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Abstract Ecosystems display a complex spatial organization. Ecologists have long tried to
characterize them by looking at how different measures of biodiversity change across spatial
scales. Ecological neutral theory has provided simple predictions accounting for general
empirical patterns in communities of competing species. However, while neutral theory
in well-mixed ecosystems is mathematically well understood, spatial models still present
several open problems, limiting the quantitative understanding of spatial biodiversity. In this
review, we discuss the state of the art in spatial neutral theory. We emphasize the connection
between spatial ecological models and the physics of non-equilibrium phase transitions and
how concepts developed in statistical physics translate in population dynamics, and vice
versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial
neutral models, and their relevance for biological populations inhabiting two-dimensional
environments. We conclude by discussing models incorporating non-neutral effects in the
form of spatial and temporal disorder, and analyze how their predictions deviate from those
of purely neutral theories.
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1 Introduction

Community ecology aims at shedding light on how competing species assemble and coexist
in their habitats [21]. This has proven to be a formidable challenge. A main reason is that
ecological dynamics span a wide range of spatial and temporal scales, from those typical
of individuals to those characterizing large populations or communities. Ecologists have
empirically characterized biodiversity at the different spatial scales; for example, counting the
averagenumber of species hosted in a given area—species area relationship (SAR) [83,86], or
the distribution of their abundances—species abundance distribution (SAD) [62,99]. Often,
the ecological forces determining these patterns act at a given spatio-temporal scale but can
affect others as well. The inverse problem, i.e. linking observed patterns with the causes
originating them at different scales, is arguably the central problem in ecology [59].

This kind of problem sounds familiar to experts in statistical physics, where large-scale
emergent behavior results from interactions among simple local units. Tools of statistical
physics are indeed very useful to make progress on the aforementioned crucial issues in
ecology. In particular, a natural approach to such complex problems is to radically simplify
them. To this aim, we consider ecosystems made up of competing non-motile species, such
as trees, or having a motility range much smaller than the typical linear size of the popu-
lation, such as communities of microorganisms. Further possible simplifications are that all
emergent phenomena originate at the single-individual scale and, more drastically, that dif-
ferences among individuals, possibly belonging to different species, can be neglected. These
assumptions constitute the basis of the ecological neutral theory proposed by Hubbell [50].

Ecological neutral theory [50] was built upon theoretical ideas of Kimura’s neutral theory
of population genetics [53]. Both theories underscore the role of stochastic demographic
fluctuations in determining the fate of populations and completely neglect deterministic
effects stemming fromfitness differences. The assumption of ecological neutrality has elicited
heated controversies, as it hinted that classical ecological concepts, such as niches, might play
a marginal role in structuring communities of competing species. Despite these contentions,
neutral theory had a considerable impact on ecological thinking, owing to its ability to
quantitatively predict non-trivial patterns of biodiversity with simple models characterized
by very few adjustable parameters [1,5,91].

Spatially implicit neutral models describe well-mixed communities of individuals subject
to immigration from a larger reservoir of species where diversity is maintained via speciation.
They can be solved analytically [32,66,80,101,103], yielding analytical expressions for the
SAD. Beside the mathematical appeal, these exact solutions have been extremely helpful for
fitting empirical data and therefore testing neutral theory or, at least, promote it as a null-
model [92]. For more exhaustive surveys of ecological neutral theory, we refer the reader to
Hubbell’s book [50] and the reviews [1,5,91].

The focus of this review is on spatially-explicit neutral and near-neutral population mod-
els. Explicitly describing space is crucial to address the fundamental ecological questions
sketched at the beginning of the introduction. However, spatially-explicit models—that are
often variants of familiar models in non-equilibrium statistical physics [30]— are still poorly
understood, especially if compared with their well-mixed counterparts [33]. One of the
most studied neutral model is the voter model with speciation, or multi-species voter model
[31,77,87], which generalizes themore common two-species votermodel [60]. The stepping-
stone model [14,52,54,56] and the contact process [46,60,63] are other examples of spatial
models that have been studied in both the physics and population biology literature. We shall
discuss how these analogies can be used to advance our understanding of spatial ecology and
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the main open problems. This review heavily relies on extensive numerical computations of
lattice models based on previous works by the authors. This might have biased the choice of
some topics and we apologize if some relevant works are not properly discussed.

The review is organized as follows. In Sect. 2 we introduce the multispecies voter model
on a lattice and its dual representation in terms of coalescing random walkers. We then
discuss its predictions of macroecological patterns: the SAR, and the SAD. For the lat-
ter, we compare two recent analytical approaches [25,94,105] with novel computational
results. We mainly discuss the two-dimensional case due to its ecological relevance, but
also briefly present the one-dimensional case for comparison. We conclude the section
by presenting new results on an important dynamical property: the distribution of species
persistence-times. In Sect. 3 we discuss other neutral models, where, at variance with the
voter model, lattice sites are not necessarily occupied by exactly one individual at all times.
In particular, we consider the stepping stone model, where each lattice site hosts a local
community of individuals. This generalization is relevant for modeling microorganisms
and their macroecological patterns. We then consider a multispecies variant of the con-
tact process, where lattice sites can be either empty of occupied by single individual. In
Sect. 4 we introduce non-neutral effects on a simplified two-species competition model,
where adjusting a single parameter one can tune the departure from neutrality, here mod-
eled as a specific habitat preference. Physically, this habitat preference can be thought
as a form of quenched disorder. We discuss how this disorder generically favors species
coexistence using the language of statistical mechanics, and also discuss other forms of
disorder such as temporal heterogeneity. Finally, Sect. 5 is devoted to perspectives and con-
clusions.

2 Voter Model with Speciation

2.1 Description of the Model

A paradigmatic example of spatial neutral model is the voter model with speciation, [31],
which is is amultispecies generalization of the voter model [60]. The latter is a widely studied
model that has been applied in diverse contexts, from population genetics to spatial conflicts
[20], spreading of epidemic diseases [81], opinion dynamics [13] and linguistics [24].

The votermodelwith speciation is defined on a lattice, where each site hosts one individual
belonging to some species. At each discrete time step, a lattice site is chosen at random and the
residing individual is removed (death event). Then, as illustrated Fig. 1, the dead individual
is replaced:

– With probability ν, by an individual of a new species not present in the system (speciation
event). Notice that, because of speciation, the total number of species is not fixed. In
population genetics, this type of event is interpreted as amutation within the same species
[54,70].

– With complementary probability (1 − ν), by a new individual of an existing species
(reproduction event). In this case, the newborn belongs to the same species of a parent
individual chosen at random in the neighborhood of the vacant site. In the simplest case,
the nearest-neighbors (NN) are chosen with uniform probability. More generally, the
parent individual is selected according to a probability distribution P(r) (the dispersal
kernel) over the neighbors within a distance r.
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Fig. 1 Examples of transitions in the 2D voter model with speciation

Most of this section will be devoted to the ecologically relevant case where the system is
a two-dimensional (2D) square lattice, although we will briefly present some results in 1D
for comparison.

2.2 Duality

The voter model with speciation is dual to a system of coalescing random walkers with
an annihilation rate [10,31,47]. In this context, “duality” means that each trajectory of one
system can be mapped in one of the other system having equal probability [47]. The dual
process is constructed as follows. We start by placing on each lattice site a random walker.
The dynamic of the dual process proceeds backward in time. At each discrete (backward)
time step, with probability 1 − ν, a randomly chosen walker is moved to a new site, where
the dispersal kernel P(r) here plays the role of the distribution of possible displacements. If
the site is occupied, the two walkers coalesce, i.e. one of the two is removed keeping trace of
the coalescing partner. With complementary probability ν a randomly chosen randomwalker
is annihilated, i.e. removed from the system. This event corresponds to a speciation event
in the forward dynamics. The whole tree of coalescing random walkers, before annihilation,
represents the entire genealogical tree of a species up to the speciation event that originated
it.

The standard forward in time evolution of the voter-model with speciation and its dual
dynamics are sketched, for the one-dimensional case, in Fig. 2a and b, respectively.

Duality is a very useful property to understand the physics of the votermodel. For example,
it immediately stems from duality that the ν → 0 limit is fundamentally different in D ≤ 2
and D > 2. As a matter of fact, in D ≤ 2 the random walk is recurrent, meaning that the
probability of two randomly chosen individuals to belong to the same species approaches
one as ν → 0. In other words, in the absence of speciation, one has monodominance of one
species in the long term. The same property does not hold in D > 2, where random walkers
are not recurrent and, in an infinite system, multiple species coexist on the long term even
in the limit ν → 0. Interestingly, the ecologically most relevant case, D = 2, is the critical
dimension of this model. We shall see that this fact is a source of non-trivial behaviors of
ecologically relevant quantities.
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Fig. 2 a Example of space-time dynamics of the 1D voter model with speciation. b Corresponding dual
dynamics: coalescing and annihilating random walkers. c Snapshot of a configuration of the 2D voter model
simulated with the dual dynamics,with ν = 5 × 10−7 and nearest-neighbor (NN) dispersal. d Same as c but
with a longer dispersal range (uniformly distributed in a square of side K ) with K = 7. Each color labels a
different species (Color figure online)

Duality is also an extremely powerful tool for computational analyses [77,87]. If one
is interested in the static, long-term, properties of the voter model with speciation, it is
numerically much more efficient to simulate the dual dynamics than the forward one. In a
dual simulation, after all walkers coalesced or were annihilated, species can be assigned to
the start site of each walker, obtaining a stationary configuration of the voter model. Beside
computational speed, this approach has also the advantage of eliminating finite-size effects
induced by the boundary conditions, as the coalescing random walkers can be simulated in a
virtually infinite system. For illustrative purposes, in Fig. 2c and dwe show two configurations
of the 2D voter model obtained with the dual dynamics for two different dispersal kernels.

2.3 β-Diversity

The first ecological pattern we consider is the β-diversity, which is a measure of how the
species composition in an ecosystem varies with the distance. We define the β-diversity as
the probability F(r), that two randomly chosen individuals at a distance r are conspecific, i.e.
belong to the same species. We remark that, although this is the natural definition in this con-
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text, other definitions have been used in the ecological literature [100]. Mathematically, F(r)
can be expressed in terms of the two-point correlation functionGsi ,s j (r) = ⟨nsi (x)ns j (x+r)⟩,
where nsi (x) denotes the number of individuals of species si at location x

F(r) =
∑

i Gsi ,si (r)∑
i, j Gsi ,s j (r)

, (1)

where the sums extend over all species in the ecosystem [5]. Eq. (1) can be used to estimate the
β-diversity as the ratio between the couples of conspecific over the total number of couples
in a sample.

Let us now study the evolution equation of F(r, t) for the voter model with speciation
and NN dispersal. Although we shall focus on the 2D case, it is useful to present the general
calculation in D dimensions. Following [5,16,104] we write

F(r, t + 1) =
(
1 − 2

N

)
F(r, t)+ 1 − ν

DN

D∑

k=1

[F(r + ek, t)+ F(r − ek, t)] . (2)

The first term in the r.h.s. of Eq. (2) represents the fact that F does not change if two generic
individuals at distance r are not removed in a given time step and therefore survive. The
second term represents the events in which one of the two individuals dies (with prob. 2/N ),
no speciation occurs (with prob. 1 − ν) and the dead individual is replaced by a conspecific
from the 2D neighbor sites. Taking the continuous limit N → ∞ with the lattice spacing
a → 0, the speciation probability ν → 0, and a finite value of κ2 = 2Dν/a2, one obtains at
stationarity the differential equation

1
r D−1

d
dr

r D−1 dF
dr

− κ2F(r)+ cδD(r) = 0 (3)

where δD is the D-dimensional Dirac delta, and because of isotropy the β-diversity F(r) is
now function of r = |r| only. The solution of Eq. (3) is [5]

F(r) = c
κD−2

(2π)D/2 (κr)
(2−D)/2K(2−D)/2(κr) , (4)

where Kz is the modified Bessel function of the second kind of order z and the constant c is
fixed by the condition

∫
r<a d

Dr F(r) = 1. We recall that Eq. (4) is a continuous expression,
valid for distances much larger than the lattice spacing [16]. Although we derived Eq. (4) for
NN dispersal, the same results hold for a general dispersal kernel for distances larger than
the kernel range, provided that the kernel range is finite.

For D = 2, Eq. (4) implies that F(r) ∝ K0(κr), which is characterized by a slow
logarithmic decay, ∼ − ln(rκ), up to distances of order 1/κ ∼ 1/

√
ν, followed by a

faster, exponential falloff. Remarkably, the β-diversity empirically measured in several
tropical forests in Central and South America is consistent with a logarithmic decay for
large distances [22]. We remark that this logarithmic decay is the signature that D = 2
is the critical dimension for the voter model. In contrast, in D = 1, Eq. (4) becomes
F(r) ∝ √

rκK1/2(κr) ∼ exp(−rκ). We mention for later convenience that, in D = 1
with NN dispersal, Eq. (2) can be solved without using the continuous approximation, giving
[104]

F(r) = exp(−α(ν)r) , with α(ν) = ln
[

(1−ν)

(1−√
(ν(2−ν))

]
, (5)

where α(ν) ≈ √
(2ν) for ν → 0.
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Although the β-diversity decays exponentially on scales 1/κ ∼ 1/
√

ν both in 1D and 2D,
there are important differences. Because 2D is the critical dimension, a large biodiversity
(i.e. a large average number of species) can be sustained by very low values of the speciation
rate ν. This implies that in 2D there are many species living on scales much smaller than 1/κ ,
where the correlations decay logarithmically. Conversely, in 1D to maintain biodiversity one
needs a large value of ν, so that 1/κ is the only characteristic scale and there is no additional
structure on scales smaller than 1/κ . This crucial point will be further elucidated in the rest of
the section, where we will discuss other observables in 2D (Sects. 2.4 and 2.5) and compare
them with their 1D counterparts.

2.4 Species–Area Relationships

We now focus on the SAR, defined as the average number of species, S of a given taxonomic
level occupying a given area of size A. SARs are widely studied as a measure of spatial
biodiversity and quantify how larger habitats support more species than smaller ones [86].
Empirical measures of SARs at multiple scales often reveal three different regimes [50,83,
86]. At small areas, the number of species increases rather steeply, nearly linearly, with
the sampled areas. A similar steep increase is observed at very large, continental scales.
Instead, at intermediate scales, a slower, sublinear growth is often found. Such a growth is
well approximated by a power law S ∼ Az , z < 1, over a wide range of taxa [2], though
a logarithmic behavior S ≈ C ln A has also been proposed. An extensive meta-study by
Drakare et al. [29] reconsidered a large body of SAR studies from the literature, revealing
that the power law provides a better fit in about half of the cases. This study also observed that
the exponent z correlates positively with the body size of the considered group of species,
so that small microorganisms typically display very shallow SAR curves as compared with
larger organisms (see also [48] and Sect. 3.1).

Simulations of the (dual) voter model with speciation yields SARs qualitatively similar
to those obtained from field data, see Fig. 3a. In the voter model, the steep initial regime
is mostly determined by the dispersal range K . For areas significantly larger than K 2, a
sublinear growth is observed (see Fig. 3b. In this regime, the growth becomes progressively
more shallow as the speciation rate ν is decreased. For larger scales, the logarithmic slope of
the SAR curves become steeper again. The area at which this final crossover occurs increases
as ν is decreased.

An interesting question is whether the sublinear growth regime in the voter model can be
characterized by a power-law S ∼ Az and, in this case, what is the value of the exponent z
as a function of ν. To address this question, we begin by reviewing a classic estimate of z by
Durrett and Levin [31] relying on duality (see Sect. 2.2). The speciation rate ν sets a time
scale 1/ν which also corresponds to a characteristic length scale ξ = 1/

√
ν because of the

diffusive behavior of random walkers in the dual model. Walkers with an initial separation
much larger than ξ are likely to be annihilated before coalescence occurs. This observation
alone explains the linear scaling of S(A) for areas A ≫ ξ2 = ν−1. At these scales, species
are uncorrelated, as can also be inferred from the analysis of the β-diversity in the previous
section. For a system of coalescing random walkers in 2D, the density of occupied sites ρ(t)
decays asymptotically as [12,76]

ρ(t) ∼ ln t
π t

. (6)

The characteristic logarithmic coarsening of clusters observed in the 2D voter model
without speciation can be related to the logarithm appearing in Eq. (6) [28]. Assuming ν ≪ 1,
the annihilation rate at time t in an area ξ × ξ can be approximated as the annihilation rate
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Fig. 3 Species–area relationships (SAR) and their scaling behavior in the voter model with speciation. a
Number of species S as a function of the sampled area A for different speciation rates as in the caption. The
triphasic shape is evident for larger speciations rates. Simulations from [77] were performed with a square
dispersal kernel, i.e. P(r) is a uniform distribution on a square of side K centered on the empty site, with
K = 7. b Local slopes, d ln S/d ln A for the curves shown in panel a. c Dependence of the exponent z on
ν as obtained from the local slopes for both the square kernel with K = 7 and NN dispersal. The exponent
is estimated at the inflection point of the SADs, i.e. at the minimum of the local slopes. Also shown is the
prediction of Eq. (8) (black solid line) where the black triangles correspond to the values provided in [31]. d
Plot of 1/z versus ln(ν) of the same data of panel c to highlight the logarithmic behavior of Eq. (9)

per walker ν times the number of walkers in the absence of annihilations ξ2ρ(t). Integrating
over time, we find that the total number of annihilations, i.e. the total number of species, is
[10]

S(ξ2) ≈ νξ2
∫ 1/ν=ξ2

t0
dt ρ(t) = ln2(ξ2) − ln2(t0)

2π
≈ 2

π
(ln ξ)2 , (7)

where t0 is the time at which the asymptotic expression (6) starts to be valid. The upper
temporal cut-off is set to 1/ν (with 1/ν = ξ2) because the number of killing events occurring
after a time ∼ 1/ν is bounded by the number of walkers in the system, which is ξ2ρ(1/ν) ∼
ln ξ [10]. Finally, combining Eq. (7), the fact that S(1) = 1 and matching a power law
behavior S = Az in the range of scales from A = 1 to A = ξ2, one finds [31]

z = ln [S (A)]
ln (A)

= 2 ln[ln(1/√ν)] + ln(2/π)
ln(1/ν)

. (8)

Also in this case, the logarithmic dependence of the exponent z on ν derives from the fact
that D = 2 is the critical dimension for the voter model.
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More recent results disputed the validity of Eq. (8). Scaling arguments hinted that z should
approach a finite value z ≈ 0.2 in the limit of vanishing ν (see [104] and Sect. 2.5.1), while
numerical simulations suggested a power law dependence, z ∼ ν0.15 [87]. Finally, further
numerical simulations, based on the dual representation of the voter model with speciation
(see Sect. 2.2) and spanning a very wide range of speciation rates from 10−3 to 10−11

confirmed the logarithmic behavior predicted by Eq. (8) [77]. The exponents measured in
such simulations, shown in Fig. 3c, are well fitted by a phenomenological expression of the
form

z = 1
q + m ln(ν)

(9)

which is consistent with Eq. (8) up to order ln ln ν, see also Fig. 3d. However, fitted values
of the prefactors q and m are not consistent with Eq. (8). This discrepancy is probably due
to pre-asymptotic effects as well as to the approximation of assuming a power-law range
between A = 1 and A = ln(1/ν).

Let us briefly discuss the role of the dispersal kernel. As illustrated in Fig. 3c and d, a com-
parison between NN dispersal and a square dispersal kernel of range K = 7 demonstrates
that the exponent z depends to some extent on the dispersal kernel. However, numerical evi-
dence [77,87] suggests that when the dispersal kernel range is large enough (approximately
K ≥ 5) the exponents are very weakly dependent on K . Moreover, SARs obtained with
different values of K can be rescaled onto a universal function of A and ν via the transfor-
mation S = f (A, ν, K ) = K χφ(A/K χ , ν) with a fitted value of χ ≈ 1.97. To the best of
our knowledge, a formal derivation of this scaling law and of the exponent χ is currently an
open problem.

The non-trivial area dependence of the SAR results is a special feature of the critical
dimension D = 2. To highlight this point, we now discuss the D = 1 case as comparison.
This case is also relevant to describe quasi one-dimensional ecosystems, such as river basins
[96]. For simplicity, we limit ourselves to the case of NN dispersal.

To the best of our knowledge, also in D = 1, an exact expression for the average number
of species, S(L), in a segment of length L is unknown. Nevertheless, it is possible to provide a
lower and upper bound for S(L). In D = 1, the density of walkers behaves as ρ(t) ∼ 1/

√
t ,

to be contrasted with Eq. (6) valid in the 2D case. Dimensional arguments then suggest
that the average number of species must a function of L

√
ν only, i.e. S(L; ν) = Ψ (L

√
ν).

Computational results (Fig. 4a and inset) support well this simple argument. As shown in
the figure, the non-trivial power-law regime characteristic of 2D SARs is absent in D = 1.
Indeed, the function Ψ is linear for large arguments, with a coefficient around 1.2 and it is
nearly constant for L

√
ν ≪ 1.

We can derive an upper bound to S(L) using that, in D = 1, individuals are organized
in Ns(L; ν) segments of conspecific individuals, so that S ≤ Ns , with the equality holding
if no species is present in more than one segment. We compute Ns from the probability
Pi−1,i ≡ F(|i − j |), with F(r) given by Eq. (5), that two sites i and j are occupied by
conspecific individuals [27]

S ≤ Ns = L −
L−1∑

i=1

Pi−1,i = L − (L − 1)F(1) = L − (L − 1)e−α(ν) , (10)

which for ν → 0 can be approximated as Ns ≈ 1+
√
2ν(L − 1).

The lower bound follows from Jensen’s inequality (see also [27]) applied to the frequency
of species represented by the individual in site i ∈ [0, L − 1], here denoted ni (L), which
yields
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Fig. 4 Species–area relationships for the voter model in D = 1. a Average number of species S versus the
system size L for different ν as labeled. Inset: same curves plotted vs L

√
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SAR for ν = 10−5 compared with the theoretical upper (10) and lower (11) bounds

S =
∑

i

〈
1

ni (L)

〉
≥

∑

i

1
⟨ni (L)⟩

, (11)

where ⟨ni ⟩ = ∑
j Pi, j and Pi, j = F(|i − j |) is again given by Eq. (5) and can be easily

summed numerically.
In Fig. 4b we compare the numerically obtained SAR with the upper (10) and lower (11)

bounds. Notice that the upper bound is very close to the actual SAR, implying that most
species are organized in single segments.

2.5 Species-Abundance Distributions

We now discuss species-abundance distributions (SADs), P(n; A), that measure the relative
abundance of species in a given area A. More precisely, denoting S(A) the total number of
species sampled in an area A, each composed byni (i = 1, . . . , S(A)) individuals, P(n; A)dn
is the probability that a randomly picked species has an abundance between n and n + dn.
While the expression of P(n; A) for well-mixed neutral models is known [103], computing
it for spatially explicit models, such as the voter model with speciation, has proven to be a
rather hard problem. We first discuss in Sect. 2.5.1 an approach based on standard finite-size
scaling, and underline its limitations. In Sect. 2.5.2, we discuss how this approach can be
generalized at the critical dimension, present numerical results, and discuss a recent attempt
to compute P(n; A) exploiting duality. Although we focus ond comparing the scaling theory
with results from the voter model with speciation, we remark that the theoretical approach
presented in this section is more general and can be applied to a vast class of models at the
critical dimension.

2.5.1 Power-Law Scaling Relation

In the voter model with speciation, the SAD is not only a function of the system size A,
but also of the speciation rate ν. Although we are mainly interested in 2D, it is instructive
to consider the general case in which A = LD , where L is the linear size of the sample.
Following [5,104], we assume a standard scaling form for the SAD

P(n; A, ν) = n−βΨ (nνα, AνD/2) (12)
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where the exponents α and β remain unspecified for the time being, whereas the exponent
D/2 stems from the diffusive nature of neutral models ν ∼ t−1 ∼ L−2 ∼ A−2/D . Note
that in models with long-range, non-diffusive dispersal [88] the scaling form might differ.
Equation (12) describes a power-law dependence of P on n, holding up to a scale determined
by the scaling function Ψ , that depends on dimensionless combinations of the population
size n, the speciation rate ν, and the system size A. To the best of our knowledge, there
is no available analytical prediction for the exponent β. The exponent α can be estimated
in the dual formulation of the voter model with speciation, where the population size n is
the number of coalescences that occur before an annihilation (see Sect. 2.2). This implies
that α is the same exponent characterizing the temporal decay of the density of coalescing
random walkers, ρ(t) ∼ t−α . However, ρ(t) decays as ρ(t) ∼ t−min(1,D/2) for D ̸= 2 and
ρ(t) ∼ log(t)/t in D = 2, see Eq. (6) and [11,76]. Consequently, one should expect the
power-law scaling of Eq. (12) to hold in D = 1 and D ≥ 3, but not at the critical dimension
D = 2, where logarithmic corrections should appear.

2.5.2 Generalized Scaling Relation

In order to allow for logarithmic corrections, Zillio et al. [105] proposed the generalized
scaling relation

P(n; A) = g(A)Ψ (n/ f (A)) . (13)

The dependence on ν was omitted as the above scaling law was applied to observational data
for which the speciation rate is unknown and assumed to be fixed. The key aspect of Eq. (13)
is that f and g, are general functions and not necessarily power-laws as in conventional
scaling, allowing for the possibility to include logarithms or other functional dependencies.
The scaling function Ψ (x) is still assumed to be a power law

Ψ (x) ∼ x−∆ (14)

for small values of x , where∆ is an exponent to be determined. Thus, also Eq. (13) postulates
a power-law dependence on n, but with amore general cut-off for large areas. After specifying
the functions f and g, Eq. 13 can be tested by plotting P(n; A)/g(A) versus x = n/ f (A)
for a set of different areas and assessing the quality of the data collapse onto a single curve,
Ψ (x).

To determine the functions f and g, we impose that P(n; A) has to be normal-
ized,

∫ ∞
n0

dn g(A) Ψ (n/ f (A)) = 1, and that its average value has to be ⟨n⟩ =∫ ∞
1 dn n g(A) Ψ (n/ f (A)). Substituting the scaling form (14) into these two equations,
it is possible to derive conditions that the functions f and g must obey, depending on the
value of ∆. In particular, the case ∆ = 1 is marginal and needs to be treated with care (other
values ∆ ̸= 1 are analyzed in the Appendix). Approaching such a limit as ∆ = 1 − ϵ with
ϵ ≪ 1, Eq. (14) becomes

Ψ (x) = x−1+ϵ ∼ 1
x

[
exp(ϵ) ln(x)

]
∼ 1

x
[1+ ϵ ln(x)] (15)

up to first order in ϵ. At the same order in ϵ, the two conditions for P(n; A) become 1 ∼
g(A) f (A) ln( f (A))[1 + ϵ

2 ln( f (A))] and ⟨n⟩ ∼ g(A) f (A)2, respectively, from which we
finally obtain

f (A) = ⟨n⟩ ln⟨n⟩
[
1+ ϵ

2
ln⟨n⟩

]
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Fig. 5 SAD and data collapse. Results are presented for different linear system sizes and different speciation
rates ν, keeping the product Aν = 200 constant. a SADs for different linear sizes from L = 400 to L = 2500.
b Collapse of SADs by means of Eqs. (13) and (16). The fitted parameter in the functions f and g is ϵ = 0.08.
c Naive collapse without logarithmic corrections, where deviation for perfect collapse are evident. d Collapse
with the scaling form of Eqs. (13) and (16), but setting ϵ = 0. Also in this case the discrepancy is evident

g(A) = 1

⟨n⟩ ln2⟨n⟩
[
1+ ϵ

2 ln⟨n⟩
]2 (16)

up to first order in ϵ. Notice that both functions f and g include logarithmic corrections. By
means of a similar calculation, one can estimate the k-th moment ⟨nk⟩, and verify that all the
moment ratios ⟨nk⟩/⟨nk−1⟩ scale in the same way, up to a multiplicative constant

⟨nk⟩
⟨nk−1⟩ =

∫
dn nk P(n; A)∫
dn nk−1 P(n; A) ∝ f (A) k ≥ 1 . (17)

revealing a highly anomalous scaling.
Zillio et al. [105], showed that this scaling form provides a much better collapse of empir-

ical data from the Barro Colorado tropical forest than a power-law scaling relation such as
Eq. (12). This supports the idea that ∆ is close to its marginal value 1 in tropical forests.

We tested computationally whether Eqs. (13) and (16) provide a good collapse of SADs
obtained from the voter model with speciation and whether the relationship between the
moments, Eq. (17), holds. In simulations, an additional parameter is the speciation rate ν.
As discussed above, ν appears in scaling relationships via the dimensionless combination
AνD/2, that in 2D equals Aν. Thus, although Eqs. (13) and (16) do not include speciation
explicitly, we expect these relationships to hold if Aν is kept constant.We therefore performed
computational analyses fixing Aν = 200, although the conclusions are robust against this
choice. Results are summarized in Fig. 5 which shows plots of the SAD, for systems with
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Fig. 6 Moment ratios for
different values of k. As predicted
by Eq. (17), in the case ∆ ≈ 1 all
moment ratios ⟨nk ⟩/⟨nk−1⟩ scale
in the same way with f (A) up to
a multiplicative constant. As in
Fig. 5, the fitted value is ϵ = 0.08
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different linear size, L and different speciation rates ν (with L2ν = Aν = 200). Observe in
Fig. 5a that the smaller the size (or the larger the speciation rate) the smaller the maximal
abundance. Figure 5b show the data collapse as given by Eqs. (13) and (16), where ⟨n⟩ is
the average number of individuals measured in each area A and ϵ is a free parameter that
we fitted obtaining ϵ = 0.08 and a remarkable collapse of the different curves. The small
value of ϵ, is consistent with the assumed small deviation from ∆ = 1. A similar collapse
for Aν = 20 leads to an even smaller value ϵ ≈ 0.069 (not shown). We verified that either
removing all logarithmic corrections (thus plotting results as a function of ⟨n⟩) or simply
fixing ϵ = 0 in Eqs. (13) and (16) leads to less convincing collapses, as shown in Fig. 5c
and d, respectively. Clearly, these deviations can pass unnoticed in the presence of statistical
fluctuations. Probably, this is the reason why in [89] a simple scaling law was claimed to hold
for the 2D voter model with speciation. Finally, we also verified that moment ratios scale as
f (A), as predicted by Eq. (17) and illustrated in Fig. 6.
In summary, a non-standard scaling form, including logarithmic corrections, provides an

excellent collapse both for empirical data and for numerical simulations of the 2D voter
model. We remark that the scaling theory is phenomenological, and the small parameter
ϵ controlling the importance of logarithmic corrections is, at this level, a non-universal
free parameter. These results are in sharp contrast with the one-dimensional case, where
logarithmic corrections are not expected. Indeed, Fig. 7 shows that the naive scaling form
P(n; A)⟨n⟩ versus n/⟨n⟩ (derived inAppendixA for the case∆ ̸= 1) yields a perfect collapse
for SADs in one-dimensional systems.

It is interesting to remark that the data collapsed in [105] were obtained from tropical
forests of different areas A. It is reasonable to assume that the speciation rate ν do not vary
much among these forests. Therefore, the product Aν is not fixed, as in our computational
analyses. A possible explanation is that, although the collapse achieved in this way is not
perfect, the deviations from perfect scaling are too small to be appreciated in observational
data due to the limited sample size. We have verified in simulations (not shown) that keeping
ν constant (rather than Aν constant) small deviations from perfect collapse are observed.

We conclude this section mentioning that a heuristic expression for the SAD has been
recently derived for the votermodelwith speciation following a completely different approach
[25,94]. Let us define P(x, t) as the distribution of the number of individual of a given species
at time t . If we approximate x as a continuous quantity, we can heuristically write a Fokker–
Planck equation for the evolution of P(x, t)

∂t P(x, t) = ν∂x [x P(x, t)] + ∂2x [I (x)P(x, t)] (18)
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Fig. 7 Species abundance distribution (SAD) in the D = 1 voter model with speciation. a SAD P(n; L)
versus n at varying the system size L as labelled with Aν = 40 constant. b Collapses of curves in a obtained
with the rescaling SAD P(n; L)⟨n⟩ versus n/⟨n⟩

where the first term in the right hand side is the negative drift due to speciation, and the
second is the fluctuation in population size, where I (x) is the average number of interfaces
of a species of size x . The crucial underlying approximation is to neglect fluctuations of I (x),
which is appropriate if the distribution of the number of interfaces at fixed value of x is a
very peaked function. In this simple framework, all the dependence on the spatial dimension
of the voter model is recap into the function I (x). The steady-state solution of Eq. (18) is

Pst (x) =
e−ν

∫
dx x

I (x)

I (x)
. (19)

From duality considerations [25,94], the average number of interfaces must scale in 2D as
I (x) = x/(1+c ln x)where c is a non-universal constant. Notice how the expression of I (x)
includes familiar logarithmic terms and that the constant c plays the role of the exponent ϵ in
the scaling theory. Substituting this expression into Eq. (19) leads to an explicit expression for
the SAD, which obeys a scaling law with logarithmic corrections similar to Eq. (16), though
not identical. A more detailed comparison between this result and the previous scaling form
is an interesting issue, but beyond the scope of this review.

2.6 Species Persistence-Times

So far, we have considered neutral predictions of static ecological observables. However,
neutral theory can also be used to predict time-dependent properties. A chief example is the
distribution of survival times. The survival time τ (also called “persistence time”) within a
geographic region is defined as the time occurring between the speciation event originating a
given species and its local extinction [80]. Recent empirical work on North-American birds
and herbaceous plants revealed that the probability of observing a persistence time τ decays
as as power laws P(τ ) ∼ τ−1.83 and P(τ ) ∼ τ−1.78 respectively, with area-dependent
exponential cut-offs [6,97].

In the voter model with speciation, the survival probability as a function of time can be
computed analytically. Also in this case, the calculation relies on duality [12,58,76]. In 2D
and in the limit of vanishing ν one obtains

P(τ ) ∼ ln τ

τ 2
(20)
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Fig. 8 Species persistence times. a Probability distribution function of species persistence times for different
values of the speciation rate ν as in label. Panels b and c show the pdf rescaled with the logarithmic correction,
P(τ )τ2/ ln τ , and with a power law, P(τ )τ1.9, respectively

while standard power-law scaling P(τ ) ∼ τ−1/2 is expected in 1D. For non-negligible values
of ν, these scaling forms are cut-off by a ν-dependent exponential factor exp(−ντ ) in either
dimension. Also in this case, diffusive scaling relates the characteristic time scale 1/ν with
a length scale ξ via ξ ∼ √

ν. This explains the aforementioned area-dependent cut-offs
observed in empirical data [6].

Species persistence times in simulations of the 2D voter model with speciation are shown
inFig. 8a. Panels (b) and (c) showcompensatedplots of the simulation results. The simulations
support the prediction of Eq. (20) (panel b), and also illustrate that a power law with an
exponent close to 2 (1.9 in this case) provides a good approximation of the scaling predicted
by Eq. (20) in a broad range of scales (panel c), consistently with the empirical findings in
[6,97].

3 Other Neutral Models

In the voter model with speciation, the habitat is saturated and each site is always occupied by
an individual. In this section, we study neutral spatial models where the number of individuals
that can inhabit a site is varied. We consider three variants: the stepping-stone model with
speciation, where each site can hostmany individuals but the landscape remains saturated; the
contact process with speciation, where occupancy is limited to a maximum of one individual
per site, but sites can also be empty; and the O’Dwyer–Green model, where occupancy is
unbounded.

3.1 Stepping-Stone Model with Speciation

In the voter model, each lattice site hosts a single individual. This assumption is appropriate
for big sessile species, such as trees, where each individual occupies a well-defined area and
exploits its local resources. On the other side of the spectrum, microorganisms, such as small
eukaryotes or bacteria, are often present in very large numbers on tiny spatial scales, where
all individuals share the same resources. For these species, it is more appropriate to think of
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the habitat as subdivided into small patches, connected by migration and each hosting a large
number of individuals directly competing with each other [35]. To model such ecological
cases, in this section we consider the stepping-stone model [54,56] with speciation, which
generalizes the votermodel with speciation to the case inwhich each site hosts a fixed number
M of individuals.

Similar to the voter model with speciation, at each time step an individual is randomly
chosen and killed. With probability ν, it is replaced by an individual of a novel species.
With complementary probability (1 − ν), a reproduction event occurs. The parent of the
new individual is selected with probability (1 − µ) among the surviving M − 1 individuals
present at the same site, and with probability µ among the M individuals in a randomly
chosen neighboring patch (according to a probability distribution on the neighbors P(r),
similar to the case of the voter model). The particular case of M = 1 reduces to the voter
model with speciation up to a time rescaling t → µt . Like the votermodel, the stepping-stone
model admits a dual representation in terms of coalescing random walkers with annihilation,
which can be exploited for efficient numerical simulations. The main difference with respect
to the dual of the voter model is that, in the dual stepping-stone model, at each step a random
walker can either move to another site or stay in the site of origin. Coalescence can happen in
both circumstances, corresponding to reproduction of an individual from neighboring sites
or from the same site. For full details on the implementation we refer to [14].

As revealed by numerical simulations of the stepping-stone model based on the dual
representation, SARs are qualitatively similar to those of the voter model, although the
exponents z are, in general, smaller than in the voter model [14]. In particular, the exponent
depends not only on ν, but also on the combination of parameters Mµ, which determines the
regimes of the model. For Mµ ≪ 1, each local site is likely to contain only one species. In
this limit, each site behaves as one individual up to a time rescaling, so that one should expect
the same exponents as in the voter model with speciation. In the opposite limit Mµ ≫ 1,
there is a large diversity of species at each site. An analytical argument suggests that, in this
latter limit, the exponent should be a factor two smaller than in the former limit [14]. Let us
study the limit Mµ ≫ 1 in the dual representation. Since random walkers in the same site
have a low probability of coalescence, they will wander for a long time before coalescing.
Therefore, we can assume that, asymptotically, they will behave as in the well-mixed case.
This implies that their density in an area smaller or equal than ξ2 approximately decays
according to the mean-field formula

ρ(t) ∼ 1
t
. (21)

Observe that in this case the characteristic length is ξ = √
µ/ν, as random walks diffuse

with probability µ at each time step. Proceeding as in Eq. (7), the average number of species
in an area ξ2 can be estimated as

S(ξ2) ∼ νMξ2
∫ µ/ν=ξ2

t0

dt
t

= Mµ ln
[

ξ2

t0

]
. (22)

To compute z, we also need an estimate for S(1), that in this case is not trivially equal
to one. As the population is assumed to be well-mixed in an area equal to ξ2 or smaller, the
composition of a single site can be thought as a sample ofM individuals from this well-mixed
population. The probability distribution of the abundance in such a sample is given by Ewens’
sampling formula [34]. Substituting its expression yields
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Fig. 9 Species–area exponents
for the stepping stone model at
fixed ν = 10−6, different local
population size M and dispersal
rate µ, with NN dispersal. The
numerical estimate of the
exponent z in the voter model for
NN-dispersal and the same value
of the speciation rate is shown for
comparison
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Combining Eqs. (22) and (23) and assuming a power law in the range from A = 1 to A = ξ2,
we find an exponent

z ∼ ln(ξ2)
ln ln(ξ2)

= ln ln(ν/µ)
ln(ν/µ)

(24)

which, to the leading order, is a factor 2 smaller than the corresponding estimate for the
voter model (8). The decrease of the exponent z with the combination of parameters Mµ is
confirmed in numerical simulation, see Fig. 9, although the asymptotic reduction is less than
the factor two predicted by the approximate estimate of Eq. (24).

Summarizing, the stepping-stone model at large local community size M yields smaller
values of the species-area exponent z than the votermodel [14]. This fact is consistent with the
ecological observation that microbial communities, characterized by very large local com-
munity sizes, typically display very shallow species-area relations, and that in general there
seems to be a positive correlation between the exponent z and the body size of a taxonomic
group [48]. In the stepping-stone model, a decrease in the SAR exponent is observed in the
regime Mµ ≫ 1 where each site hosts a large number of species and therefore provides a
buffer for biodiversity [14]. This interpretation is also consistent with the “cosmopolitan”
nature of many microbial species, i.e. the fact that relatively small communities of microbes
host a biological diversity comparable with that observed in the whole planet [35,36]. This
feature has sometimes been explained invoking the fact that microbes have the possibility
of long-range dispersal [36]. However, numerical simulations show that, in the voter-model
with speciation, long-range dispersal leads to steeper, rather than shallower SARs [88].

3.2 Contact Process with Speciation

In the voter model, every dead individual is instantly replaced by a newborn, leading to a
constantly saturated environment. The implicit underlying assumption is that the birth rate is
infinite, so that death events are the rate-limiting steps. Such assumption constitutes a good
approximation in resource-rich ecosystems. In less rich ecosystems, where the birth rate is
finite, the environment is not always saturated and empty gaps can exist [61].

To explore this latter case, we study here the contact process with speciation, which is
the multi-species variant of the well-known contact process [30,42,46,47,63]. As usual, we
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Fig. 10 (Top) Snapshots of configurations of the contact process with speciation at different values of the
birth-to-death rate ratio η and ν = 10−4. In each panel, each color represents a different species. (Bottom)
SARs at different values of the birth-to-death rate η (shown in the figure legend) and ν = 10−5. (Inset) Red
dots: estimated exponent z as a function of ν for the contact process with speciation at η = 1.68. Red dashed
line is a linear fit; black dashed line is the corresponding fit for the voter model with speciation for comparison.
We have chosen a NN dispersal kernel in all panels (Color figure online)

consider the model on a 2D square lattice. Sites of the lattice can be occupied by individuals
belonging to different species or empty. The model is defined in continuous time; each
individual dies at a rate d and reproduces at a rate b. In case of a death, the site is simply
left vacant. A reproduction event is considered successful only if the individual has at least
one vacant neighboring site. In such a case, one of the vacant neighboring sites is chosen at
random.With probability ν, the site is occupied by an individual of a new species (speciation
event); with complementary probability, (1 − ν), the newborn is of the same species as the
parent.

As in the standard contact process [42,47], the parameter determining the asymptotic
density of occupied sites ρ is the dimensionless birth-to-death ratio η = b/d . For η < ηc ≈
1.649 the absorbing state in which all sites are empty is stable. A non-equilibrium phase
transition at η = ηc separates this region from a stable active phase (η > ηc) characterized
by a non-vanishing value of ρ that depends on η [46,63]. For η → ∞ one has ρ → 1 and
the model is equivalent to the voter model with speciation [30].

The CP is a self-dual model. Therefore, duality cannot be exploited in numerical simu-
lations as in the case of the voter model. Forward simulations show that the SAR and the
corresponding exponents are remarkably similar to the voter model with speciation even at
small values of η, corresponding to very fragmented ecosystems as shown in Fig. 10. For
values of η very close to ηc (but within the active phase) and small values of ν, SAR exponents
tend to be smaller than in the voter model, see inset of Fig. 10.

123



Stochastic Spatial Models in Ecology: A Statistical…

In principle, in a very fragmented ecosystem it would not make sense to sample empty
areas, or areas with very few individuals.With this idea in mind, an alternative to the standard
definition of SAR used so far is to weigh the sample of a given area with its number of
individuals, i.e. of occupied sites. Adopting this definition one finds qualitatively different
SARs for small values of η [14]. In particular, these SARs do not seem to be characterized
by a clear power-law range. We refer the reader to Ref. [14] for a broader discussion of this
issue.

3.3 O’Dwyer–Green Model

We have seen that finding exact results for neutral spatial models constitutes a formidable
problem, and even in the simple case of the voter model only asymptotic results are known.

To make progress in this direction, O’Dwyer and Green proposed a spatial neutral model
in which individuals do not compete, i.e. the site occupancy is not bounded [75]. In their
model, each individual can reproduce at a rate b, giving rise to a newborn located according
to a dispersal distribution, die at a rate d , or speciate at a rate ν, giving rise to a newborn of a
new species. The model was studied at the critical point b + ν = d . The lack of interaction
considerably simplifies the mathematical treatment: the model can be mapped into a field
theory from which the authors of [75] obtained an analytical expression for the species-area
law and the dependence of z on ν. In particular, the solution was derived by writing an
equation for the distribution of a generic species, which was solved by imposing detailed
balance. However, Grilli and coworkers [43] pointed out a flaw in this procedure. In this
model all species are transient, as the birth rate of each species is always smaller than the
death rate because of speciation. This implies that all species eventually go extinct, so that
the detailed balance (i.e. equilibrium) assumption is not valid.

An often overlooked aspect of the O’Dwyer and Green model is the lack of a carrying
capacity. Although well-mixed neutral models commonly do not have a carrying capacity
(beside that of the entire ecosystem), a local carrying capacity, i.e. a maximum occupancy
of each lattice site, is a standard ingredient in spatial neutral theory, shared by all models we
discussed so far. In theO’Dwyer andGreenmodel, since the dynamics of the entire ecosystem
is a critical branching process, the population at each site undergoes huge fluctuations. This
fact implies as a drawback that numerically simulating the steady-state of the model and
sampling its configurations is extremely difficult. While the authors of [43] clearly pointed
out that the detailed balance solution leads to several inconsistencies and is therefore not
valid, to the best of our knowledge there have been no attempt of comparing this solution
with numerical simulations to see if detailed balance can provide a reasonable approximation
of the dynamics in some particular regimes or limits.

Currently, the research of spatial neutral models that can be solved analytically is still open
[74]. In this direction, although this review focuses on lattice models, we mention a recent
phenomenological attempt based on a spatial Fokker–Planck equation where both space and
population sizes are continuous variables [3].

4 Near-Neutral Models

In the previous sections, we focused on neutral ecological models. However, in real ecosys-
tems the neutral assumption is (at best) a crude approximation. It is thus interesting to examine
some of the main effects of non-neutral forces, also because many biodiversity patterns that
are well predicted by neutral models are also found in richer, non-neutral models [39,65,98].
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Amain difficulty in comparing neutral and non-neutral models is the large number of possible
ecological effects (and corresponding parameters) that typically enter the latter. In this sec-
tion, with the aim of understanding basic non-neutral effects in a simple setting, we present
a minimal model introduced in [78], where one can continuously move from a neutral to a
non-neutral scenario by varying a single parameter, tuning the amount of spatial disorder.
We then discuss generalizations to other types of spatio-temporal disorder.

4.1 Habitat-Preference Model

We consider a variant of the voter model where different sites are preferred habitats for each
one of the competing species. For the sake of simplicity, we limit ourselves to the case of two
species A and B with NA and NB individuals, respectively. We assume habitat saturation,
so that the total population is N = NA + NB = L2 where the system is a square lattice
of size L with periodic boundary conditions. Individuals of type A and B can also migrate
to the system from an infinite reservoir where they are equally represented. Each lattice
site can be of type a or b, i.e. being a preferred habitat for colonization by species A or
B, respectively. After colonization, mortality and dispersal do not depend on being on a
preference site. Ecologically, this means that the fitness advantage belongs to the seeds and
not to the individuals themselves (see [19] for a different choice). The a versus b character
of each site is chosen randomly at the beginning and it remains fixed over time—quenched
disorder. To maintain the model globally symmetric, we assume equal proportions of a and
b sites and that intensity of the two biases (a favoring A and b favoring B) are identical. The
dynamics proceeds as follows. At each discrete time step, a lattice site is randomly chosen
with uniform probability and the residing individual is killed. The individual is replaced either
by an immigrant from the reservoir (with probability µ) or by an offspring of an individual
residing in one of the four neighboring sites (with probability (1 − µ)). In both cases, the
colonization probability is biased by an additional factor γ for the individuals that have
preference for the empty site. In formulas, the probability of colonization of a site x = {a, b}
by an individual X = {A, B} (Y = {B, A}) having (not having) preference for that site is

Wx
X (nX , nY ) = (1 − µ) (1+γ )nX

(1+γ )nX+nY
+ µ 1+γ

2+γ

Wx
Y (nX , nY ) = (1 − µ) nY

(1+γ )nX+nY
+ µ 1

2+γ ,

(25)

respectively, where nX (nY ) denotes the number of individuals of species X = {A, B}
(Y = {B, A}) in the neighborhood of the considered site. Similar models have been proposed
also in the context of heterogeneous catalysis [37] and social dynamics [64]. For γ = 0 and
µ = 0, the standard (neutral) voter model with two species is recovered. For γ = 0 but
µ ̸= 0, it corresponds to the noisy voter model [41,55].

Also in this model, the results can depend on the choice of the dispersal kernel P(r).
Here we focus on the NN dispersal and global dispersal (GD), i.e. a mean-field version of
(25). The GD case can be thought as a variant of the two islands model [71] of population
genetics, where each island host N/2 individuals and is favorable to one of the two species.
In the mean-field version, the state of the system is univocally determined by the numbers of
individuals NAa and NBb residing on their island of preference. The numbers of individuals
outside their island of preference are NBa = N/2 − NAa and NAb = N/2 − NBb. The
dynamics is then fully specified by the probabilities per elementary steps that NXx (with
X = {A, B} and x = {a, b}) increases or decreases by a unit:
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Fig. 11 Extinction times for the model with NN dispersal without immigration (ν = 0). Mean extinction
time ⟨Text ⟩ as a function of N for different values of γ as in label. The blue curve approximating the neutral
γ = 0 data points corresponds to the neutral expectation ⟨Text ⟩ ∝ N ln N , the black curves over the symbols
for γ ̸= 0 correspond to exponential fits of the form ⟨Text ⟩ ∝ exp(C(γ )N ). The inset shows (symbols) C(γ )
versus γ , while the black solid line display the best fit C(γ ) = Aγ β with β ≈ 1.63. The average extinction
time is obtained by an annealed average, i.e. by randomizing the preference sites at each realization. Each
point represents an average over 103 realizations

WNXx→NXx+1 =
(
1
2

− NXx

N

)
Wx

X (NA, NB)

WNXx→NXx−1 = NXx

N
Wx

Y (NA, NB) (26)

whereWx
Y andWx

X are given by Eq. (25) with nX and nY replaced by NX = NXx + NXy and
NY = NYy + NYx , respectively.

4.2 Extinction Times

In the absence of immigration (µ = 0) and for finite populations N < ∞, persistent coexis-
tence of the two species is not possible: demographic stochasticity eventually drives one of
the species to extinction (the absorbing state) with the fixation (in the jargon of population
genetics) of the other species. In this case, information on the system can be obtained by
studying the dynamics toward extinction [19]. Of particular interest is the average extinction
time, ⟨Text ⟩, and its dependence on system properties, such as the deviation from neutrality
and the population size.

In the neutral case (γ = 0), as discussed, the system recovers the voter model with NN
dispersal and the Moran model [70] in the version with global dispersal. In this limit, the
extinction time is set by the population size. In particular, for large N wehave ⟨Text ⟩ ∼ N ln N
for NN-dispersal [57] and ⟨Text ⟩ ∼ N for global dispersal [40,70]. To inquire the effect of
habitat preferences we performed simulations of the model (25) with an initial condition
NA = NB = N/2 until the extinction of one of the two species.

Figure 11 shows the average extinction time, measured in generations, i.e. N elementary
steps of Eq. (25), as a function of the population size N for different values of γ . For γ = 0
we observe the N ln N behavior expected in the neutral case. Habitat preference (γ > 0)
leads to a dramatic increase of the average extinction time, which becomes exponential in N

⟨Text ⟩ ∝ exp(C(γ )N ) , (27)
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for large enough N . The dependence of the constant C(γ ) on γ , shown in the inset, is well-
fitted by a power-law with exponent ≈ 1.63. The mean-field version of the model presents
similar qualitative features with the only difference that ⟨Text ⟩ ∝ N for γ = 0 and with some
differences in the γ dependence of C(γ ), as shown in [78].

The exponential dependence of the average extinction times on N indicates that habitat
preference has a stabilizing impact on the population dynamics. Indeed, when N is large
enough, the two species coexist on any realistic time scale. The stabilizing effect of habitat
preference reflects also in the probability of fixation Pf ix , i.e. the probability that a species,
say A, gets fixated when initially present as a fraction x = NA/N of the population. In the
neutral case, standard computation [40] shows that Pf ix (x) = x . As shown in [78], when
γ is increased, Pf ix (x) develops a much steeper dependence on x and quickly reaches values
≈ 1/2 even for small x , provided that γ is large enough. In other words, the stabilization due
to habitat preference tends to compensate any initial disproportion between the population
of the two species.

4.3 Coexistence

In the presence of immigration (µ > 0), a locally extinct species can recolonize, leading to a
dynamical coexistence between the two species. However, if the typical recolonization time
1/µ is large compared to the average extinction time ⟨Text ⟩, such recovery from extinction is
slow and unlikely. Therefore, most of the time the ecosystem is dominated by one of the two
species. Therefore, the distribution of the population size of any of the two species, P(X)
(X = A, B) is peaked at 0 and at the population size N , corresponding to dominance of either
of the two species. We denote this regime as monodominance, see Fig. 12a. In the opposite
limit ⟨Text ⟩ ≫ 1/µ, temporary extinctions are very unlikely and the distribution is peaked
at NA = NB = N/2 leading to pure coexistence of the two species (Fig. 12c). For interme-
diate values of µ, temporary extinctions are still possible though the replenishment due to
immigration will tend to equilibrate the two populations. In this case of mixed coexistence,
the distribution is characterized by three local maxima at NX = 0, N/2, N (Fig. 12b).

Figure 12d, e, f show the three regimes of coexistence in the N − µ parameter space for
the model with NN-dispersal for different habitat preference strength γ (increasing from left
to right). In the mean-field model, we find the same qualitative features, except that for γ = 0
the mixed regime is absent, so that one has a direct transition from monodominance to pure
coexistence [78].

The main emerging feature is that increasing habitat preference expands the region of
parameter space corresponding to mixed coexistence at the expenses of monodominance.
Surprisingly, the pure coexistence regime seems to be insensitive to the degree of habitat
preference. In particular, the critical line µc(N ) separating it from the mixed regime seems
to be the same that separates coexistence frommonodominance in the neutral model (γ = 0)
with global dispersal, which is given by the expression µc(N ) = 2/(2+ N ). This result can
be obtained in the following way. For γ = 0, the transition rates (26) can be expressed in
terms of the rates for NA to increase/decrease by one

WNA→NA±1 =
N
2 ±

( N
2 − NA

)

N

[

(1 − µ)
N
2 ∓

( N
2 − NA

)

N
+ µ

2

]

. (28)

Then, the equilibrium distribution P(NA) can be computed imposing the detailed-balance
condition

P(NA + 1)
P(NA)

= WNA→NA+1

WNA→NA−1
, (29)
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Fig. 12 Different regimes of coexistence for the case with NN dispersal and immigration for the model with
habitat preference. Top panels show the stationary distribution P(NA) for γ = 0.3 and a N = 50 with
µ = 10−3, b N = 300 with µ = 2 × 10−3, and c N = 100 with µ = 10−3, corresponding to a typical
distribution in the cases of monodominance, mixed regime and pure coexistence, see text. Bottom panels show
how the three regimes partition the N , µ-parameter space for different values of γ : d γ = 0 corresponding to
the neutral case, e γ = 0.3 and f γ = 1. The three points in e correspond to the distributions displayed in the
top panels, as labelled by the color coding

which must hold at stationarity since the process is one dimensional [38]. To determine
µc(N ) for the transition from monodominance to coexistence, it is sufficient to determine
whether, for small NA, P(NA) is an increasing or a decreasing function. Using (29) with
(28) and imposing P(NA + 1) > P(NA) one obtains, after some algebra, the inequality
[(2+ N )µ−2](N −2NA −1) > 0, which is verified whenever µ > 2/(2+ N ). Notice that,
in the case of global dispersal, the distribution is uniform along this line, i.e. for µ = µc one
finds P(NA) = 1/N .

4.4 Generalizations of the Habitat-Preference Model

To gain physical insight into the different regimes shown in Fig. 12, a variant of the habi-
tat preference model was introduced and analyzed for the global dispersal case in [7]. By
considering the first two terms of a system-size expansion of the master equation, results
in the infinite-size limit and finite-size corrections were derived. In the infinite-size limit,
i.e. neglecting the effect of fluctuations, the introduction of a non-vanishing local preference
generates a deterministic force, which can be described as an effective potential V (δ) for
the relative difference of densities δ = (NA − NB)/N . This potential has a minimum at
the coexistence state, δ = 0, corresponding to a maximum in the probability distribution at
NA = NB = N/2. In other words, species coexistence emerges for infinitely large sizes. On
the other hand, for finite systems, when fluctuations are considered, the only possible true
steady states are the absorbing states δ = ±1, where the effective potential V (δ) is singular.
The minimum at δ is separated from the negative singularities by two potential barriers. As
strength of the local preference and/or N increase, the basin of attraction of the coexistence
state becomes larger and deeper and the two symmetric barriers become closer to the absorb-
ing states and higher. Consequently the time needed to escape the coexistence state becomes
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much longer, therefore unaccessible in computer simulations. Thus, three different regimes
can thus be identified: the absorbing, intermediate (quasi-active) and active phase (much as
in Fig. 12). In the absorbing phase, symmetry is broken and one of the two species reaches
extinction with certainty. This regime is equivalent to the monodominance regime in Fig. 12.
The active phase is characterized by a coexistence of both species, and survives fluctuations
only in the infinite-size limit. This corresponds to the coexistence phase of Fig. 12. Finally,
the intermediate state is a mixture of the two previous ones: the absorbing states and the
coexistence state are locally stable, thus, the system is tri-stable, and the steady state depends
on the initial conditions. This is the mixed state of Fig. 12. These results provide a nice ana-
lytical example of how noise can effectively change the shape of a deterministic potential.
Still, the presence of absorbing states—with the associated singularities in the steady state
distribution—prevent true phase transitions from occurring: the only possible steady state
for any finite system is an absorbing one. Only in the infinite-size limit, noise vanishes and
the coexistence state becomes truly stable [7].

Another study scrutinized the case in which there are local habitat preference only at some
specific locations in space, while all other sites are neutral [8]. An interesting example which
has been analyzed in details is that of a square lattice where only the left (resp. right) boundary
has a preference for species A (resp. B), ([8], see also [67,68]). The conclusion is that even
mild biases at a small fraction of locations induce robust and durable species coexistence,
also in regions arbitrarily far apart from the biased locations. As carefully discussed in [8]
this result stems from the long-range nature of the underlying critical bulk dynamics of
the neutral voter model, and is robust to the introduction of non-symmetrical biases—i.e.
stronger for one of the species—except for the fact that the state of coexistence is no longer
symmetric. These conclusions have a number of potentially important consequences, for
example, in conservation ecology as it suggests that constructing local “sanctuaries” for
different competing species can result in global increase of stability of their populations, and
thus an enhancement of biodiversity, even in regions arbitrarily distant from the protected
zones [8].

4.5 Temporally-Dependent Habitat Preferences

We have seen that spatial quenched disorder generically fosters species coexistence. Another
important question is what happens when the preference for a species are time-dependent,
i.e. if neutrality is temporarily broken in favor of one of the coexisting species, while the
ecosystem remains neutral on average. This question has a long tradition in ecology. Several
theoretical studies have looked at the impact of environmental fluctuations on population
growth and ecosystem stability [19,85]. On one hand, environmental stochasticity enhances
fluctuations and extinction rates, that can have a destabilizing effect on the ecological com-
munity. On the other hand, it can also foster stability, as the temporal alternance of species
can effectively reduce the strength of interspecific competition.

Similarly to the case of spatial disorder, one can design quasi-neutralmodelswhere habitat-
preferences for different species are time-dependent, i.e. where in each time window there is
a preference for a randomly chosen species. Different works have recently analyzed this type
of models, showing that time-dependent habitat preference greatly improves predictions of
empirical ecological patterns with respect to purely neutral theories [26,45,94,95]. In par-
ticular, it has been claimed that these models provides more realistic estimates of dynamical
quantities, such as average species persistence times and distributions of species turnover
[4], compared with their neutral counterparts.
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4.6 Models with Density Dependence

In ecology, one speaks of density-dependence or Allee effect when the fitness of an individual
depends on the abundance of the species it belongs to. The underlyingmechanisms can be very
diverse, from cooperative defense/feeding to spreading of parasites among conspecific. An
interesting scenario is that of negative density-dependence, i.e. when individuals belonging
to more abundant species have lower fitness. It is established that, in well mixed systems,
negative density-dependence significantly favors species coexistence [18]. Versions of the
voter model implementing a negative density-dependence have been studied in the literature
[69,93]. In thesemodels, the reproduction probability of an individual depends on the number
of conspecific individuals in a given local neighborhood. Strictly speaking, these models
are not neutral: the neutral hypothesis is defined at the level of individuals [50], and here
individuals belonging to species of different abundance do not have the samefitness.However,
these models, as the other models considered in this section, are still symmetric, since all
species are treated on equal footing. Interesting phenomena like the possibility of spontaneous
breakdown of such a symmetry—thus leading to asymmetric species coexistence—have been
recently uncovered at the mean field level [9].

5 Perspectives and Conclusions

The range of ecological problems discussed in this review is by no means exhaustive, and
we believe there are many directions that still need to be explored or fully understood.

A prominent example is the role of different speciation mechanisms on spatial biodiver-
sity. In the models discussed in this review, speciation events involve a single individual
(point speciation mode, in the language of evolutionary ecology). This assumption is con-
venient from the modeling perspective, but leads to fitted values of the speciation rate that
are incompatible with independent estimates [84]. This assumption also tends to generate
too many young species which last for a short time and overweights rare species. To address
these issues, recently, another mechanism called protracted speciation has been proposed in
the context of neutral models [90]. In protracted speciation, the speciation event does not
occur at a single generation, but is a gradual event lasting for some generations. Introduc-
ing protracted speciation partially solves some of the aforementioned problems [90]. In real
ecosystems, even more speciation mechanisms are at play [23]. For example, in parapatric
speciation, two spatially-separated population of the same species can diverge and give rise
to two different species. This would correspond to a speciation event involving a group of
individuals rather than a single one. The role of different speciation modes in maintaining
biodiversity and in patterning the spatial organization of species is still under discussion and
modeling results can provide very useful contributions to this debate.

As mentioned in the Introduction, ecological neutral theory elicited a heated debate which
is far from being solved as, in many cases, non-neutral models based on the concept of niche
and neutral models yield similar fits of biodiversity patterns [17,65,98]. In recent years a new
view on this debate has been emerging. In Chase and Leibold’s words: “niche and neutral
models are in reality two ends of a continuum with the truth most likely in the middle” [15].
Indeed, the ecological forces underlying niche and neutral models are not mutually exclusive,
anddemographic stochasticity plays an important role also in non-neutral settings.However, it
has been difficult to clarify the importance of different neutral and non-neutralmechanisms, as
most non-neutral model are characterized by a large number of parameters. Some progress in
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this direction has been obtained in simplified settings which, similarly to the model presented
in Sect. 4, allow for a controlled departure from neutrality. For instance, Haegeman and
Loreau [44] added the main ingredients of neutral theory, demographic stochasticity and
immigration, to a Lotka-Volterra competition model. Similar problems have been studied in
Refs. [72,73,79]. An interesting future direction would be to study similar models in a spatial
context.

Inmany ecological communities, in particular ofmicrobial organisms, ecological and evo-
lutionary timescales are not separated. Eco-evolutionary models describing both processes
are becoming more and more important [102]. Neutral theory has provided a simple frame-
work to describe patterns in these communities, for example in gut microbiota [51]. These
systems call for new theoretical efforts and new observables, such as generalizations of the
β-diversity taking into account genetic differences among individuals [49].

We have seen throughout this review how some observables measured by ecologists corre-
sponds to well known quantities in statistical physics: for instance, the β-diversity is closely
related with a two-point correlation function. Other observables, such as SARs and SADs,
are less common in statistical physics. A potentially fruitful future direction is to consider
other observables which are common in statistical mechanics, such as multi-point correlation
functions, and measure them in ecosystems. In this direction, it is very interesting the study
of species clustering in [82] based on the theory of continuum percolation.

In summary, we presented an overview of different stochastic spatial models in population
ecology. We have seen that even very simple models are a source of challenging problems
in statistical physics. In particular, because of speciation, each species is bound to extinction
and is therefore ultimately transient. This feature is in contrast with traditional classical spin
system defined on a lattice where, even when in out-of-equilibrium conditions, the number
of spin components is fixed from the beginning. Further, ecosystems are typically two-
dimensional and, due to the underlying diffusive behavior, D = 2 is the critical dimension
for these models. We have shown that this fact often leads to logarithmic corrections to
scaling laws, which have been difficult to analyze both analytically and numerically. Despite
these difficulties, remarkable progress has been made in recent years. We believe that cross-
fertilization between statistical physics and ecology will be more and more important in the
future to deepen our quantitative understanding of how ecosystems are organized.
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Appendix: General Scaling Relationships

In this brief Appendix, we discuss general condition imposed on the functions f and g by
the properties of the function Ψ , depending on the exponent ∆, see Eq. (13), Eq. (14) and
[105]. Let us write the normalization condition for P(n; A)

∑

n

P(n; A) ≈ g(A) f (A)
∫ Λ

n0/ f (A)
dx x−∆ = 1. (30)

The infrared cutoff Λ is related to the fact that the function ψ(x) is a power-law for small
x only and rapidly decays for larger arguments, see e.g. Fig. 5. The integral is singular for
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small x and ∆ > 1 and thus

1 ∼ g(A) f (A) f (A)∆−1 = g(A) f (A)∆ . (31)

On the other hand, if ∆ < 1, the integral is weakly dependent on f (A), so that

1 ∼ g(A) f (A) . (32)

Similarly, the first moment of Ψ is

⟨n⟩ ∼ g(A) f 2(A) f (A)∆−1 = g(A) f (A)∆+1 (33)

if 1 < ∆ < 2 and
⟨n⟩ ∼ g(A) f 2(A) (34)

for∆ > 2. Combining the expressions above, different regimes emerge as a function of∆: if
∆ < 1, f (A) = ⟨n⟩, while for 1 < ∆ < 2, f (A) = ⟨n⟩1/(2−∆), while no specific prediction
for f (A) can be made in the case ∆ ≥ 2. In particular, for ∆ < 1 one has a simple scaling
form f (A) = ⟨n⟩ and g(A) = 1/⟨n⟩which applies, for example, to the 1D case as described
in the main text. The marginal case ∆ = 1 is treated in detail in Sect. 2.5.

References

1. Alonso, D., Etienne, R.S.,McKane, A.J.: Themerits of neutral theory. Trends Ecol. Evol. 21(8), 451–457
(2006)

2. Arrhenius, O.: Species and area. J. Ecol. 9(1), 95–99 (1921)
3. Azaele, S., Peruzzo, F.: A phenomenological spatial model for macro-ecological patterns in species-rich

ecosystems. arXiv:1609.02721 (2016)
4. Azaele, S., Pigolotti, S., Banavar, J.R., Maritan, A.: Dynamical evolution of ecosystems. Nature

444(7121), 926–928 (2006)
5. Azaele, S., Suweis, S., Grilli, J., Volkov, I., Banavar, J.R.,Maritan, A.: Statistical mechanics of ecological

systems: neutral theory and beyond. Rev. Mod. Phys. 88(3), 035003 (2016)
6. Bertuzzo, E., Suweis, S., Mari, L., Maritan, A., Rodríguez-Iturbe, I., Rinaldo, A.: Spatial effects on

species persistence and implications for biodiversity. Proc. Natl. Acad. Sci. USA 108(11), 4346–4351
(2011)

7. Borile, C., Maritan, A., Muñoz, M.A.: The effect of quenched disorder in neutral theories. J. Stat. Mech.:
Theory Exp. (2013). https://doi.org/10.1088/1742-5468/2013/04/P04032

8. Borile, C., Molina-Garcia, D., Maritan, A., Muñoz, M.A.: Coexistence in neutral theories: interplay of
criticality and mild local preferences. J. Stat. Mech.: Theory Exp. 2015(1), P01,030 (2015)

9. Borile, C.,Muñoz,M.A., Azaele, S., Banavar, J.R.,Maritan, A.: Spontaneously broken neutral symmetry
in an ecological system. Phys. Rev. Lett. 109(3), 038102 (2012)

10. Bramson, M., Cox, J., Durrett, R.: Spatial models for species area curves. Ann. Prob. 24(4), 1727–1751
(1996)

11. Bramson, M., Lebowitz, J.: Asymptotic behavior of densities in diffusion-dominated annihilation reac-
tions. Phys. Rev. Lett. 61(21), 2397–2400 (1988)

12. Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities for two-particle annihilating random
walks. J. Stat. Phys. 62(1), 297–372 (1991)

13. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2),
591 (2009)

14. Cencini, M., Pigolotti, S., Muñoz, M.A.: What ecological factors shape species-area curves in neutral
models? PLoS ONE 7(6), e38232 (2012)

15. Chase, J.M., Leibold, M.A.: Ecological niches: linking classical and contemporary approaches. Univer-
sity of Chicago Press, Chicago (2003)

16. Chave, J., Leigh, E.G.: A spatially explicit neutral model of β-diversity in tropical forests. Theor. Popul.
Biol. 62(2), 153–168 (2002)

17. Chave, J., Muller-Landau, H.C., Levin, S.A.: Comparing classical community models: theoretical con-
sequences for patterns of diversity. Am. Nat. 159(1), 1–23 (2002)

18. Chesson, P.:Mechanisms ofmaintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000)

123

http://arxiv.org/abs/1609.02721
https://doi.org/10.1088/1742-5468/2013/04/P04032


S. Pigolotti et al.

19. Chesson, P.L., Warner, R.R.: Environmental variability promotes coexistence in lottery competitive
systems. Am. Nat. 117(6), 923–943 (1981)

20. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)
21. Cody, M.L., Diamond, J.M.: Ecology and evolution of communities. Harvard University Press, Boston

(1975)
22. Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Núnez, P., Aguilar, S., Valencia,

R., Villa, G., et al.: Beta-diversity in tropical forest trees. Science 295(5555), 666–669 (2002)
23. Coyne, J.A., Orr, H.A.: Speciation. Sinauer Associates Inc., Sunderland (2004)
24. Croft, W.: The darwinization of linguistics. Selection 3(1), 75–91 (2002)
25. Danino, M., Shem-Tov, Y., Shnerb, N.M.: Spatial neutral dynamics. arXiv preprint arXiv:1606.02837

(2016)
26. Danino, M., Shnerb, N.M., Azaele, S., Kunin, W.E., Kessler, D.A.: The effect of environmental stochas-

ticity on species richness in neutral communities. J. Theor. Biol. 409, 155–164 (2016)
27. Derrida, B., Jung-Muller, B.: The genealogical tree of a chromosome. J. Stat. Phys. 94(3), 277–298

(1999)
28. Dornic, I., Chaté, H., Chave, J., Hinrichsen, H.: Critical coarsening without surface tension: the univer-

sality class of the voter model. Phys. Rev. Lett. 87(4), 045701 (2001)
29. Drakare, S., Lennon, J.J., Hillebrand, H.: The imprint of the geographical, evolutionary and ecological

context on species-area relationships. Ecol. Lett. 9(2), 215–227 (2006)
30. Durrett, R., Levin, S.A.: Stochastic spatial models: a user’s guide to ecological applications. Philos.

Trans. R. Soc. Lond. B Biol. Sci. 343(1305), 329–350 (1994)
31. Durrett, R., Levin, S.: Spatial models for species–area curves. J. Theor. Biol. 179(2), 119–127 (1996)
32. Etienne, R.S., Alonso, D.: Neutral community theory: how stochasticity and dispersal-limitation can

explain species coexistence. J. Stat. Phys. 128(1), 485–510 (2007)
33. Etienne, R.S., Rosindell, J.: The spatial limitations of current neutral models of biodiversity. PLoS ONE

6(3), e14717 (2011)
34. Ewens, W.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3(1), 87–112 (1972)
35. Fenchel, T., Finlay, B.J.: The ubiquity of small species: patterns of local and global diversity. BioScience

54(8), 777–784 (2004)
36. Finlay, B., Fenchel, T.: Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist

155(2), 237–244 (2004)
37. Frachebourg, L., Krapivsky, P., Redner, S.: Heterogeneous catalysis on a disordered surface. Phys. Rev.

Lett. 75(15), 2891 (1995)
38. Gardiner, C.: Stochastic methods. Springer series in synergetics. Springer, Berlin (2009)
39. Gilbert, B., Lechowicz, M.J.: Neutrality, niches, and dispersal in a temperate forest understory. Proc.

Natl. Acad. Sci. USA 101(20), 7651–7656 (2004)
40. Gillespie, J.: Population genetics: a concise guide. Johns Hopkins University Press, Baltimore (2004)
41. Granovsky, B.L., Madras, N.: The noisy voter model. Stoch. Proc. Appl. 55(1), 23–43 (1995)
42. Griffeath, D.: The basic contact processes. Stoch. Proc. Appl. 11(2), 151–185 (1981)
43. Grilli, J., Azaele, S., Banavar, J.R., Maritan, A.: Absence of detailed balance in ecology. EPL (Europhys.

Lett.) 100(3), 38002 (2012)
44. Haegeman,B., Loreau,M.:Amathematical synthesis of niche andneutral theories in community ecology.

J. Theor. Biol. 269, 150–165 (2011)
45. Hidalgo, J., Suweis, S.,Maritan, A.: Species coexistence in a neutral dynamics with environmental noise.

J. Theor. Biol. 413, 1–10 (2017)
46. Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv.

Phys. 49(7), 815–958 (2000)
47. Holley, R., Liggett, T.: Ergodic theorems for weakly interacting infinite systems and the voter model.

Ann. Probab. 3(4), 643–663 (1975)
48. Horner-Devine, M., Lage, M., Hughes, J., Bohannan, B.: A taxa-area relationship for bacteria. Nature

432(7018), 750–753 (2004)
49. Houchmandzadeh, B.: Neutral aggregation in finite-length genotype space. Phys. Rev. E 95(1), 012402

(2017)
50. Hubbell, S.: The unified neutral theory of biodiversity and biogeography. Princeton University Press,

Princeton (2001)
51. Jeraldo, P., Sipos,M., Chia, N., Brulc, J.M., Dhillon, A.S., Konkel,M.E., Larson, C.L., Nelson, K.E., Qu,

A., Schook, L.B., et al.: Quantification of the relative roles of niche and neutral processes in structuring
gastrointestinal microbiomes. Proc. Natl. Acad. Sci. USA 109(25), 9692–9698 (2012)

52. Kimura, M.: “Stepping Stone” model of population. Ann. Rept. Nat. Inst. Genet. Jpn. 3, 6263 (1953)
53. Kimura, M.: The neutral theory of molecular evolution. Cambridge University Press, Cambridge (1983)

123

http://arxiv.org/abs/1606.02837


Stochastic Spatial Models in Ecology: A Statistical…

54. Kimura, M., Weiss, G.H.: The stepping stone model of population structure and the decrease of genetic
correlation with distance. Genetics 49(4), 561 (1964)

55. Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137–156 (1993)
56. Korolev, K.S., Avlund, M., Hallatschek, O., Nelson, D.R.: Genetic demixing and evolution in linear

stepping stone models. Rev. Mod. Phys. 82(2), 1691 (2010)
57. Krapivsky, P.: Kinetics of monomer–monomer surface catalytic reactions. Phys. Rev. A 45(2), 1067

(1992)
58. Lee, B.P.: Renormalization group calculation for the reaction ka to 0. J Phys. A Math. Gen. 27(8), 2633

(1994)
59. Levin, S.A.: The problem of pattern and scale in ecology: the Robert H. Macarthur award lecture.

Ecology 73(6), 1943–1967 (1992)
60. Liggett, T.: Interacting particle systems. Springer, New York (1985)
61. Loreau, M.: Are communities saturated? On the relationship between α, β and γ diversity. Ecol. Lett.

3(2), 73–76 (2000)
62. MacArthur, R.: On the relative abundance of species. Am. Nat. 94(874), 25–36 (1960)
63. Marro, J., Dickman, R.: Nonequilibrium phase transitions in lattice models. CambridgeUniversity Press,

Cambridge (1999)
64. Masuda, N., Gibert, N., Redner, S.: Heterogeneous voter models. Phys. Rev. E 82(1), 010103 (2010)
65. McGill, B.: Strong and weak tests of macroecological theory. Oikos 102(3), 679–685 (2003)
66. McKane, A.J., Alonso, D., Solé, R.V.: Analytic solution of Hubbell’s model of local community dynam-

ics. Theor. Popul. Biol. 65(1), 67–73 (2004)
67. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91, 028701 (2003)
68. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. Theor.

Exp. (2007). https://doi.org/10.1088/1742-5468/2007/08/P08029
69. Molofsky, J., Durrett, R., Dushoff, J., Griffeath, D., Levin, S.: Local frequency dependence and global

coexistence. Theor. Popul. Biol. 55(3), 270–282 (1999). https://doi.org/10.1006/tpbi.1998.1404. http://
www.sciencedirect.com/science/article/pii/S0040580998914046

70. Moran, P.A.P.: Random processes in genetics. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society, vol. 54, pp. 60–71. Cambridge University Press (1958)

71. Moran, P.A.P.: The statistical process of evolutionary theory. Clarendon Press, Oxford (1962)
72. Noble, A.E., Fagan,W.F.: A unification of niche and neutral theories quantifies the impact of competition

on extinction. arXiv preprint arXiv:1102.0052 (2011)
73. Noble,A.E.,Hastings,A., Fagan,W.F.:Multivariatemoran processwithLotka–Volterra phenomenology.

Phys. Rev. Lett. 107, 228101 (2011)
74. O’Dwyer, J.P., Cornell, S.J.: Cross-scale neutral ecology and the maintenance of biodiversity. arXiv

preprint arXiv:1705.07856 (2017)
75. O’Dwyer, J.P., Green, J.L.: Field theory for biogeography: a spatially explicit model for predicting

patterns of biodiversity. Ecol. Lett. 13(1), 87–95 (2010)
76. Peliti, L.: Renormalisation of fluctuation effects in the A+ A to A reaction. J. Phys. A Math. Gen. 19,

L365–L367 (1986)
77. Pigolotti, S., Cencini, M.: Speciation-rate dependence in species–area relationships. J. Theor. Biol.

260(1), 83–89 (2009)
78. Pigolotti, S., Cencini, M.: Coexistence and invasibility in a two-species competition model with habitat-

preference. J. Theor. Biol. 265(4), 609–617 (2010)
79. Pigolotti, S., Cencini, M.: Species abundances and lifetimes: from neutral to niche-stabilized commu-

nities. J. Theor. Biol. 338, 1–8 (2013)
80. Pigolotti, S., Flammini, A., Marsili, M., Maritan, A.: Species lifetime distribution for simple models of

ecologies. Proc. Natl. Acad. Sci. USA 102(44), 15747–15751 (2005)
81. Pinto, O.A., Munoz, M.A.: Quasi-neutral theory of epidemic outbreaks. PLoS ONE 6(7), e21946 (2011)
82. Plotkin, J.B., Chave, J., Ashton, P.S.: Cluster analysis of spatial patterns in Malaysian tree species. Am.

Nat. 160(5), 629–644 (2002)
83. Preston, F.: Time and space and the variation of species. Ecology 41(4), 611–627 (1960)
84. Ricklefs, R.E.: The unified neutral theory of biodiversity: do the numbers add up? Ecology 87(6), 1424–

1431 (2006)
85. Ridolfi, L., D’Odorico, P., Laio, F.: Noise-induced phenomena in the environmental sciences. Cambridge

University Press, Cambridge (2011)
86. Rosenzweig, M.: Species diversity in space and time. Cambridge Univ Press, Cambridge (1995)
87. Rosindell, J., Cornell, S.: Species–area relationships from a spatially explicit neutral model in an infinite

landscape. Ecol. Lett. 10(7), 586–595 (2007)

123

https://doi.org/10.1088/1742-5468/2007/08/P08029
https://doi.org/10.1006/tpbi.1998.1404
http://www.sciencedirect.com/science/article/pii/S0040580998914046
http://www.sciencedirect.com/science/article/pii/S0040580998914046
http://arxiv.org/abs/1102.0052
http://arxiv.org/abs/1705.07856


S. Pigolotti et al.

88. Rosindell, J., Cornell, S.: Species–area curves, neutral models, and long-distance dispersal. Ecology
90(7), 1743–1750 (2009)

89. Rosindell, J., Cornell, S.J.: Universal scaling of species-abundance distributions across multiple scales.
Oikos 122(7), 1101–1111 (2013)

90. Rosindell, J., Cornell, S.J., Hubbell, S.P., Etienne, R.S.: Protracted speciation revitalizes the neutral
theory of biodiversity. Ecol. Lett. 13(6), 716–727 (2010)

91. Rosindell, J., Hubbell, S.P., Etienne, R.S.: The unified neutral theory of biodiversity and biogeography
at age ten. Trends Ecol. Evol. 26(7), 340–348 (2011)

92. Rosindell, J., Hubbell, S.P., He, F., Harmon, L.J., Etienne, R.S.: The case for ecological neutral theory.
Trends Ecol. Evol. 27(4), 203–208 (2012)

93. Schweitzer, F., Behera, L.: Nonlinear voter models: the transition from invasion to coexistence. Eur.
Phys. J. B Condens. Matter Complex Syst. 67(3), 301–318 (2009)

94. Shem-Tov, Y., Danino, M., Shnerb, N.M.: Solution of the spatial neutral model yields new bounds on
the Amazonian species richness. Sci. Rep. (2017). https://doi.org/10.1038/srep42415

95. Spanio, T., Hidalgo, J.,Muñoz,M.A.: Impact of environmental colored noise in single-species population
dynamics. Phys. Rev. E 96, 042301 (2017). https://doi.org/10.1103/PhysRevE.96.042301

96. Suweis, S., Bertuzzo, E.,Mari, L., Rodriguez-Iturbe, I.,Maritan, A., Rinaldo, A.: On species persistence-
time distributions. J. Theor. Biol. 303, 15–24 (2012)

97. Suweis, S., Bertuzzo, E.,Mari, L., Rodriguez-Iturbe, I.,Maritan, A., Rinaldo, A.: On species persistence-
time distributions. J. Theor. Biol. 303, 15–24 (2012)

98. Tilman, D.: Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource com-
petition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 101(30), 10854 (2004)

99. Tokeshi, M.: Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993)
100. Tuomisto, H.: A diversity of beta diversities: straightening up a concept gone awry. Part 1: defining beta

diversity as a function of alpha and gamma diversity. Ecography 33(1), 2–22 (2010)
101. Vallade, M., Houchmandzadeh, B.: Analytical solution of a neutral model of biodiversity. Phys. Rev. E

68(6), 061902 (2003)
102. VillaMartin, P., Hidalgo, J., Rubio deCasas, R.,Muñoz,M.: Eco-evolutionarymodel of rapid phenotypic

diversification in species-rich communities. PLoS Comput. Biol. 12, e1005139 (2016)
103. Volkov, I., Banavar, J., Hubbell, S.,Maritan,A.: Neutral theory and relative species abundance in ecology.

Nature 424, 1035–1037 (2003)
104. Zillio, T.,Volkov, I., Banavar, J.R.,Hubbell, S.P.,Maritan,A.: Spatial scaling inmodel plant communities.

Phys. Rev. Lett. 95(9), 098101 (2005)
105. Zillio, T., Banavar, J.R.,Green, J.L.,Harte, J.,Maritan,A.: Incipient criticality in ecological communities.

Proc. Natl. Acad. Sci. USA 105(48), 18714–18717 (2008)

123

https://doi.org/10.1038/srep42415
https://doi.org/10.1103/PhysRevE.96.042301

	Stochastic Spatial Models in Ecology: A Statistical Physics Approach
	Abstract
	1 Introduction
	2 Voter Model with Speciation
	2.1 Description of the Model
	2.2 Duality
	2.3  β-Diversity
	2.4 Species–Area Relationships
	2.5 Species-Abundance Distributions
	2.5.1 Power-Law Scaling Relation
	2.5.2 Generalized Scaling Relation

	2.6 Species Persistence-Times

	3 Other Neutral Models
	3.1 Stepping-Stone Model with Speciation
	3.2 Contact Process with Speciation
	3.3 O'Dwyer–Green Model

	4 Near-Neutral Models
	4.1 Habitat-Preference Model
	4.2 Extinction Times
	4.3 Coexistence
	4.4 Generalizations of the Habitat-Preference Model
	4.5 Temporally-Dependent Habitat Preferences
	4.6 Models with Density Dependence

	5 Perspectives and Conclusions
	Acknowledgements
	Appendix: General Scaling Relationships
	References


