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Preface

Probability theory was at its origin, almost solely, centered around games of chance
(cards and dice). With the Ars Conjectandi, Jakob Bernoulli, while obtaining the first
version of the theorem now known as the Law of Large Numbers (LLN), moved the
theory of probability away from being primarily a vehicle for calculating gambling
odds. This step has been crucial by showing that the probability theory might have
an important role in the understanding of a variety of problems in many areas of the
natural sciences and human experiences.

In 1913, when the tsar Nicholas II called for celebrations of the 300th Anniver-
sary of the Romanov rule, the great Russian mathematician Andrei Andreyevich
Markov responded by organizing a symposium aimed at commemorating a different
anniversary. Markov took the occasion to celebrate the bicentenary of Bernoulli’s
Ars conjectandi: Bernoulli actually completed his book by 1690, but the book was
only published posthumously in 1713 by his nephew Niklaus because of family
quarrels.

Nowadays, one century after Markov, the autocratic tsarist government is over
and we can take the occasion to celebrate the Law of Large Numbers with no need
of extra scientific pretexts.

The LLN is at the base of a scientific legacy whose relevance cannot be
overestimated. We can start mentioning the great visionary idea of the ergodic
hypothesis by Ludwig Boltzmann. The ergodicity issue, originally introduced in the
context of the statistical mechanics and then developed as an autonomous branch of
measure theory, can be seen as the generalization of the LLN to non-independent
variables. This topic is still an active research field in mathematical physics. In
addition, it constitutes the starting point of the numerical methods used in statistical
mechanics, namely the molecular dynamics and the Monte Carlo methods.

The most important physical properties of macroscopic objects are determined
by mean values, whose mathematical base is guaranteed by the LLN. But, in many
cases, also the fluctuations can be important. The control of “small” fluctuations
around the mean value is provided by the Central Limit Theorem (CLT), whose
general relevance was established for the first time in 1812 with the book Théorie
Analytique des Probabilités by Pierre Simon Laplace. From a physical point of

v



vi Preface

view, however, even very small fluctuations can be dramatically important. As a
paradigmatic example, we can mention the treatment of the Brownian motion, which
among the many still in progress applications brought conclusive evidence for the
atomic hypothesis.

Beyond their conceptual importance, thanks to their link to response functions
via the fluctuation-dissipation theorem, fluctuations are becoming more and more
important in present-day applications, especially via the recently established fluctu-
ation relations. Their relevance is amplified in small (micro- and nano-) systems,
and in materials (as granular matter) where the number of effective elementary
constituents is not as large as in gases or liquids. In such systems large excursions
from the average cannot be neglected, therefore it is necessary to go beyond the
Gaussian approximation, i.e. beyond the realm of validity of the CLT. The proper
technical tool to study such strong fluctuations is the Large Deviation Theory (LDT),
which generalizes the CLT.

The first general mathematical formulation of the Large Deviation Theory is due
to Harald Cramér in the 1930s. However, the very first application of LDT can
be ascribed to Boltzmann who, using combinatorial arguments, had been able to
show the relevance of the entropy as a bridge between microscopic and macroscopic
levels.

This book encompasses some recent developments of the fundamental limit
theorems – LLN, CLT and LDT – of the probability theory in statistical physics,
in particular: ergodicity breaking, non-equilibrium and fluctuation relations, dis-
ordered systems, computational methods, systems with long-range interactions,
Brownian motors, chaotic dynamics, anomalous diffusion and turbulence.

Rome, Italy Angelo Vulpiani
December 2013 Fabio Cecconi

Massimo Cencini
Andrea Puglisi
Davide Vergni
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Chapter 1
From the Law of Large Numbers to Large
Deviation Theory in Statistical Physics: An
Introduction

Fabio Cecconi, Massimo Cencini, Andrea Puglisi, Davide Vergni,
and Angelo Vulpiani

Abstract This contribution aims at introducing the topics of this book. We start
with a brief historical excursion on the developments from the law of large numbers
to the central limit theorem and large deviations theory. The same topics are then
presented using the language of probability theory. Finally, some applications of
large deviations theory in physics are briefly discussed through examples taken from
statistical mechanics, dynamical and disordered systems.

1.1 Introduction

Describing the physical properties of macroscopic bodies via the computation of
(ensemble) averages was the main focus of statistical mechanics at its early stage.
In fact, as macroscopic bodies are made of a huge number of particles, fluctuations
were expected to be too small to be actually observable. Broadly speaking, we can
say that the theoretical basis of statistical descriptions was guaranteed by the law of
large numbers. Boltzmann wrote: In the molecular theory we assume that the laws
of the phenomena found in nature do not essentially deviate from the limits that they
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would approach in the case of an infinite number of infinitely small molecules, while
Gibbs1 remarked : : : [the fluctuations] would be in general vanishing quantities,
since such experience would not be wide enough to embrace the more considerable
divergences from the mean values [1].

Although very small, the importance of fluctuations was recognized quite early
to find conclusive evidence for the atomistic hypothesis. At the end of the nineteenth
century, atomic theory was still considered, by influential scientists as Ostwald and
Mach, useful but non real for the building of a consistent description of nature: The
atomic theory plays a part in physics similar to that of certain auxiliary concepts in
mathematics; it is a mathematical model for facilitating the mental reproduction of
facts [1].

The situation changed at the beginning of the twentieth century, when Einstein
realized the central role played by the fluctuations and wrote: The equation [NA:
for the energy fluctuations hE2i ! hEi2 D kT 2CV , CV D @hEi=@T being the
specific heat] we finally obtained would yield an exact determination of the universal
constant [NA: the Avogadro number], if it were possible to determine the average
of the square of the energy fluctuations of the system; this is however not possible
according to our present knowledge. For macroscopic objects the equation for the
energy fluctuations cannot actually be used for the determination of the Avogadro
number. However, Einstein’s intuition was correct as he understood how to relate
the Avogadro number to a macroscopic quantity—the diffusion coefficient D—
obtained by observing the fluctuations of a Brownian particle—D indeed describes
the long time (t ! 1) behavior of particle displacement h.x.t/ ! x.0//2i '
2Dt, which is experimentally accessible. The theoretical work by Einstein and
the experiments by Perrin gave a conclusive evidence of atomism: the celebrated
relationship between the diffusion coefficient (measurable at the macroscopic level)
and the Avogadro number NA (related to the atomistic description) is

D D RT

6NA!"a
;

where T and " are the temperature and dynamic viscosity of the fluid respectively,
a the radius of the colloidal particle, R D NAk is the perfect gas constant and k is
the Boltzmann constant.

Einstein’s seminal paper on Brownian motion contains another very important
result, namely the first example of Fluctuation-Dissipation Theorem (FDT): a
relation between the fluctuations (given by correlation functions) of an unperturbed
system and the mean response to a perturbation. In the specific case of Brownian
motion, FDT appears as a link between the diffusion coefficient (a property of the
unperturbed system) and the mobility, which measures how the system reacts to a
small perturbation.

1Who, by the way, already knew the expression for the mean square energy fluctuations.
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Beyond their conceptual relevance and the link with response functions, fluctua-
tions in macroscopic systems are quantitatively extremely small and hard to detect
(but for the case of second order phase transition in equilibrium systems). However,
in recent years statistical mechanics of small systems is becoming more and more
important due to the theoretical and technological challenges of micro- and nano-
physics. In such small systems2 since large excursions from averages values become
increasingly important, it is mandatory to go beyond the Gaussian approximation
(i.e. beyond the realm of validity of the central limit theorem) by means of the large
deviation theory.

Next section presents a non-exhaustive historical survey from the law of large
numbers to large deviation theory. Then, in Sect. 1.3 we illustrate with two examples
how large deviation theory works. Section 1.4 illustrates some applications of large
deviations in statistical physics.

1.2 An Informal Historical Note

Perhaps the most straightforward way to understand the connection between Law of
Large Numbers (LLN), the Central Limit Theorem (CLT) and the Large Deviation
Theory (LDT) is to consider a classical topic of probability theory, namely the
properties of the empirical mean

yN D
1

N

NX

jD1
xj (1.1)

of a sequence fx1; : : : ; xN g of N random variables. Three basic questions naturally
arise when N is very large:

(a) The behavior of the empirical mean yN , the possible convergence to an
asymptotic value and its dependence on the sequence;

(b) The statistics of small fluctuations of yN around hyN i, i.e., of ıyN D yN !hyN i
when jıyN j is “small”;

(c) The statistical properties of rare events when such fluctuations are “large”.

In the simplest case of sequences fx1; : : : ; xN g of independent and identically
distributed (i.i.d.) random variables with expected value hxi and with finite variance,
the law of large numbers answers point (a): the empirical average gets close and
closer to the expected value hxi when N is large:

lim
N!1

P .jyN ! hxij < !/! 1 : (1.2)

2We note that sometimes even in macroscopic systems (e.g. granular materials) the number of
effective elementary constituents (e.g. the seeds) is not astonishingly large as in gases or liquids.
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In the more general case of dependent variables, in principle, the empirical mean
may depend on the specific sequence of random variables. This is the essence
of the ergodic problem which generalizes the LLN and had a crucial role for the
development of statistical mechanics.

Issue (b) is addressed by the central limit theorem. For instance, in the simple
case of i.i.d. variables with expected value hxi and finite variance !2, the CLT
describes the statistics of small fluctuations, jıyN j . O.!=

p
N/, around the mean

value when N is very large. Roughly speaking, the CLT proves that, in the limit
N ! 1, the quantity

zN D
1

!
p
N

NX

jD1
.xj " hxi/ (1.3)

is normally distributed, meaning that

p.zN D z/ ' 1p
2"
e! z2

2 ; (1.4)

independently of the distribution of the random variables. Under suitable hypothesis
the theorem can be extended to dependent (weakly correlated) variables.

Finally, the last point (c) is the subject of large deviation theory which, roughly,
states that in the limit N ! 1

p.yN D y/ # e!NC .y/ : (1.5)

Unlike the central limit theorem result with the “universal” limit probability
density (1.4), the detailed functional dependence of C .y/—the Cramér or rate
function—depends on the probability distribution of fx1; : : : ; xN g. However, C .y/
possesses some general properties: it is zero for y D hyN i and positive otherwise,
moreover—when the variables are independent (or weakly correlated)—it is a
convex function. Clearly, whenever the CLT applies, C .y/ can be approximated
by a parabola around it minimum in hyi.

As frequently occurring in the development of science, the actual historical path
did not follow the simplest trajectory: (a) then (b) and at the end (c). Just to mention
an example, Boltzmann introduced the ergodic problem and developed—ante
litteram—some aspects of large deviations well before the precise mathematical
formulation of the central limit theorem.

1.2.1 Law of Large Numbers and Ergodicity

In the origins, the calculus of probabilities was, to a large extent, a collection of
specific rules for specific problems, mainly a matter for rolling dice and card games.
For instance, the works by Pascal and Fermat originated by practical questions



1 From LLN to LDT in Statistical Physics: An Introduction 5

in gambling raised by the chevalier de Méré (a French nobleman in love with
gambling) [2].

1.2.1.1 J. Bernoulli

J. Bernoulli gave the first important contribution moving the theory of probability
away from gambling context with the posthumous book Ars Conjectandi (The art
of conjecturing), published in 1713 and containing the LLN.3 In modern terms, if
fx1; : : : ; xN g are i.i.d. with finite variance and expected value hxi then for each
! > 0 and if N !1

P
!ˇ̌
ˇ
1

N

NX

jD1
xj ! hxi

ˇ̌
ˇ > !

"
! 0 : (1.6)

A particularly important case of the above result is

P.jfN ! pj > !/! 0 ; (1.7)

where fN is the frequency of an event over N independent trials, and p is its
occurrence probability in a single trial. The result (1.7) stands at the basis of the
interpretation of probability in terms of frequencies.

1.2.1.2 Boltzmann

Boltzmann introduced the ergodic hypothesis while developing statistical mechan-
ics [3]. In modern language, we can state the ergodic problem as follows. Consider
a deterministic evolution law U t in the phase space ˝ ,

X.0/! X.t/ D U tX.0/ ;

and a probability measure d".X/ invariant under the evolution U t , meaning that
d".X/ D d".U!tX/. The dynamical system f˝;U t ; d".X/g is ergodic, with
respect to the measure d".X/, if, for every integrable functionA.X/ and for almost
all initial conditions X.t0/, time and phase average coincide:

A " lim
T !1

1

T

Z t0CT

t0

A.X.t//dt D
Z
A.X/d".X/ " hAi ; (1.8)

where X.t/ D U t!t0X.t0/.

3The most rudimentary form of the LLN seems to be credited to Cardano.
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It is worth recalling why the ergodic hypothesis was so important for the
development of statistical mechanics. Simplifying, Boltzmann’s program was to
derive thermodynamics for macroscopic bodies—composed by, say, N ! 1
particles—from the microscopic laws of the dynamics. Thermodynamics consists
in passing from the 6N degrees of freedom to a few macroscopic, experimentally
accessible quantities such as, e.g., the temperature and pressure. An experimental
measurement is actually the result of a single observation during which the system
passes through a very large number of microscopic states. Denoting with qi and pi
the position and momentum vectors of the i -th particle, the microscopic state of the
N -particles system at time t is described by the 6N -dimensional vector X.t/ "
.q1.t/; : : : ;qN .t/Ip1.t/; : : : ;pN .t//, which evolves according to the Hamilton
equations. The measurement of an observable A.x/ effectively corresponds to an
average performed over a very long time (from the microscopic point of view):
AT D .1=T /

R t0CT
t0

A.X.t//dt . The theoretical calculation of the time average
AT , in principle, requires both the knowledge of the microscopic state at time t0
and the determination of its evolution. The ergodic hypothesis eliminates both these
necessities, provided we know the invariant measure. In statistical mechanics of,
e.g., isolated systems a natural candidate for the invariant measure d!.X/ is the
microcanonical measure on the constant energy surface H D E .

To the best of our knowledge the first precise result on ergodicity, i.e. the
validity of (1.6) for non independent stochastic processes has been obtained by
A.A. Markov, for a wide class of stochastic processes (now called Markov Chains).
Consider an aperiodic and irreducible Markov Chain with M states, transition
probabilities fPi!j g, and invariant probabilities "1;"2; : : : ;"M , and an observable
A which takes value Aj on the state j , then for almost all the realizations fjt g
we have

A " lim
T!1

1

T

TX

tD1
Ajt D

NX

jD1
Aj"j D hAi ; (1.9)

where jt indicates the state of the chain at time t of a “walker” performing a
trajectory according to the transition probabilities fPi!j g. There is a curious story
at the origin of the above result [4]. Markov, who was an atheist and a strong critic
of both the tsarist government and the Orthodox Church, at the beginning of the
twentieth century had a rather hot diatribe with the mathematician Nekrasov, who
had opposite political and religious opinions. The subject of the debate was about
the statistical regularities and their role for the problem of free will. Nekrasov noted
that the LLN of Bernoulli is based on the independence of successive experiments,
while, among human beings, the situation is rather different, hence the LLN cannot,
in any way, explain the statistical regularities observed in social life. Such a remark
led Markov to find an example of non independent variables for which a generalized
LLN holds; in a letter to a colleague he wrote:

I considered variables connected in a simple chain, and from this came the idea of the
possibility of extending the limit theorems of the calculus of probability also to a complex
chain.
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The ergodic problem in deterministic systems is much more difficult than its
analogous for Markov chains. It is rather natural, both from a mathematical and
a physical point of view, to wonder under which conditions a dynamical system
is ergodic. At an abstract level for a dynamical system .˝;U t ; d!.X/ /, the
problem has been tackled by Birkhoff and von Neumann who proved the following
fundamental theorems:

Theorem 1.1. For almost every initial condition X0 the time average

A.X0/ ! lim
T !1

1

T

Z T

0

A.U tX0/dt (1.10)

exists.

Theorem 1.2. A necessary and sufficient condition for the system to be ergodic, is
that the phase space ˝ be metrically indecomposable. The latter property means
that˝ can not be subdivided into two invariant (under the dynamicsU t ) parts each
of positive measure.

Sometimes instead of metrically indecomposable the equivalent term “metrically
transitive” is used. Theorem 1.1 is rather general and not very stringent, in fact
time average A.X0/ can depend on the initial condition. The result of Theorem 1.2,
while concerning the foundations of statistical mechanics, remains of poor practical
utility, since, in general, it is almost impossible to decide whether a given system
satisfies the condition of metrical indecomposability. So that, at a practical level,
Theorem 1.2 only shifts the problem.

1.2.1.3 Ergodicity and Law of Large Numbers in Statistical Mechanics

Strictly speaking, the ergodicity is a too demanding property to be verified and
proved in systems of practical interest. Khinchin in his celebrated book Mathemat-
ical Foundation of the Statistical Mechanics [5] presents some important results on
the ergodic problem which overcome the formal mathematical issues.

The general idea of his approach is based on the following facts:

(a) In the systems which are of interest to statistical mechanics the number of
degrees of freedom is very large;

(b) In statistical mechanics, the important observables are not generic (in mathe-
matical sense) functions, so it is enough to restrict the validity of the ergodic
hypothesis (1.8) just to the relevant observables;

(c) One can accept that Eq. (1.8) does not hold for initial conditions X0 in a region
of small measure (which goes to zero as N !1).

Khinchin considers a separable Hamiltonian system i.e.:

H D
NX

nD1
Hn.qn;pn/ (1.11)
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and a special class of observables (called sum functions) of the form

f .X/ D
NX

nD1
fn.qn;pn/ (1.12)

where fn D O.1/. Interesting examples of sum functions are the pressure, the
kinetic energy, the total energy and the single-particle distribution function. Notice
that a change O.1/ in a single fn results in a relative variation O.1=N/ in f .X/:
the sum functions are “good” macroscopic functions, since they are not so sensitive
to microscopic details.

The main result, obtained using the LLN, is:

Prob

 
jf ! hf ij
jhf ij " K1N

!1=4
!
# K2N

!1=4 (1.13)

whereK1 and K2 are O.1/.
The restriction to the separable structure of the Hamiltonian, i.e. (1.11), had been

removed by Mazur and van der Linden [6]. They extended the result to systems
of particles interacting through a short range potential. Let us stress that in the
Khinchin result, as well as in the generalization of Mazur and van der Linden,
basically the dynamics has no role and the existence of good statistical properties
follows from the LLN, i.e. using the fact that N $ 1.

1.2.1.4 Ergodicity at Work in Statistical Mechanics

We conclude this short excursus on LLN and ergodicity mentioning some important
uses of such topics in statistical physics.

The Boltzmann ergodic hypothesis and the result (1.9) for Markov chains are
the conceptual starting point for two powerful computational methods in statistical
mechanics: molecular dynamics and Monte Carlo method, respectively. In the first
approach one assumes (without a mathematical proof) ergodicity4 and computes
time averages from the numerical integration of the “true” Hamilton’s equations.
In the Monte Carlo approach one selects an ergodic Markov chain5 with the
correct equilibrium probability. Of course, in practical computations, one has to

4It is now well known, e.g. from KAM theorem and FPU simulations, that surely in some limit
ergodicity fails, however it is fair to assume that the ergodic hypothesis holds for liquids or
interacting gases.
5Note that, at variance with the molecular dynamics, the Monte Carlo dynamics is somehow
artificial (and not unique), therefore the dynamical properties, e.g. correlation functions, are not
necessarily related to physical features.
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face nontrivial problems, firstly how to estimate the typical time necessary to have
a good average and how to control the errors.

Another interesting application is the following: consider a simple multiplicative
process: xN D aN xN!1 where faj g are i.i.d. positive. Using the LLN6 it is
simple to show that for almost all the realizations one has xN ! e!N , where
! D hln ai or more formally P.j.1=N / ln.xN =x0/ " !j > "/ ! 0 as N ! 1.
Let us now repeat the problem for non commutative random matrices fAj g, i.e.
the multiplicative process XN D ANXN!1, we can wonder about the limit for
N ! 1 of .1=N / ln jjXN jj=jjXojj, where jj. : /jj indicates a norm. At first glance
the above problem can sound rather artificial, on the contrary it is important
for disordered systems7 and chaotic dynamics. In the 1960s Furstenberg and
Kester [7] have proven, under suitable general conditions, the existence of the limit
.1=N / ln jjXN jj=jjXojj for almost all the realizations: assume that hlnC jjAj jji <
1 (where lnC x D 0 if x # 1 and lnC x D lnx otherwise) then the limit
!1 D limN!1.1=N / ln jjXN jj=jjXojj exists with probability 1. This result had been
extended to deterministic ergodic system by Oseledec [8] in the case the fAj g are
obtained linearizing the dynamics along the trajectory.

1.2.2 Central Limit Theorems

1.2.2.1 The Beginning

The first version of the CLT is due to A. de Moivre who studied the asymptotic
behavior of the sum

SN D x1 C : : :C xN

in the specific case of binomial random variables with P.xj D 1/Dp and
P.xj D 0/ D 1 " p. Starting from the binomial distribution and the Stirling
approximation de Moivre discovered that

lim
N!1

P
!
a # SN "Npp

Np.1" p/
# b

"
D 1p

2#

Z b

a

e! 1
2 x

2
dx : (1.14)

The history of the CLT as universal law, i.e. not only for dichotomic variables, began
with Laplace who was able to prove a generalization of the de Moivre’s result. With
the use of the characteristic functions and asymptotic methods of approximating

6It is enough to consider the variables tj D ln xj and qj D ln aj , and then, noting that tN D
q1 C q2 C : : :C qN , one can use the LLN and obtain the result.
7For instance the discrete one-dimensional Schrödinger equation with a random potential can be
written in terms of a product of 2" 2 random matrices.
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integrals, Laplace proved that, for the case where fxi g are i.i.d. discrete variables
with mean value hxi and variance !2 <1:

lim
N!1

P
!
a ! SN "N hxip

N!2
! b

"
D 1p

2"

Z b

a

e! 1
2 x

2
dx : (1.15)

1.2.2.2 The Russian School and Lindeberg

The first mathematical detailed treatment of the CLT, i.e. the validity of (1.15)
for generic i.i.d. (even non discrete) with finite variance, is due to the Russian
school with Chebyshev and Markov who used in a rigorous way the method of
the characteristic functions and moments [9].

A generalization of the CLT for independent variables with different distribution
is due to Lindeberg (around 1920) who proved that, if hxj i D 0 (this is not a real
limitation) and 0 < !2j <1, under the hypothesis that, for any # ,

lim
N!1

1

D2
N

NX

nD1

Z

jxj>#DN
x2pxn.x/dx D 0 ; where D2

N D
NX

nD1
!2n ; (1.16)

one has

lim
N!1

P
!
a ! SNq

D2
N

! b
"
D 1p

2"

Z b

a

e! 1
2 x

2
dx : (1.17)

Intuitively the Lindeberg condition means that each variance !2n must be small
respect to D2

N : for any # and for N large enough one has !n < #DN for all n ! N .
Feller and Lévy found that the Lindeberg condition is not only sufficient but also

necessary for the validity of the CLT [9].

1.2.2.3 Modern Times

The case of independent variables is quite restrictive, so it is interesting to wonder
about the possibility of extending the validity of CLT to non independent variables.
Intuition suggests that if the correlation among variables is weak enough a CLT is
expected to hold. Such an argument is supported by precise rigorous results [10].
We just mention the basic one. Consider a stationary process with zero mean and
correlation function c.k/ D hxnCkxni. If the correlation is summable,

1X

kD1
c.k/ <1 ; (1.18)
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it is possible to prove that

lim
N!1

P
!
a ! SNq

N!2eff

! b
"
D 1p

2"

Z b

a

e! 1
2 x

2
dx ; (1.19)

where !2eff D !2 C 2
P1

kD1 c.k/. In other words !2 is replaced by !2eff; note that for
N " 1

hSN i ' 2!2effN : (1.20)

The previous result is rather important in the context of diffusion. Interpreting N
as a discrete time, Eq. (1.20) simply expresses the diffusive behavior of SN with
diffusion coefficient !2eff. Violation of the condition (1.18) are thus at the origin
of anomalous diffusive behaviors, for instance to observe hSN i # N˛ with ˛ >
1 and ! < 1 it is necessary to have

P1
kD1 c.k/ D 1, i.e. strongly correlated

random variables. Another possible violation is when ! D 1, in such case CLT
can be generalized and this is the subject of the infinitely divisible and Lévy stable
distributions.

1.2.3 Large Deviation Theory

The large deviation theory studies the rare events and can be seen as a generalization
of the CLT, as it describes not only the “typical” fluctuations but also the very large
excursions.

The first general mathematical formulation of LDT has been introduced in the
1930s mainly by Cramér for i.i.d. random variables x1; x2 ; : : : with mean value
hxi. Under the rather general assumption of existence of the moment generating
function heqxi in some neighborhood of q D 0, it is possible to prove that for the
“empirical mean” yN D .x1 C : : :C xN /=N

lim
N!1

1

N
lnP.yN > y/ D $C .y/ (1.21)

provided y > hxi and P.x > y/ > 0. Of course, by repeating the previous
reasoning for the variable reflected with respect to the mean (i.e. x ! 2hxi $ x),
one proves the complementary result for yN < y < hxi. The Cramér function C .y/
depends on the probability distribution of x, is positive everywhere but for y D hxi
where it vanishes. In addition, it is possible to prove that is convex, i.e. C 00 > 0.

Roughly speaking, the essence of the above result is that for very large N the
probability distribution function of the empirical mean takes the form

p.yN D y/ # e!NC .y/ : (1.22)
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It is interesting to remind that the first LDT calculation has been carried out
by Boltzmann. He was able to express the asymptotic behavior of the multinomial
probabilities in terms of relative entropy, see Sect. 1.3.1. In his approach a crucial
physical aspect is the statistical interpretation of the entropy as a bridge between
microscopic and macroscopic levels.

Let us note that, in general, the Cramér function (for independent or weakly
correlated variables) must obey some constraints:

(i) C .y/ > 0 for y ¤ hyi D hxi;
(ii) C .y/ D 0 for y D hyi;

(iii) C .y/ ' .y ! hyi/2=.2!2/, where !2 D h.x ! hxi/2i, if y is close to hyi.
Properties (i) and (ii) are consequences of the law of large numbers, and (iii) is
nothing but the central limit theorem.

Moreover, the Cramér function C .y/ is linked via a Legendre transform

C .y/ D sup
q
fqy !L.q/g ; (1.23)

to the cumulant generating function of the variable x

L.q/ D lnheqxi : (1.24)

The result (1.23) is easily understood by noticing that the average heqNyN i can be
written in two equivalent ways,

heqNyN i D heqxiN D eNL.q/

heqNyN i D
Z
eqNyN p.yN /dyN "

Z
eŒqy!C .y/"N dy ;

yielding

Z
eŒqy!C .y/"N dy " eNL.q/ : (1.25)

In the limit of largeN , a steepest descent evaluation of the above integral provides

L.q/ D sup
y
fqy ! C .y/g ; (1.26)

which is the inverse of (1.23). Due to the convexity of C .y/, Eqs. (1.23) and (1.26)
are fully equivalent. For a nice general discussion on large deviations see the booklet
by Varadhan [11].

For dependent variables, in analogy with the central limit theorem, we expect that
if the dependence is weak enough a large deviations description such as (1.22) holds,
where the Cramér function depends on the specific features of the correlations.
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We sketch in the following the case of ergodic Markov chains with a finite number
of states.

Consider a sequence S .N / D .s1; s2; : : : ; sN / where st denotes the state of the
chain at time t . Given a function of state, f .st /, the Cramér function of the sum

FN D
1

N

NX

tD1
f .st / (1.27)

can be explicitly computed [12]. From the transition probabilities Pi!j for any real
q we can define the matrix

P.q/ij D Pi!j eqfi (1.28)

where fi is the value of the function f .st / when st D i . Denoting with !.q/ the
largest eigenvalue of P.q/, whose uniqueness is ensured by the Perron-Frobenius
theorem for positive-entry matrices [13], the Cramér function is given by the
formula

C .F / D sup
q
fqF ! ln !.q/g ; (1.29)

which generalizes (1.23) to Markov chains.
For general non independent variables, L.q/ is defined as

L.q/ D lim
N!1

1

N
lnheq

PN
nD1 xni ;

and (1.23) is exact whenever C .y/ is convex, otherwise Eq. (1.23) just gives the
convex envelop of the correct C .y/.

1.3 LDT for the Sum and Product of Random
Independent Variables

1.3.1 A Combinatorial Example

A natural way to introduce the large deviation theory and show its deep relation
with the concept of entropy is to perform a combinatorial computation. Consider
the simple example of a sequence of independent unfair-coin tosses. The possible
outcomes are head (C1) or tail (!1). Denote the possible result of the n-th toss by
xn, where head has probability" , and tail has probability 1!" . Let yN be the mean
value after N " 1 tosses,
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yN D
1

N

NX

nD1
xn: (1.30)

The number of ways in which K heads occur in N tosses is N Š=ŒKŠ.N ! K/Š",
therefore, the exact binomial distribution yields

P

!
yN D

2K

N
! 1

"
D N Š

KŠ.N !K/Š#
K.1 ! #/N!K : (1.31)

Using Stirling’s approximation and writingK D pN and N !K D .1 ! p/N one
obtains

P.yN D 2p ! 1/ " e!NI.#;p/ ; (1.32)

where

I.#; p/ D p ln
p

#
C .1 ! p/ ln

1 ! p
1 ! # : (1.33)

I.#; p/ is called “relative entropy” (or Kullback-Leibler divergence), and I.#; p/ D
0 for # D p, while I.#; p/ > 0 for # ¤ p. It is easy to repeat the argument for the
multinomial case, where x1; : : : ; xN are independent variables that take m possible
different values a1; a2; : : : ; am with probabilities f#g D #1;#2; : : : ;#m.8 In the
limit N # 1, the probability of observing the frequencies ff g D f1; f2; : : : ; fm
is

P.ff g D fpg/ " e!NI.f#g;fpg/

where

I.f#g; fpg/ D
mX

jD1
pj ln

pj

#j

is called “relative entropy” of the probability fpg, with respect to the probability
f#g. Such a quantity measures the discrepancy between fpg and f#g in the sense
that I.f#g; fpg/ D 0 if and only if fpg D f#g, and I.f#g; fpg/ > 0 if fpg ¤ f#g.

From the above computation one understands that it is possible to go beyond the
central limit theory, and to estimate the statistical features of extreme (or tail) events,
as the number of observations grows without bounds. Writing I.#; p/ in terms of
y D 2p ! 1, we have the asymptotic behavior of the probability density:

p.y/ " e!NC .y/ ; (1.34)

8Such a result has been obtained by Boltzmann, who firstly noted the basic role of the entropy [14].
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with

C .y/ D 1C y
2

ln
1C y
2!

C 1 ! y
2

ln
1 ! y
2.1! !/ : (1.35)

For p close to ! , i.e. y ' hyi, a Taylor expansion of C .y/ reproduces the central
limit theorem.

1.3.2 Product of Random Variables

Large deviation theory accounts for rare events pertaining to the tails of the
probability density function (pdf) of the sum of random variables. Ironically, one
of the best examples to appreciate its importance is the product of random variables
such as

MN D
NY

kD1
ˇk ; (1.36)

where fˇkg are real and positive random variables. The statistical properties of the
productMN can be straightforwardly related to those of the sum of random numbers
by noticing that

MN D
NY

kD1
ˇk D eN.

1
N

PN
kD1 xk/ D eNyN with xk D lnˇk ; (1.37)

where again yN D .1=N /
PN

kD1 lnˇk denotes the empirical mean. Below, we
illustrate the importance of LDT product of random numbers partially following
Ref. [15], using a simple example which allows us to use the results of the previous
section. In particular, we can take ˇk D e and e!1 (i.e. xk D lnˇk D ˙1) with
probability ! and 1!! , respectively, so that we can write P.MN D eKe!.N!K// D
P.yN D 2K=N ! 1/ as given by Eq. (1.31). Therefore, we can directly compute
the moments of order q

hMq

N i D .!eq C .1 ! !/e!q/N : (1.38)

Using Eq. (1.34) we can write the moments as

hMq

N i D heN q yN i "
Z

dy e!N.C .y/!q y/ " e!N infyfC .y/!q yg ; (1.39)

where in the second equality we used the LDT result with the Cramér function C
given by Eq. (1.35) and, in the third, we made a steepest descent estimate of the
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Fig. 1.1 Comparison
between the Cramér
function (1.35) (black) and its
parabolic approximation QC
(grey), for ! D 1=2. Inset:
y!.q/ vs q, as obtained using
LDT or CLT

integral; both steps requireN to be large. Using Eq. (1.35), a rather straightforward
computation shows that the minimum in Eq. (1.39) is realized at y!.q/ D .!eq !
.1 ! !/e"q/=.!eq C .1 ! !/e"q/, with

inf
y
fC .y/! q yg D C .y!/! q y! D ! ln .!eq C .1 ! !/e"q/ ; (1.40)

so that we recover the result (1.38).
Now to appreciate the importance of rare events, we can disregard them by

repeating the estimate of the moments using the CLT. In practice, this amounts to
Taylor expanding C in (1.35) around its minimum y D 2! ! 1, i.e. to approximate
C with the parabola

QC .y/ D .y C 1 ! 2!/2
8!.1 ! !/ : (1.41)

This approximation corresponds to assume a lognormal distribution for the product
MN [16]. The moments can be computed by finding the minimum in (1.39) with C
replaced by its parabolic approximation QC . A straightforward computation gives
y! D 2! ! 1 C 4!.1 ! !/q and infyf QC .y/ ! q yg D QC .y!/ ! q y! D
!q.2! ! 1 C .1 ! !/q/, which leads to moments very different from the correct
ones (1.38) also for moderate values of q. Moreover, the fast growth of the moments
(" exp.const.Nq2/) makes the lognormal distribution not uniquely determined by
the values of its moments [17]. Figure 1.1 shows the Cramér function (1.39) and its
parabolic approximation. The minimum position y!.q/ obtained with the lognormal
deviates from the correct value also for moderate values of q (see inset).

In the above example, the CLT (and thus the lognormal approximation) does not
take into account the fact that yN cannot exceed 1, which is the value corresponding
to a sequence consisting of N consecutive ˇk D e. Such a sequence has an
exponentially small probability to appear, but it carries an exponentially large
contribution compared to the events described by CLT.

For an introductory discussion of LDT in multiplicative processes see Ref. [15].
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1.4 Large Deviation Theory: Examples From Physics

1.4.1 Energy Fluctuations in the Canonical Ensemble

The large deviation theory finds a rather natural application in statistical mechanics,
e.g. for the fluctuations of the energy e per particle in a system of N particles at
temperature T :

p.e/ ' 1

ZN
expf!NˇŒe ! Ts.e/!g ;

where s.e/ is the microcanonical entropy per particle. Since
R
p.e/de D 1, the

constant ZN (partition function) turns out to be

ZN " expf!N f̌ .T /g ;

where f .T / is the free energy per particle

f .T / D min
e
fe ! Ts.e/g :

The value e! for which the function e!Ts.e/ reaches its minimum is determined by

1

T
D @s.e/

@e
; (1.42)

i.e. it is the value such that the corresponding microcanonical ensemble has
temperature T . It is rather obvious what is the Cramér function and its physical
meaning:

C .e/ D ˇŒe ! Ts.e/ ! f .T /! :

Let us note that the value of e such that C .e/ is minimum (zero) is nothing but
e! D hei given by (1.42). The Gaussian approximation around e! is

C .e/ ' 1

2
C 00.e!/.e ! e!/2 ;

and therefore h.e ! e!/2i D 1=ŒNC 00.e!/!, since

h.e ! e!/2i D kB

N
T 2cV ;

where cV D @hei=@T is the specific heat per particle. The convexity of the Cramér
function has a clear physical meaning: cV .T / must be positive. The case of non-
convex Cramér function corresponds to phase transitions, i.e. non-analytic f .T /.
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1.4.2 Multiplicative Cascade in Turbulence

Turbulent flows are characterized by fluctuations over a wide range of scales,
with a disordered alternation of quiescent regions and sparse bursting events—
intermittency [18]. Intermittency of this kind is well captured by multiplicative
processes which, in turbulence, find their justification in the phenomenology of
the energy cascade [18]: the nonlinear process by which velocity fluctuations flow
from the large scales (of injection) to the small ones, where they are dissipated
by molecular diffusion. The book in Ref. [18] provides a detailed discussion of
turbulence within the framework of LDT (and the multifractal model). Here we just
illustrate a simple d -dimensional multiplicative process, inspired to turbulence, able
to generate an intermittent signal similar to those experimentally observed.

At step N D 0 consider a (mother) hypercube of side `0 (the forcing scale)
where energy dissipation is nonrandom and equal to !0. The N D 1 step is obtained
subdividing the hypercube in 2d (daughter) hypercubes of side `0=2 (powers of 2 are
just for simplicity). In each daughter hypercube the energy dissipation is obtained
by multiplying !0 by independent random variables w ! 0 (such that hwi D 1 and
hwqi < 1 for any q > 0). At the n-th step we thus have 2Nd hypercubes of side
`N D `02!N , with energy dissipation

!N D wN !N!1 D
NY

kD1
wk!0 : (1.43)

Although the prescription hwi D 1 ensures that h!N i D !0, the multiplicative
process is non-conservative, i.e. the value of the energy dissipation of a specific
hypercube of side `N is not equal to the sum of the energy dissipation in the
daughters hypercube at scale `N =2. Moreover, as discussed in Sect. 1.3.2, large
fluctuations are typical of product of random variables, so that we can expect that
for N large intermittency shows up. For instance, the choice

w D
!
ˇ!1 with prob: ˇ

0 with prob: 1 " ˇ 0 < ˇ # 1 ; (1.44)

corresponds to a popular model known as ˇ-model for turbulence [19]. Clearly,
with (1.44) at the N -th step energy dissipation will be different from zero only in
a fraction ˇN D 2N log2 ˇ D .`0=`N /

log2 ˇ of the 2Nd D .`0=`N /
d hypercubes, in

other terms energy dissipation will distribute on a fractal of dimension DF D d "
log2.1=ˇ/. This qualitatively explains the sparseness of bursting events. However,
whenever different from zero energy dissipation will be equal to ˇ!N !0. Therefore,
to account for the unevenness of energy dissipative values in each hypercube where
it is different from zero, one possibility is to generalize (1.44) by assuming that ˇ is
not a fixed value but a realization of i.i.d. random variables with a given pdf p.ˇ/
[20]. Essentially this leads the energy dissipation to be a multifractal measure [18],
which can be characterized in terms of the moments



1 From LLN to LDT in Statistical Physics: An Introduction 19

h!qN i D
Z NY

kD1
ˇkp.ˇk/dˇk!

q
0ˇ

!q
k : (1.45)

To compute the moments in the limitN !1 we can proceed similarly to (1.39). In
particular, we have !N D !0.`N =`0/!yN with yN D

PN
kD1 log2 ˇk=N . LDT implies

that p.yN D y/ ! .`N =`0/
C .y/= log 2, so that estimating the integral in (1.45) with

the saddle point method we obtain

h!qN i D !
q
0

!
`N

`0

""q
with "q D inf

y

#
C .y/

log 2
" y.q " 1/

$
: (1.46)

In general, "q will be a nonlinear function of q: the signature of multifractality
and intermittency. Conversely, in the model (1.44) with ˇ non-random, "q D
.q"1/.d"DF / is a linear function. The exponents "q is linked to the scaling behav-
ior of moments of the difference of velocities, the so-called structure functions,
which are directly accessible experimentally. As shown in Ref. [20] a careful choice
of p.ˇ/ allows for reproducing the behavior of the structure functions’ exponents
which display a seemingly universal nonlinear dependence on q.

1.4.3 Chaotic Systems

The most characterizing feature of chaotic systems is the sensitive dependence on
initial conditions: starting from nearby initial conditions, trajectories exponentially
diverges. The classical indicators of the degree of instability of trajectories are the
Lyapunov Exponents (LE), that quantify the mean rate of divergence of trajectories
which start infinitesimally close. For the sake of simplicity we consider a 1d discrete
time dynamical system

x.t C 1/ D f .x.t// (1.47)

and given an initial condition x.0/, we look at two trajectories, x.t/ and Qx.t/ starting
from x.0/ and Qx.0/ D x.0/ C ıx.0/, respectively, where jıx.0/j # 1. Denoting
with ıx.t/ D jx.t/" Qx.t/j the distance between the two trajectories, we expect that
for non-chaotic systems jıx.t/j remains bounded or increases algebraically in time,
while for chaotic systems it grows exponentially

jıx.t/j D jıx.0/je# t ; (1.48)

where

# D 1

t
ln
jıx.t/j
jıx.0/j ; (1.49)

is the local exponential rate of divergence between trajectory.
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The Maximum Lyapunov Exponent, characterizing the sensitivity to initial
conditions, is defined by the limit

!max D lim
t!1

lim
jıx.0/j!0

1

t
ln
jıx.t/j
jıx.0/j : (1.50)

Note that " is fluctuating while !max is a non-fluctuating quantity, but it can depend
on x.0/. It is easy to understand that the existence of the limit in Eq. (1.50) is
a generalization of LLN for dependent variables. In order to obtain ıx.t/ from
ıx.t ! 1/, in the case of an infinitesimal jıx.t ! 1/j one can use a simple Taylor
expansion of the first order and the local exponent " can be computed as

" D 1

t
ln
jıx.t/j
jıx.0/j D

1

t

tX

kD1
ln jf 0.x.k ! 1//j : (1.51)

The Maximum Lyapunov Exponent is nothing but

!max D lim
t!1

1

t

tX

kD1
ln jf 0.x.k ! 1//j ;

and, if the system is ergodic, it does not depend on x.0/. Moreover, in simple cases,
it is possible to obtain also the Cramér function of " . Let us consider the tent map

x.t C 1/ D f .x.t// D

8
ˆ̂<

ˆ̂:

x.t/

p
0 " x.t/ < p

1 ! x.t/
1 ! p p " x.t/ " 1;

(1.52)

with p 2 .0; 1/. The derivative of the map takes only two values, 1=p and
1=.p ! 1/, moreover the map can be shown to generate a memory-less process so
that the sum (1.51) can be interpreted as the sum of Bernoullian random variables

#j D
!
! lnp with prob. p
! ln.1 ! p/ with prob. 1 ! p:

Therefore the effective Lyapunov exponent on a time interval t is

".t/ D !k lnp C .t ! k/ ln.1 ! p/
t

with prob.
"
t

k

#
pk.1 ! p/t!k ;

where k is the number of occurrences of #j D ! lnp. Using the Stirling approxi-
mation, with some algebra it is possible to obtain the probability of the occurrence
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of ! in a time interval t as Pt.!/ ' exp.!tC .!// where the Cramér function is
given by

C .!/D
"
! C ln.1 ! p/

ln 1!p
p

ln

 
! C ln.1 ! p/
p ln 1!p

p

!
! ! C lnp

ln 1!p
p

ln

 
! ! C lnp

.1 ! p/ ln 1!p
p

!#
:

(1.53)

The Cramér function has its minimal value in ! D !p lnp ! .1 ! p/ ln.1 ! p/
(where it also vanishes) which is the Maximum Lyapunov Exponent, and the Taylor
expansion of Eq. (1.53) around this minimum provides the Central Limit Theorem
for the sum (1.51). Unfortunately this computation can be performed almost only
for piecewise linear maps.

For generic dynamical systems

x.t C 1/ D f.x.t//

there exists a theorem due to Oseledec that under very general hypothesis, states the
existence of the Lyapunov exponents. But a major difficulty arises, i.e., the product
of Eq. (1.51) cannot be factorized because of the non commutativity of the Jacobian
matrix with entries Aij D @fi =@xj .

1.4.4 Disordered Systems

Products of matrices and Oseledec’s limit theorem find a natural application to the
study of statistical mechanics of disordered systems. Indeed, their thermodynamical
properties can be recast, via transfer matrix formalism, as the evaluation of the
asymptotic properties of products of matrices. The presence of randomness induced
by disorder introduces sample to sample fluctuations of observables which require
proper averaging procedures over different disorder realizations. In this case the
transfer-matrix approach involves products of random matrices.

As an example, which already includes all the difficulties, consider an array ofN
binary variables "i D ˙1 (spins) whose interaction is defined by the Hamiltonian,

H.! / D !J
NX

iD1
"i"iC1 C

NX

iD1
hi"i ; (1.54)

where J determines a ferromagnetic internal coupling between nearest neighbor
sites and fhigNiD1 D h represent a set of local magnetic fields acting on site, each
independently extracted from a distribution #.h/. Typically, #.h/ is chosen to be a
Gaussian or a bimodal distribution and usually periodic boundary conditions are
assumed, "iCN D "i . For finite N , the system has 2N possible configurations,
however we are interested in the thermodynamic limit N ! 1, where extensive
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thermodynamics quantities becomes independent of N and the choice of boundary
conditions is irrelevant.

Once a given realization of the disorder is assigned, h D fhigNiD1, the equilibrium
thermodynamics of the N -spin chain is determined by the free-energy:

fN .ˇ;h/ D !
1

ˇN
lnZN .ˇ;h/; (1.55)

where

ZN.ˇ;h/ D
X

!1

: : :
X

!N

e!ˇ.J!1!2!h1!1/ " " " e!ˇ.J!N !1!hN !N / (1.56)

is the partition function of the system, the summation covers all the 2N spin
configurations and ˇ D 1=.kBT /. In principle, the free-energy (1.55) for every finite
N is a random variable, because it depends on the disorder realizations, however,
as we shall see in the transfer matrix formalism, a straightforward application of
Oseledec’s limit theorem implies that

lim
N!1

fN .ˇ;h/ D lim
N!1

! 1

ˇN
hlnZN .ˇ;h/ih; (1.57)

where the average h: : : :ih is meant over the random field distribution. Result (1.57)
can be interpreted as follows, in the thermodynamic limit fN .ˇ;h/ is a non-random
quantity as it converges to its limit average over the disorder, for almost all disorder
configurations. In an equivalent physical language, whenN !1, fN is practically
independent of fhigNiD1, and it is a self-averaging observable with respect to sample
to sample disorder fluctuations.

The transfer matrix approach amounts to re-writing the partition function

ZN D
X

f!i g

NY

iD1
e!ˇ.J!i!iC1!hi!i / D T r

! NY

iD1
TŒi "

"
(1.58)

as an iterated matrix product in indexes !2; !3; : : : ; !N and the summation over !1 as
a trace operation, where the 2#2 fundamental matrix TŒi " has entries: T .!i ; !iC1/ D
expŒˇ.J!i!iC1 ! hi!i /", more explicitly:

TŒi " D
#
eˇ.J!hi / e!ˇ.JChi /

e!ˇ.J!hi / eˇ.JChi /

$
: (1.59)

In the thermodynamic limit, the free energy per spin is given by the maximum
Lyapunov exponent #1 of the product of matrices in Eq. (1.58):
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! f̌ .ˇ;h/ D lim
N!1

1

N
ln
!
T r

" NY

iD1
TŒi !

#$
D "1: (1.60)

When the field hi D H is the same on every site (no disorder), the computation of
free-energy is particularly simple because the product involves identical symmetric
matrices: ZN D T r.TN / D #NC C #N! being #˙ the eigenvalues of T. Therefore
the free energy coincides with the logarithm of the maximum eigenvalue of T:
f .ˇ;H/ D !ˇ!1 ln.#C/, where

#˙ D eˇJ cosh.ˇH/˙
q

cosh2.ˇH/2e2ˇJ sinh.2ˇJ /:

When hi is not constant, the matrices (1.59) are not commuting, and the
asymptotic behavior of the random matrix product has to be numerically evaluated.
Practically, one resorts to compute the exponential growth rate of an arbitrary initial
vector z0 D .u0; v0/, with positive components, under the effect of the iterated
matrix multiplication znC1 D TŒn!zn!1,

"1 D lim
N!1

1

N
ln
" jzN j
jz0j

#
D lim

N!1
1

N

N!1X

nD0
ln
" jznC1j
jznj

#
:

Oseledec’s theorem grants that, under rather general conditions, the above limit
exists and it is a non-random quantity (self averaging property). Then, the com-
putation of free-energy of a one-dimensional random field Ising model to some
extent constitutes a physical example of the application of the law of large numbers.
Moreover the self-averaging property of the free-energy in the context of disordered
systems corresponds to the ergodicity condition for dynamical systems.

A large deviation approach can be formulated also for the fluctuations of the
free-energy of a random field Ising model at finite N around its thermodynamic
limit value. The transfer random-matrix formalism makes the characterization of
large deviations an application of the generalized Lyapunov exponents. It is easy
to compute the asymptotic behavior of hjznjqi for q D 1; 2; 3; : : : and therefore
compute the generalized Lyapunov exponents

L.q/ D lim
n!1

1

n
lnhjznjqi: (1.61)

It is possible to show that L.1/ is the logarithm of the largest eigenvalue of hTi
while L.2/ is the logarithm of the largest eigenvalue of hT˝2i where hT˝2i is the
tensorial product hT˝ Ti and so on for hT˝3i, etc. In such a way we have an exact
bound "1 " L.q/=q for q D 1; 2; : : :. To consider L.1/ instead of "1 corresponds,
in physical terms, to consider an annealed average, i.e. lnhZN i instead of hlnZN i.
The knowledge of L.q/, for all q, is equivalent to the knowledge of the Cramér
function C.$/.
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1.4.5 Entropy Production in Markov Processes

A recent application of the theory of large deviations concerns the dynamical
behaviour of deterministic and stochastic systems at large times.

Consider a continuous time Markov process with a finite number of states, whose
evolution is such that: if the system is in state x, it remains in such a state for
a random time t ! 0 extracted with a probability density p.t/ D !.x/e!!.x/t

and then jumps to a new state x0 with transition probability w.x!x0/
!.x/

. The functions
w.x ! x0/ are said to be the transition rates of the Markov process and !.x/ DP

x0 w.x ! x0/ is the total exit rate from x. It is useful to introduce also a notion of
time-reversed state x for a given state x: for the so-called “even” variables, such as
positions or forces, one has x " x, while for “odd” variables, such as velocities, one
has x " #x. For what follows, a further assumption is crucial: if w.x ! x0/ > 0
then w.x0 ! x/ > 0.

From the above definitions, a trajectory of time-length t can be written as
˝t
0 D f.x0; t0/; .x1; t1/; .x2; t2/; : : : ; .xn; tn/g, where the system undergoes n jumps

visiting states xi in temporal order from i D 0 to i D n and stays in each
of them for a waiting time ti , with

P
i ti D t . Its time-reversal reads ˝t

0 D
f.xn; tn/; .xn!1; tn!1/; : : : ; .x2; t2/; .x1; t1/; .x0; t0/g.

The probabilityPx.t/ of finding the system in state x at time t evolves according
to the master equation:

dPx.t/
dt

D
X

x0
Px0.t/w.x0 ! x/ # !.x/Px.t/: (1.62)

We denote by P inv
x the steady state solution of (1.62). The particular steady state

where P inv
x0 w.x0 ! x/ D P inv

x w.x ! x0/ is a steady state which is said to
satisfy detailed balance. The detailed balance conditions imply that the probability
of occurrence of any trajectory is invariant under time-reversal P.˝t

0/ D P.˝t
0/:

in short, a movie of the system of any time-length cannot be discriminated to be
played in the forward or backward direction. Markov processes describing physical
systems at thermal equilibrium (or isolated), satisfy the detailed balance conditions.
On the contrary, the presence of external forces and/or internal dissipation leads to
steady states with physical currents, with the consequent breakdown of the detailed
balance conditions.

Following a series of studies [21–24], a “fluctuating entropy production func-
tional” has been proposed in [25] for the general case of Markov processes. The
functional, for a trajectory which in the time Œ0; t ! includes n jumps, reads

Wt.˝
t
0/ D

nX

iD1
ln

w.xi!1 ! xi /

w.xi ! xi!1/
: (1.63)
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It is immediate to verify that in a steady state satisfying detailed balance Wt D
! lnŒP inv

x0
=P inv

xn
! and therefore—given the finiteness of the space of states—one has

limt!1 Wt
t
D 0. Otherwise, as discussed below, limt!1

hWt i
t
> 0.

More precisely, a large deviation principle for the stochastic variable Wt can
be obtained, such that its associated Cramér function satisfies a particular relation,
called “Fluctuation-Relation”. An instructive way to derive it is the following [25].
Let us define the joint probability px.Wt ; t/ of finding the system at time t in state
x with a value of the entropy production (measured starting from time 0) Wt ; we
also define the vector p.Wt ; t/ D fpx1 : : : pxM g where M is the number of possible
states for the system. It is not difficult to realize that its evolution is governed by a
modified master equation that reads

dpx.Wt ; t/

dt
D
X

x0
px0

!
Wt !"W.x0 ! x/; t

"
w.x0 ! x/ ! !.x/px.Wt ; t/:

(1.64)
With "W.x0 ! x/ D ln w.x0!x/

w.x!x0/ . If we consider the generating function for Wt

conditioned to state x, i.e.

gx.s; t/ D
Z
dWte

!sWt px.Wt ; t/; (1.65)

we find for its time evolution, immediately descending from Eq. (1.64):

dgx
dt
D
X

x0
w.x0 ! x/e!s"W.x0!x/gx0.s; t/ ! !.x/gx.s; t/ D

X

x0
w.x0 ! x/1!sw.x ! x0/sgx0.s; t/ ! !.x/gx.s; t/ D ŒL.s/g.s; t/!x (1.66)

where we have used the definition of "W.x0 ! x/. The initial conditions for
Eq. (1.66) is gx.s; 0/ D

R
dWte

!sWt Px.0/ı.Wt/ D Px.0/, so that

gx.s; t/ D
X

y

ŒeLt .s/!xyPy.0/: (1.67)

Finally, summing over all possible states x, weighted with their probability, we get
the unconditioned generating function, that reads

g.s; t/ D
X

x;y

Px.t/Œe
Lt .s/!xyPy.0/: (1.68)

The Perron-Frobenius theorem guarantees that L.s/ has a unique maximal eigen-
vector Qg.s/ > 0 with real eigenvalue !#.s/. This allows one to define the limit
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lim
t!1
!1
t

lng.s; t/ D !.s/: (1.69)

It is immediate to verify that !.s/ is the time-rescaled cumulant generating function
for the steady state of the variableWt . Its Legendre transform is the Cramér function
for the large deviations of the same variable, i.e.

p.Wt / " exp
!
t sup

s

"
s
Wt

t
C !.s/

#$
" expŒtC .Wt=t/": (1.70)

From its definition in Eq. (1.66), it is straightforward to realize thatL!.s/ D L.1!s/
and therefore!.s/ D !.1!s/. This immediately reflects into the following relation
for the Cramér function of wt D Wt=t :

C .wt /! C .!wt / D wt ; (1.71)

which is known as Steady State Fluctuation Relation (SSFR).
In the limit of an infinite space of states (M ! 1) problems may arise in

the derivation sketched above, when the inverse transform is operated to retrieve
the large deviation rate function C .wt /. In some cases a modified SSFR holds true
instead of Eq. (1.71): to recover the validity of formula (1.71) one has to measure
a different entropy production, modified by adding so-called “boundary terms”, as
discussed in [26–28].

Notwithstanding the problems for unbounded spaces, the result (1.70) together
with (1.71) is remarkable: the “entropy production” measured on very long trajec-
tories tends to be sharply peaked around its average value, which is positive for
non-equilibrium systems and zero otherwise. Moreover, if the trajectories have finite
time-length, one can observe also negative fluctuations, representing a sort of “finite
size violation” of the second principle of thermodynamics, but with exponentially
small probability.
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