eq. (2), acting only at large
scales (in the wave number shell k � k f ), is chosen in such a way as to maintain the energy input ε

constant. This is obtained by taking f (x, t ) = εu(x, t )/2Ek�k f �(k f − k), where � is the Heaviside
step function and Ek�k f is the kinetic energy restricted to the wave numbers �k f [21,22]. We ensure
that small-scale fluid motion is well resolved by imposing the Batchelor length scale B = η/

√
Sc

(the smallest scale in the problem since Sc � 1) to be at least of the same order of the grid spacing,
(kmaxB > 1.0, where kmax = M/3 is the maximum wave number available after dealiasing). The
velocity field is integrated until a statistically stationary state is reached, then the concentration
field is initialized to the constant value c0. We explored a range of Taylor-scale Reynolds number
(Reλ ≈ 38–287) with two choices of the Schmidt number (Sc = 1, 10). Table I summarizes the
main DNS parameters.

As for the solid phase, we seed N particles uniformly in the domain and let them move according
to Eq. (1). The fluid velocity and its gradients (needed to estimate the shear rate) at particle positions
are obtained via a third-order interpolation scheme. The δ function in Eq. (3) is regularized by a
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function f (x) with compact support, product of three functions of a single variable

f (x) = 1

�3
φ(x)φ(y)φ(z), (11)

where � = L/M is the grid size. The function φ is chosen to be symmetric, positive, normalized,
and with compact support around its center. One convenient form, used in the present work, is
φ(x) = (1/n)[1 + cos(2πx/(n�)] for |x| � n�/2 with n = 4 [23]. The uptake κi of each particle
is then computed from Eq. (4) with the δ function replaced by f (x). More details can be found in
Ref. [16].

To explore different values of the Peclet number, we selected different effective radii of the
particles by tuning the absorption rate β. In particular, the radius is calibrated by performing, for
each set of parameters, a diffusive simulation without flow and with static particles. For each β, the
asymptotic uptake rate κμ is measured and Eq. (6) is used to define the particle radius [16].

To optimize the computational costs, several particles were integrated in each run. We remark
that, in general, the presence of many particles in a finite domain induces diffusive interactions
which tend to reduce the single particle uptake rate [16,24,25]. Although this effect is relevant to
and interesting for applications [26,27], in this work we focus on the single particle absorption, and
therefore on dilute concentrations such that diffusive interactions are negligible. In this respect, the
chemostat, inducing a screening length ξ , reduces the interactions among particles.

We can exploit the knowledge of the screening length to estimate the number of particles to be
used to minimize the diffusive interactions. The flow being incompressible, the particle distribution
remains uniform. By assuming a random uniform distribution of N particles in a cube domain of
side L, the probability density function (PDF) of nearest-neighbors distance, for small r takes the
form [28]

P(r) = 4πr2ρ exp
( − 4

3πr3ρ
)
. (12)

The mean interparticle distance is 〈r〉 = a/ρ1/3
p , with a = �(1/3)/(36π )1/3, where ρp = N/L3 is

the particle number density. By choosing, e.g., 〈r〉 = 8ξ one has that the probability to find two
particles at distance less than 2ξ is only 1%.

IV. RESULTS

We start by showing in Fig. 1 a typical example of the concentration field in a two-dimensional
section of the computational box. Due to the absorption, small depletion zones are created around
the particles, which are then stretched by turbulence leading to filament-like structures. The presence
of these structures reflects how turbulence locally increases scalar gradients, thus impacting particle
uptake.

In Fig. 2, we plot the PDF of the shear rate γ for different values of the Reynolds number
Reλ. The form of this distribution has been widely studied in previous works and is characterized
by non-Gaussian tails [29,30], which become wider and wider at increasing Reλ, the hallmark of
intermittency in the statistics of the velocity gradients.

Strong gradients are expected to cause local modification of the absorption. Indeed variations of
γ along the particle path modify the instantaneous value of the Peclet number. To understand and
characterize these variations and their effect on the uptake we measure the instantaneous individual
uptake κ , by using Eq. (4), and shear rate γ along each particle trajectories, in this way we can
compute the local Peclet and Sherwood numbers. In Fig. 3, we plot the instantaneous value of
Sh − 1, i.e., the deviation from the diffusive uptake induced by turbulence, as a function of Pe for
particles with nine different radii (each represented by a different color) transported by a turbulent
flow at Reλ = 109. Although a clear correlation between uptake rate and local shear is observed, as
indeed the solid line shows that at changing the local Peclet number the Sherwood number changes
according to the prediction valid for the average, we also observe large fluctuations of these values
on a single particle (i.e., at fixed R).
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FIG. 1. Fluctuations of the concentration field 1 − c(x, t )/c0 in a two-dimensional slab of 16 grid points.
Resolution M = 1024 (Run B2).

The average values of the Peclet number 〈Pe〉 and of the Sherwood number 〈Sh〉 for the different
simulations are shown in Fig. 4(a) together with the classical theoretical prediction Eq. (7a).
Averages are computed over all particles having the same size and over time. Different symbols
code the runs summarized in Table I. The 〈Pe〉1/2 behavior of Eq. (7a) is clearly observable for
small values of 〈Pe〉. We do not observe the 〈Pe〉1/3 scaling of Eq. (7b), which is expected at larger
〈Pe〉, however the points at largest 〈Pe〉 of run A1 show a transition to a flatter scaling. As one
can see, while the scaling Eq. (7a) is well reproduced, data obtained with different values of μ and
Reλ are not on the same master curve. The reason for this is the presence of the chemostat that
modifies the constant in front of the 〈Pe〉1/2 scaling. In Fig. 4(b) we plot the Sherwood number
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FIG. 2. Probability density function of shear rate γ = (2S2)1/2 for different Reλ. Inset: mean shear rate 〈γ 〉
(filled circles with solid line) and its root mean square (area in gray) compared with the dimensional estimation
γη = τ−1

η (empty circles with dashed line), due to the Jensen inequality 〈γ 〉 < γη.
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FIG. 3. Local gain of Sherwood number Sh − 1 versus local Peclet number Pe computed on the different
particles of run A3; see Table I. Colors refer to nine different values of the particles radius R as in label. The
solid line with filled circles represents the behavior of 〈Sh〉 − 1 versus 〈Pe〉.

rescaled with the coefficient χ (α) (with α = μτη) given by Eq. (10), which generalizes Batchelor’s
result (corresponding to α = 0). As one can see, now we find a good collapse for all the runs
characterized by different values of Reλ and α. For 〈Pe〉 � 0.5, the analytical prediction Eq. (9)
provides an accurate description of the effect of turbulence on the uptake, which is mainly controlled
by the Peclet number. We observe also some small difference between runs A and B, indicating a
possible dependence on the Schmidt number which is not fully captured by the theoretical analysis.
Remarkably, the collapse of the different curves is observed for all the available values of 〈Pe〉, even
beyond the range of validity of Eq. (9).

Given the intense fluctuations that characterize turbulent gradients, we expect the local uptake
rate to be subjected to strong variations with respect to the mean. To characterize those fluctuations
we study the PDF of the local Sherwood number Sh for different values of the control parameters
Reλ, Peη, Sc. In Fig. 5, the distribution of Sh is plotted, at fixed Reλ, Sc, and α, for different values
of Peη obtained by changing the effective particle radius R. For very small values of Peη (hence,
small R), the observed values of Sh are confined to a narrow interval around 1. This confirms that
the local uptake rate by small particles is mildly influenced by turbulence both in terms of its average
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FIG. 4. Dependence of the mean Sherwood number on the mean Peclet number: (a) 〈Sh〉 − 1 vs. 〈Pe〉 for
all runs. Average is taken over all the particles with the same radius and over time, after discarding a transient.
The dashed line displays the 〈Pe〉1/2 behavior of Eq. (7a). (b) 〈Sh〉 − 1 rescaled by the coefficient χ (α); see
Eq. (10). The dashed line represents the prediction Eq. (9).
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FIG. 5. PDF of the instantaneous Sherwood number Sh at varying the nominal Peη number, i.e., for various
particle radius: (a) Pdf of the deviation Sh − 1 of the Sherwood number from the diffusive value. Curves are
plotted for different Peη and fixed Reλ = 109, Sc = 10, and α = 0.05 (run A3). (b) The same PDF of panel
(a) normalized by their average. Note that the increased uptake by larger particles is also accompanied by more
intense fluctuations.

and of its fluctuations. Increasing Peη (and consequently, the particle radius), the distribution moves
toward larger values of Sh and develops wider right tails. This change of shape in the distribution is
made more evident in Fig. 5(b), where the PDFs are normalized with the average value 〈Sh〉. The
small left tails for Sh < 1 are due to the diffusive interactions among the particles in the simulation
box. The relative importance of this effect is consistent with the estimation based on the particle
number with random distribution and could, in principle, be eliminated by decreasing the number
of particles. Nonetheless, the effect is very small and does not affect the global shape of the PDF.

To directly scrutinize the effect of increasing turbulent mixing, we now fix the particle size, i.e.,
the nominal Peclet number, and consider different values of Reλ. In Fig. 6(a), we show the PDF
of Sh for three cases in which the nutrient replenishment rate μ of the chemostat is kept constant
while varying Reλ. By definition, for fixed μ, α decreases as turbulence becomes more intense and
this produces a shift of the PDF toward larger values of Sh. An increase in Reλ, however, does
not seem to affect the shape of the distribution, as one can appreciate from Fig. 6(b), where the
PDFs are normalized with their mean values. In these three cases both the nominal Peclet, Peη,
and the Schmidt, Sc, numbers are kept constant, which physically speaking means that the ratio of
the particle radius to the Kolmogorov length is also constant, as R/η = √

Peη/Sc. In Fig. 6(c), we
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FIG. 6. PDF of Sh − 1 for different Reλ: (a) holding fixed Peη = 3, Sc = 10. The chemostat rate μ is
also fixed so that larger Reλ corresponds to smaller α; (b) same as panel (a), but normalizing the PDFs of
Sh − 1 with their average value, demonstrating that, even though the average 〈Sh〉 increases with Reλ, the
shape of the distribution is not strongly affected by the turbulence intensity. (c) Same rescaling as in panel
(b) repeated for three sets of particles, with different radii, namely, R/η = √

Peη/Sc = 0.57 (red symbols),
0.87(green symbols), 1.70 (empty symbols), respectively.
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FIG. 7. Correlation between local strain and uptake rates: (a) Temporal signal of the normalized variables
S̃h(t ) = (Sh(t ) − 〈Sh〉)/σSh (black solid line) and P̃e(t ) = (Pe(t ) − 〈Pe〉)/σPe (blue dashed line) for Reλ = 66
(Run A2) and Peη = 2. (b) Temporal cross correlation C(τ ) = 〈P̃e(t )S̃h(t + τ )〉 for different Reλ (Run A1, A3,
and B2) while taking μ = 0.2 constant, thus changing α, with Peη = 1. Time is rescaled by τη to make clear
that the maximum is attained at τ ≈ τη. Without this rescaling the long time decay of the different curves is
basically the same, meaning that it is mainly controlled by the chemostat rate μ (not shown). (c) For different
Peη, as in label, at fixed Reλ = 66 and Sc = 10 (for clarity, not all data points are represented).

show the PDFs for three different values of R/η. As one can see, the rescaled PDFs collapse fairly
well, implying that R/η dominates the overall shape of the distributions, especially the behavior of
the right tail, with more intense fluctuations in uptake measured when the effective radius reaches
the Kolmogorov scale. Residual effects in Reλ, however, cannot be completely ruled out. It is
worth emphasizing that R ∼ η constitutes the upper limit for the particle size within our model,
therefore the details of the statistics close to this limit should be taken with caution. However, the
consistency of the behavior through about a factor three in radius seems to support the robustness
of the observation.

We conclude by briefly discussing the relevance of time correlations in the uptake process.
Indeed, it is reasonable to expect that a local fluctuation of the velocity gradient at a given time
should produce a corresponding fluctuation in the scalar uptake with some delay time. This is
qualitatively confirmed by inspecting the temporal signals of the instantaneous Sherwood and Peclet
numbers, shown in Fig. 7(a). To quantify this delay we compute the connected cross correlation
between Pe and Sh normalized by their standard deviation, which is shown in Figs. 7(b) and 7(c)
at varying the relevant parameters. As one can see, the correlation functions attain their maximum
value for a delay time of the order of τη. The Kolmogorov timescale is indeed the timescale for the
deformation of the nutrient field to take place around the particle in the viscous-diffusive regime of
scalar transport, which is the one relevant to the problem [31].

V. CONCLUSIONS

In this work we have studied the effect of turbulence on the scalar uptake by spherical absorbing
particles advected by the flow. By means of realistic, direct numerical simulations at different
turbulent intensities, we computed the instantaneous absorption of a scalar field, and its gain with
respect to a purely diffusive process. We used a point particle method with volumetric absorption of
the nutrient scalar field calibrated to represent particles of different sizes (i.e., Peclet numbers).

The scalar uptake relative to a purely diffusive process, quantified by the Sherwood number Sh,
is found to depend on the average particle Peclet number Pe, in agreement with classical predictions
based on a mean-field representation of turbulence. Nonetheless, we observe strong fluctuations in
the instantaneous and local value of Sh, whose PDF develops wide tails in particular for large values
of Peclet (i.e., large radii) and Reynolds numbers.

By analyzing the time series of Sh and Pe along a particle trajectory, we observed a delay between
the two signals which was quantified by computing the cross correlation function. This delay is
found to be of the order of the Kolmogorov time of the flow and depends weakly on the Peclet
number.
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It is now worth discussing the possible relevance of our findings for the nutrient uptake by
small nonmotile microorganisms transported by fluid flows. In the ocean [32,33], using as reference
parameters ε = 10−4 − 10−8 m2s−3, ν = 10−6 m2s−1, and D ∼ 10−9 m2s−1 (for the most important
nutrient like phosphate and nitrate) one has τη = 0.1–10 s and Sc = 103. For a phytoplankton cell
of size R = 10−6 m (e.g., a bacterium), the Peclet number ranges between Pe = 10−4 and 10−2 and,
therefore, the effect of turbulence on nutrient uptake is expected to be negligible. Conversely, for
cells of size R = 10−4 m we have Pe = 1–100 and the average cellular uptake, according to our
results, can be substantially affected by turbulence with an increase up to about two times with
respect a purely diffusive environment [6]. In particular, our results show that, in this regime, the
local value of the uptake can be much larger than the mean, with a PDF which develops very large
tails. To the best our knowledge, the effect of fast and strong nutrient fluctuations on phytoplankton
growth is not known. Our findings suggest that it would be interesting to investigate this issue
experimentally.

We also observe that the proposed model, besides being relevant to nutrient uptake of nonmotile
micro-organisms, is suitable to describe a variety of different applications, such as evaporation and
condensation of droplets [34–36], in which the emission and absorption of supersaturated water
vapor is mediated by turbulent transport.

The present analysis focused on the situation in which the nutrient is continuously replenished
at all scales by a constant chemostat. While this can mimic nutrient upwelling from an underlying
reservoir [17], other kinds of forcing may be relevant to real applications. For instance, injections
which, unlike the chemostat here used, replenish the nutrient only at large scales. Preliminary tests
(not shown) in this direction [37] indicate that the main findings of our analysis are robust. In
particular, intense fluctuations in the local Sherwood number are observed independently on the
forcing used, thus confirming the importance of a description that goes beyond the mean field
approach.

Especially in the ocean, nutrient sources are often distributed in small ephemeral patches [38].
Thus, a natural extension of this model would be to consider a forcing for the nutrient not uniform
in space and time, representing the variability present in nature. Other possible extensions of the
model are in the direction of a better representation of the absorption mechanism which could take
into account more accurately of the local effects of the flow such as, for example, rotation of the cell
due to local vorticity and its effect on the uptake [39].
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APPENDIX A: SMOLUCHOWSKI RATE IN A CHEMOSTAT

Consider a spherical particle immersed in a quiescent nutrient concentration c(x, t ) sustained by
a chemostat, i.e., ruled by the equation

∂t c = D�c − μ(c − c0), (A1)

with initial condition c(x, 0) = c0 and boundary conditions c(R, t ) = 0 at the surface of the sphere
and c(∞, t ) = c0, where we used the spherical symmetry of the problem. At stationarity, the
relative concentration, ψ = 1 − c/c0, satisfies the equation ψ ′′ + 2ψ ′/r − μψ/D = 0. Solving for
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the concentration yields

c(r, t ) = c0

[
1 − R

r
e−(r−R)/ξ

]
, (A2)

where the long-range behavior of the solution without source term is exponentially damped with
screening length ξ = √

D/μ. The uptake rate is obtained by integrating the nutrient flux J = −D∂rc
over the surface of the sphere

κμ =
∮

J · n̂ dS = κs

(
1 + R

ξ

)
, (A3)

with κs = 4πDRc0 being the usual Smoluchowski rate, which is recovered in the limit μ → 0 (i.e.,
ξ → ∞).

APPENDIX B: GENERALIZATION OF THE BATCHELOR
CALCULATIONS FOR A CHEMOSTAT

We report here the details of the analytical derivation of the Sherwood number behavior in the
Pe � 1 limit, by following the work of Batchelor [18] and extending his result for the case of a
chemostat.

We start by considering the equation for a nutrient concentration c(x, t ), advected by the velocity
field u(x, t ) and replenished by a chemostat with rate μ,

∂t c + u · ∇c = D�c − μ(c − c0). (B1)

Absorption by the particle is modeled by the boundary conditions: c = 0 at the particle surface, i.e.,
for r = R (where r = |r|) and c = c0 in the far away distance, r → ∞.

As a first approximation, we assume a time-independent linear shear flow, i.e., ui = Gi jx j , with
Gi j = ∂ jui constant. As usual, the gradient tensor Gi j can be written as Gi j = Si j + �i j , with the
symmetric, Si j = 1

2 (∂ jui + ∂iu j ), and antisymmetric, �i j = 1
2 (∂ jui − ∂iu j ), component representing

straining motion and rigid-body rotation, respectively.
We begin by searching for a solution in Fourier space for the concentration field in the case

of an instantaneous source with uptake rate κ . To study the mass transfer in the proximity of the
particle, it is convenient to adopt the comoving coordinates r = x − X i. We also rewrite Eq. (B1) for
the relative concentration ψ = 1 − c/c0, with boundary condition ψ (∞, t ) = 0 and ψ (R, t ) = 1.
Considering the Fourier transform ψ̂ (q, t ) = ∫ ∞

−∞ ψ (r, t )e−iq·rd3r, Eq. (B1) reads

∂ψ̂

∂t
− Gi jqi

∂ψ̂

∂q j
= −Dq2ψ̂ − μψ̂, (B2)

with q = |q|.
The concentration field for a sustained source is obtained as the time integral of the solution of

the instantaneous source, i.e.,

ψ̂ (q, t ) = κ

∫ t

0
ds e−DqiBi j q j−μs, (B3)

with Bi j (t ) a time-dependent symmetric matrix that incorporates the effects of the shear. In the
absence of shear, it reduces to a diagonal matrix that describes isotropic diffusion with a Gaussian
solution [40,41]. Plugging the solution in Eq. (B2) yields the equation for the tensor Bi j that, after
some algebra, reads

dBi j

dt
= δi j + Gil B jl + GjlBil . (B4)
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Now antitransforming, the concentration field becomes

ψ (r, t ) = κ

∫ t

0
ds

∫ ∞

−∞

d3q
(2π )3

eiq·r−Dq·Bq−μs, (B5)

which can be easily solved by Gaussian integration, yielding in physical space,

ψ (r, t ) = κ

(4πD)3/2

∫ t

0

ds√
det(B)

e−r·B−1r/(4D)−μs. (B6)

The steady-state solution, which corresponds to the diffusive approximation around the absorbing
particle, is obtained taking the limit t → ∞ and approximating the integrand with its Taylor
expansion in r = 0 and s = 0 [19]. At the lowest order we can assume Bi j = s δi j , det(Bi j ) = s3,
and B−1

i j = s−1δi j , obtaining

ψ (r) ≈ κ

(4πD)3/2

∫ ∞

0

ds

s3/2
e− r2

4Ds −μs = κe−r/ξ

4πDr
. (B7)

The Sherwood number, defined as Sh(t ) = 1 + c′(R, t )/c0, is computed subtracting the steady-state
solution to the global solution as c′(r, t )/c0 = ψ (r) − ψ (r, t ). We then perform the average over
time by taking the limit t → ∞, and then evaluate the integral at particle surface by taking the limit
r → 0. Since κ differs weakly from κs, we can approximate the integral as

Sh = 1 + R

(4πD)1/2

∫ ∞

0
[s−3/2 − det(B)−1/2]e−μsds (B8)

An approximation valid for a generic linear shear flows can be found by expanding Bi j as power
series in t : Bi j = δi jt + B(2)

i j t2 + B(3)
i j t3 + · · · . Hence, substituting in Eq. (B4) we can determine the

first coefficients

B(2)
i j = 1

2
(Gi j + Gji ) = Si j,

B(3)
i j = 2

3
Sil S jl + 1

3
(Sil� jl + S jl�il ). (B9)

Now we consider the axes of reference to coincide with the principal axes of the rate of strain tensor
Si j to obtain a simple shear flow along a preferential direction G12 = γ , S12 = S21 = γ /2, so that
Eq. (B9) is satisfied by

B11 = t
(
1 + 1

3γ 2t2
)
, B22 = t, B33 = t,

B12 = 1
2γ t2, B21 = B23 = B33 = 0. (B10)

The determinant of Bi j is given by (
det(B)

t3

)1/2

= 1 + γ 2t2

24
. (B11)

By changing variable to s = z/γ and by defining the parameter α = μ/γ , the Sherwood number in
the case of a generic linear shear flow and in the presence of a chemostat is then given by

Sh = 1 + χ (α)Pe1/2 with χ (α) = 1

(4π )1/2

∫ ∞

0
dz e−αz

√
z

24 + z2
. (B12)

The integral admits a real solution for α > 0 and for α = 0 it recovers the prediction given
by Batchelor, χ (0) = √

π/(61/44) [18]. The parameter α is the ratio between the timescale of
replenishment of the nutrient by the source and the stirring of fluid due to advection. Therefore,
the nutrient source changes the rate of transfer and enters into the computation of the Sherwood
number in a not trivial way.
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