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F-91191 Gif-sur-Yvette, France
3 INFM-CNR, SMC Dipartimento di Fisica, Università di Roma ‘La Sapienza’,
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Abstract. The synchronization transition between two coupled replicas of
spatio-temporal chaotic systems in 2 + 1 dimensions is studied as a phase
transition into an absorbing state—the synchronized state. Confirming the
scenario drawn in (1 + 1)-dimensional systems, the transition is found to belong
to two different universality classes—multiplicative noise (MN) and directed
percolation (DP)—depending on the linear or nonlinear character of damage
spreading occurring in the coupled systems. By comparing a coupled map lattice
with two different stochastic models, accurate numerical estimates for MN in 2+1
dimensions are obtained. Finally, aiming to pave the way for future experimental
studies, slightly non-identical replicas have been considered. It is shown that
the presence of small differences between the dynamics of the two replicas acts
as an external field in the context of absorbing phase transitions and can be
characterized in terms of a suitable critical exponent.
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1. Introduction

Synchronization of low-dimensional chaotic oscillators, which have been intensively
investigated in the last two decades [1], can be essentially regarded as a bifurcation
from an uncorrelated to an entrained state. When single low-dimensional oscillators
are replaced by spatially extended systems exhibiting spatio-temporal chaos, however,
synchronization becomes a genuine, fluctuation-driven, phase transition which separates
the uncorrelated and the completely synchronized states [2, 3]. The synchronization
transition (ST) between two identical coupled replicas (starting from different, generic
initial conditions) of the same spatio-temporal chaotic dynamics is thus a non-equilibrium
critical phenomenon originating from deterministic dynamics. Chaotic fluctuations on the
synchronized trajectory play the role of intrinsic stochastic terms, leading to diverging
fluctuations as the critical point is approached [4].

Numerical studies in one-dimensional dissipative extended systems have shown that
the ST is essentially a phase transition into an absorbing state [5], i.e. the completely
synchronized state, in which the two replicas of the extended system evolve on the same
chaotic trajectory [2, 3], similarly to low-dimensional chaotic systems [6]. Noticeably,
the observed continuous STs can be distinguished in two universality classes depending
on the spatio-temporal propagation properties of the system close to criticality [2].
Consider a localized and finite perturbation (or synchronization error) to one of two
otherwise identical (and thus synchronized) coupled replicas. At low coupling it will
spread with a well-defined propagation velocity vF [7], implying a desynchronization of
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the two replicas. By definition, ST takes place at the critical coupling value for which
vF vanishes, i.e. the synchronization error does not propagate anymore in space and
time. On the other hand, the evolution of ‘infinitesimal’ synchronization errors is well
described by the linearized dynamics and can be characterized in terms of the asymptotic
exponential growth rate, i.e. the so-called transverse Lyapunov exponent λT [1, 6]: a
positive (resp. negative) λT implies exponential growth (resp. contraction) of infinitesimal
perturbations. Whenever the local dynamics is sufficiently smooth, i.e. the linearization
captures the essential features of the full dynamics, λT vanishes together with vF at
the critical coupling for the synchronization. When this happens ST belongs to the
multiplicative noise (MN)7 universality class [9]. When strong nonlinear effects make
finite-amplitude perturbations more unstable than infinitesimal ones [10], the transverse
Lyapunov exponent vanishes before the error propagation velocity, so that at the ST
transition one has λT < 0 and vF = 0. In this second case, which is closely related to the
Stable Chaos phenomenon [11], ST belongs to the directed percolation (DP) universality
class [5]. In the framework of one-dimensional coupled map lattices (CMLs)—a common
prototype of spatio-temporal chaotic systems—the critical behavior belongs to the DP
universality class for general (almost-)discontinuous local maps, and to the MN class for
smoother maps [2, 3]. Remarkably, in the context of CML models, it is possible to pass
from DP to MN by varying a unique parameter, which controls the strength of nonlinear
instabilities of the local map [12].

Analytical arguments (coarse-graining techniques combined with linearization or
finite-size analysis) show that these two STs can be mapped into the Langevin equations
describing the MN or DP universality classes, respectively [3, 7]. In particular, it can be
shown that the ST belongs to directed percolation for generic discontinuous maps8 [7].
It is worth noticing that these two universality classes have been originally identified in
completely different contexts, such as epidemics spreading in reaction–diffusion dynamics
(DP) or the depinning of a fluctuating Kardar–Parisi–Zhang (KPZ) [13] interface (with a
negative nonlinear term) from an underlying substrate (MN)9. Interestingly, while it is not
possible to define a simple reaction diffusion system with a Markov dynamics belonging
to the MN class, DP critical depinning can be observed when a short-ranged attraction
force is imposed between a KPZ interface and the underlying substrate [14]. Therefore,
ST can be described in terms of a single Langevin equation [15]. Although it is yet unclear
how the empirical Langevin equation for ST may eventually flow—as a control parameter
is varied from the MN to the DP region—to the same DP fixed point as the Langevin
equation for Reggeon field theory, these results strongly suggest that both universality
classes may be described within a unique field-theoretic framework.

In the last few years, ST has been the object of intensive numerical
investigations [2, 3, 7, 12, 17, 16, 18, 19]; the analysis has also been extended to stochastic
coupling [2], cellular automata [20, 21], systems with long-range interactions [22, 23] and
delayed dynamical systems [24, 25], exploiting the analogy between the latter and spatially

7 Or, to be more precise, to the so-called MN1 class, see, for instance, [8]. In this paper MN will always indicate
the MN1 class.
8 At least as long as the single CML coupling parameter is close to the democratic value ε = (2d)/(2d + 1), see
equation (2).
9 A second universality class, called MN2, can be defined starting from a KPZ with a positive nonlinear term.
However, it is completely unrelated to synchronization problems.
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extended dynamics. So far, however, ST critical behavior has been investigated in 1 + 1
dimensions only. In this respect, it should also be remarked that, while DP critical
exponents are known with great accuracy in any dimension, and MN exponents have been
accurately measured in 1+1 dimensions [26], the only known estimates of the MN critical
indexes in 2 + 1 dimensions comes from direct numerical simulations of the Langevin
dynamics [27]. Moreover, it is worth recalling that, for d ≤ 2, the MN critical behavior
is completely governed by a strong coupling fixed point [28], so that no field theoretical
estimates of critical exponents are currently available.

The above situation is particularly unsatisfactory, especially considering that two-
dimensional spatio-temporal chaotic systems—such as chemical turbulence in quasi-two-
dimensional reactions [29, 30] or turbulent nematic liquid crystals [31]—are the most
promising ones for studying ST in experiments. In this perspective, it is worth stressing
that no experimental realization of the MN class has been so far realized, and it is only
recently that the DP critical exponents have been measured in experiments: in 1 + 1 [32]
and 2 + 1 dimensions [31]. Therefore, besides the potential interest of experimentally
realizing synchronization of chaotic extended systems, such an experiment would be the
perfect ground for testing MN critical behavior in a physical framework.

A major difficulty in devising a synchronization experiment is the assemblage of two
perfectly identical replicas of the same system. In practice, it would be unavoidable to
experience very small differences, for example, in the physical parameters entering the
dynamics of the two systems. It is therefore of practical interest to quantify the influence
of a small mismatch in the copies of the two systems. Another difficulty could lie in
producing a suitable local coupling between the two replicas. However, this can also be
realized through a stochastic forcing, for instance exposing two excitable chemical samples
to the same random illumination (see, e.g., [30]), or by applying the same random external
voltage to two replicas of the intermittent electrohydrodynamic convection regimes of [31].
As far as the critical properties of ST are concerned, deterministic or stochastic couplings
are expected to share the same properties [2, 3].

This paper focuses on the synchronization transition in two spatial dimensions, within
the framework of CMLs, with a twofold scope. First, we aim at verifying whether
the scenario drawn in one-dimensional systems for ST applies also to two dimensions.
This requires accurate estimates of the MN critical exponents. For such reason we also
investigate two stochastic models which are expected to belong to the MN universality
class. Second, mimicking what could happen in an experiment, we study ST in the
presence of a small parameter mismatch between the two replicas.

This paper is organized as follows. In section 2, after presenting the CML models and
recalling the definition and basic tools for measuring the critical exponents, we discuss the
results of accurate numerical simulations for two different classes of maps, which in 1 + 1
dimensions have been proved to belong to the DP and MN universality classes. Section 3
focuses on an accurate estimation of critical exponents for the MN class in 2+1 dimensions
by means of two stochastic models. The section ends with a critical comparison between
the computed exponents for the MN universality class and some scaling relations which
have been put forward by previous studies. In section 4, mimicking what would typically
be an experimental setting, we reconsider ST in the presence of a parameter mismatch
and, accordingly, we introduce a new critical exponent for its characterization. Section 5
is devoted to final remarks and discussions.
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2. Synchronization transition in two spatial dimensions

In the following we investigate the dynamics of two coupled replicas of two-dimensional
CMLs, defined on an L × L square lattice with periodic boundary conditions, evolving
according to the dynamics:

ut+1(x, y) = (1 − γ)F (ũt(x, y)) + γF (ṽt(x, y))

vt+1(x, y) = (1 − γ)F (ṽt(x, y)) + γF (ũt(x, y))
(1)

with x, y = 1, 2, . . . , L. The variable

z̃t(x, y) = ∇2
εzt(x, y) ≡ (1 − ε)zt(x, y)

+
ε

4
[zt(x+ 1, y) + zt(x− 1, y) + zt(x, y + 1) + zt(x, y − 1)], (2)

(with z = u, v) represents the nearest-neighbor diffusive coupling within each replica.
Through this work, we set the diffusive coupling constant ε equal to the democratic
value ε = 4/5, which gives the same weight to all neighbors. As from studies in the
one-dimensional version of equation (1), the DP or MN character of the ST relates to
the functional form of the local map F (u) [2, 3]. In particular, we have that if F (u) is
continuous (such as the logistic or the tent map) the transition is in the MN universality
class. Conversely, for discontinuous (or quasi-discontinuous [34]) maps, such as the
generalized shift map

F (u) = au mod 1, (3)

the ST belongs to the DP class. The strength of the ‘transverse’ coupling between the
replicas is controlled by γ: for γ = 0 they are completely uncorrelated, while setting
γ = 1/2 induces trivial complete synchronization in one time step, i.e. ut(x, y) = vt(x, y)
for any t ≥ 1 and for all x, y. Nontrivial ST, if present, is expected for a critical coupling
value γc ∈ ]0 : 1/2[ at which the synchronized state, ut(x, y) = vt(x, y), becomes stable
(or, at least, marginally stable). For any γ ≥ γc, the two replicas (starting from different,
generic initial conditions) converge toward the same spatio-temporal chaotic trajectory.
In other terms, the synchronization error field wt(x, y) = |ut(x, y)−vt(x, y)| tends towards
zero for any x, y. The linear stability properties of the synchronized state are ruled by
the transverse Lyapunov exponent λT. For γ ≥ γc, λT can be directly computed from the
maximum Lyapunov exponent λ of an uncoupled replica according to the relation [6]

λT = λ+ ln(1 − 2γ). (4)

The request λT = 0 thus determines the coupling γ̄ = (1 − exp(−λ))/2, which coincides
with the critical coupling for ST, i.e. γ̄ = γc, for maps belonging to the MN class. However,
this result, based on the linear analysis, does not hold for systems belonging to the DP
universality class.

The suitable order parameter to characterize ST is the spatial average of the
synchronization error wt(x, y) = |ut(x, y) − vt(x, y)|, i.e.

ρ(t) =
1

L2

L∑

x,y=1

wt(x, y). (5)
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Note that ρ(t) = 0 if and only if wt(x, y) = 0 for all x, y. If two replicas are identical
(i.e. synchronized) at time t0, they will remain so at all times t ≥ t0, implying that the
synchronized state is absorbing, i.e. the dynamics cannot escape from it.

Interestingly, the MN and DP absorbing states differ in their measure [33] which, for
any finite system size L, is vanishing or finite, respectively. As a consequence any finite
system belonging to the DP class falls into the absorbing state in a finite time. In CMLs,
whose state variables are continuous, the synchronized state wt(x, y) = 0 can only be
reached asymptotically in time (barring computer round-offs), apparently at odd with the
nature of the DP absorbing state. In [7], however, it has been shown that whenever the
ST transition takes place at vF = 0 and λT < 0 (the DP case), all perturbations smaller
than a certain finite (but vanishing for L → 0) threshold are exponentially contracted
towards zero, thus defining an effective finite measure for the absorbing state.

We now consider the scaling theory for phase transitions into an absorbing state [5],
which allows for defining the universal critical exponents, only depending on properties
such as system symmetries and spatial dimensions, in terms of which we can characterize
the ST. In the thermodynamic limit and at γ = γc, one expects the order parameter to
follow the asymptotic power law decay:

ρ(t) ∼ t−θ, (6)

where θ is a critical exponent. Close to the critical point, but slightly within the
unsynchronized phase, i.e. for γ < γc and γc − γ 	 1, the asymptotic value of the
order parameter ρ∞ ≡ limT→∞ 1/T

∑T
t=1 ρ(t) is characterized by the scaling relation

ρ∞ ∼ (γc − γ)β, (7)

which defines a second critical exponent. Out of equilibrium critical phenomena are also
characterized by the divergence of space and time correlations close to the critical point,
in particular one expects

ξ‖ ∼ |γ − γc|ν‖, ξ⊥ ∼ |γ − γc|ν⊥ (8)

where ξ‖ (resp. ξ⊥) is the temporal (resp. spatial) correlation length, where for simplicity
we considered the system to be spatially isotropic. It can be shown [5] that only three
exponents are independent, and in particular that the following relation holds

θ = βν‖. (9)

Furthermore, the ratio z = ν‖/ν⊥, i.e. the so-called dynamical exponent, determines the
relation between time and space correlations. The dynamical exponent can be measured
exploiting the finite-size scaling relation

ρ(t) = L−θzf(t/Lz), (10)

which holds at the critical point (f being a universal scaling function).
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Figure 1. Snapshots of the synchronization error field wt(x, y) at four successive
times (increasing from left to right) for a 2d lattice of 256×256 coupled Bernoulli
shift maps. The two replicas are transversely coupled with γ = 0.328 24, slightly
above the critical point. Color code goes from light toward black indicating
decreasing intensity of the field (in logarithmic scale).

2.1. Discontinuous maps and directed percolation universality class

We start analyzing the synchronization transition of two different replicas of the same
CML (1) whose local dynamics is given by a discontinuous map. In particular, we consider
the Bernoulli map (3) with a = 2. Figure 1 displays the typical spatial structure of the
difference field wt(x, y), as obtained iterating two replicas starting from (independent)
random initial conditions, at successive times, for γ slightly larger than the critical
coupling value. The figure reveals typical DP patterns in proximity to the synchronization
threshold. In order to make such quantitative observations, we need to measure the critical
exponents. To this aim, we preliminarily determined the critical point by a careful finite-
size analysis of the order parameter time decay. In particular, considering systems’ sizes
up to L = 4096, we obtained γc = 0.328 17(2). Being the maximum Lyapunov exponent
of the single CML λ = ln 2, from equation (4) one can derive λ(γc) = −0.3749. Thus the
ST takes place at a definitely negative Lyapunov exponent and the synchronized state is
truly absorbing [7].

We evaluate the exponent θ at criticality by averaging the instantaneous order
parameter over about 200 independent initial conditions in systems of size L = 1024,
obtaining a convincing straight line in a doubly logarithmic plot (figure 2(a)). The best
fit provides θ = 0.449(4), which is perfectly compatible with the best DP numerical
estimates in 2 + 1 dimensions, that is θDP = 0.451(6) [5]. The quality of such a scaling
law is tested by multiplying the order parameter ρ(t) by tθ. As shown in figure 2(b) we
obtain an almost two decades long plateau.

We next compute ρ∞ for several γ below the critical point at L = 1024. By averaging
over ≈100 different initial conditions we estimate β = 0.584(9) (figure 2(c)), to be
compared with the DP estimate βDP = 0.584(4). The larger error is mainly due to
the uncertainty on the location of the critical point.

Finally, we determine the dynamical exponent z through the finite-size scaling
relation (10). Our best data collapse (shown in figure 3(a)) suggests z = 1.77(3). All
together, the three critical exponents θ, β and z completely identify the DP universality
class.
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Figure 2. Critical behaviors of ST for CMLs of Bernoulli maps, data refer to
a 1024 × 1024 lattice. (a) Order parameter as a function of time at criticality
γc = 0.328 17 (black line) and slightly below (γ = 0.328 15) and above (γ =
0.328 19) the critical point (colored thin lines). Data are averaged over 200 initial
conditions. The dashed red line marks the t−θ behavior with θ = 0.449. (b) The
compensated order parameter ρ(t)tθ reveals a satisfactory plateau over about two
decades. (c) Asymptotic order parameter ρ∞ as a function of the distance from
the critical point. The dashed red line shows the best fit with β = 0.584(9). For
each γ, ρ∞ is obtained averaging over 100 initial conditions.

Figure 3. The finite-size scaling collapse for ST in CMLs according to
equation (10) is employed to estimate the exponent z. (a) Collapse for CMLs of
Bernoulli maps obtained using θ = 0.449 and z = 1.77. Inset: non-rescaled data
for L = 16, 32, 64, 128, 256 (from left to right). (b) Collapse for skewed tent maps
(see section 2.2) obtained using θ = 1.81, z = 1.55. Inset as in (a). Data have
been averaged from 102 up to 104 realizations depending on the system size.

In table 1 the results are summarized together with the exponent for DP in d = 2 as
obtained from the best known numerical estimates reported in [5]. The agreement is very
good and we can safely affirm that the ST of the map with discontinuities in d = 2 is in
the DP universality class, confirming the one-dimensional findings.
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Figure 4. Same as figure 1 for coupled skewed tent maps. The transversal
coupling is γ = 0.132, slightly above the critical point. The color coding and the
scale are the same as figure 1.

Table 1. Critical exponents for coupled Bernoulli maps in 2 + 1 dimensions
together with the best estimations of the critical indexes for DP in d = 2. For
DP θ and z have been derived by employing ν‖ = 1.295(8) and ν⊥ = 0.733(6) [5].

θ β z

Bernoulli 0.449(4) 0.584(9) 1.77(3)
DP [5] 0.451(6) 0.584(4) 1.76(3)

2.2. Continuous maps and multiplicative noise universality class

We now study the synchronization transition in CMLs with continuous local maps. In
particular, we consider the system (1) with local dynamics given by the skewed tent map
on the unit interval, namely

F (x) =

{
ax if x ≤ 1/a

a(x− 1)/(1 − a) if x > 1/a
(11)

where we set a = 2.2. The skewed tent map is the simplest generic continuous map; the
skewness ensures the fluctuation of the multipliers (first derivatives of the map) in tangent
space, which is the generic behavior [6]. Similarly to figure 1, figure 4 illustrates the spatio-
temporal evolution of the synchronization error field wt(x, y) for γ slightly larger than the
critical coupling value. Already at first glance, comparing the two figures one can argue
that the two STs should belong to different universality classes. It is also apparent the
different nature of the absorbing state (in black).

To make quantitative the above statement, as for the previous case, we first identified
the critical coupling γc at which ST takes place.

From the time decay of the order parameter ρ(t) we estimated γc = 0.131 760(5).
This value appears to be compatible with the requirement that the transverse Lyapunov
exponent λT vanishes at the MN synchronization transition. Indeed, from an independent
numerical simulation of a single replica, we found that the largest Lyapunov exponent is
λ = 0.305 88(6), which through equation (4) yields λT = 0.000 01(6). Thus the ST
now takes place at a zero transverse Lyapunov exponent. It should be mentioned that,
to minimize finite-size effects, which are rather severe in this case (as discussed in the
following) we have considered lattices up to a size L = 8192.
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Figure 5. Critical behavior of ST for CMLs of skewed tent maps (11) with
a = 2.2. (a) Power law decay of the order parameter at γc; the dashed line
marks the t−θ power law with θ = 1.81. Data have been obtained by averaging
over three realizations with system size L = 8192 and by a further logarithmic-
window average in time. (b) The order parameter is multiplied by t1.81 to obtain
an asymptotically flat curve. (c) Subcritical behavior computed from simulations
at system size L = 4096. The dashed red line marks a slope of 2.19.

Once the critical point is known, we can estimate the critical exponents. In figures 5(a)
and (b) we report the results on the time decay of the order parameter at criticality. The
critical exponent θ is estimated by multiplying ρ(t) by tθ and varying θ so as to maximize
the size of the flat plateau. However, it is worth stressing that, at variance with the case
of discontinuous maps, here finite-size effects are more severe and numerical artifacts10

may be present. In particular, the asymptotic power law decay sets in at later times
with respect to discontinuous maps. Moreover, the critical exponent is larger than the
corresponding DP value, so that lack of statistics tends to plague late time data. Therefore,
it is necessary to explore large lattice sizes to obtain reasonable scaling and rule out finite-
size effects. We performed numerical simulations in systems of size L = 8192, averaging
over three independent realizations, obtaining slightly more than a decade of convincing
scaling behavior. We estimate θ = 1.81(5).

As is shown in figure 5(c), the behavior of the saturated order parameter ρ∞ in the
subcritical regime (γ < γc) allows us to measure the second critical exponent. Our best
estimates, in systems of linear size L = 4096, give us β = 2.19(9).

For phase transitions in the MN universality class, the dynamical exponent z has
been conjectured (and confirmed by numerical simulations in 1+1 dimensions) to coincide
with the one associated to the KPZ equation [35]. Indeed, as it will become clearer in
section 3, the MN synchronization problem can be mapped in the depinning transition of
a bounded KPZ surface. From this mapping one deduces that at the critical point, where
the interface asymptotically depins, MN systems should exhibit the same space and time
correlations as free KPZ ones. Thus they are also characterized by the same z exponent.
By rescaling finite-size data averaged over many realizations with θ = 1.81 by means of
relation (10), we obtained z = 1.55(8) (see figure 3(b)), which is compatible with the best

10 Contrary to what was reported in [23], we verified that the occurrence of spurious saturation effects of the
order parameter close to the critical coupling are induced by the employed numerical precision and not by long
time correlations.
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known estimates of the KPZ dynamical exponent in 2 + 1 dimensions, zKPZ = 1.607(3),
as reported in [36].

3. Stochastic models and scaling arguments

As far as we know, the only measurement of MN critical exponents in two spatial
dimensions reported in the literature [27] was obtained by numerically investigating the
associated Langevin equation. In order to obtain independent and accurate estimations of
the critical indexes, we studied two stochastic models which are known, in 1+1 dimensions,
to belong to the MN universality class.

3.1. Single-step model plus a hard wall (SSW)

The MN universality class is closely related to the depinning of a KPZ surface from a
hard substrate. Indeed the MN Langevin equation [9]

∂tφ = bφ− cφ2 +D∇2φ+ φη (12)

can be formally mapped, via the Cole–Hopf transformation ψ(r, t) = − lnφ(r, t), onto the
KPZ equation with negative nonlinear term and bounded from below [15]:

∂tψ = v0 − ce−ψ +D∇2ψ −D(∇ψ)2 + η. (13)

Here, ψ(r, t) ≥ 0 and φ(r, t) ∈ [0, 1] are the coarse-grained height and difference field,
respectively, while η(r, t) is a spatio-temporal Gaussian white noise, and D > 0. Note
that the φ(r, t) = 0 absorbing state of the Langevin dynamics corresponds to an infinite
height (i.e. a completely depinned) interface in the bounded KPZ representation.

The above link suggests us to consider a simple solid-on-solid stochastic deposition
model, belonging to the KPZ universality class, such as the well-known single-step model
(SSM), which in one spatial dimension can be exactly mapped onto the KPZ equation
(see, e.g., [37], see also [38] for a study in two spatial dimensions). Equipped with a
hard substrate, the so-called SSM-plus-wall (SSW) provides an example of an MN phase
transition. In 1 + 1 dimensions, the critical point is analytically known and very accurate
numerical estimates of MN critical exponents have been obtained [14, 26]. The SSW time
depinning exponent θ has also been computed in one spatial dimension via a mean-field-
like approximation in [39].

Here, we numerically investigate the following two-dimensional generalization of the
SSW model. A fluctuating interface with an integer height field ht(x, y) is defined on a
square lattice (x, y = 1, 2, . . . , L) with periodic boundary conditions. The dynamics of the
interface is subjected to the following restrictions: the heights on nearest-neighbors sites
cannot be equal and must differ by one, i.e. |ht(x, y)− ht(x± 1, y)| = |ht(x, y)− ht(x, y±
1)| = 1. Moreover, a hard lower wall at height Ht moving upward with velocity Vw is
imposed, requiring that ht(x, y) > Ht, with Ht = Vwt. The dynamics is asynchronous: at
each sub-time step dt = 1/L2 a site (x, y) is chosen at random and its height is increased
by two, ht+dt(x, y) = ht(x, y) + 2, if ht(x, y) is a local minima. Finally, the wall moves up
by one unit every L2/Vw time steps pushing up the interface: every site whose height is less
than Ht is raised by two units. The density ρ of interface sites attached to the interface
(i.e. ht(x, y) = Ht) immediately after a wall movement is the proper order parameter,
while the wall velocity Vw is the control parameter.
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Figure 6. Critical behavior of the depinning transition in the d = 2 SSW model
with L = 4096. (a) Power law decay of the order parameter at criticality;
the dashed line marks the power law t−1.8. Data are obtained by averaging
three different realizations and by a further logarithmic-window average in time.
(b) Order parameter multiplied by t1.8 to demonstrate the quality of scaling.
(c) The subcritical behavior is characterized by a power law with exponent
β = 2.36, as indicated by the dashed line.

Unfortunately, the critical velocity Vw,c of the two-dimensional SSW is not known
analytically. Careful finite-size analysis up to L = 4096 has been used to locate the critical
depinning velocity, which is estimated to be Vw,c = 0.341 35(10). Numerical simulations
start from a completely pinned interface: h0(x, y) = 0 for x + y odd and h0(x, y) = 1
otherwise. Our results for the time decay critical exponent θ, shown in figures 6(a)
and (b), yield θ = 1.80(5). By slightly increasing the wall velocity above the critical value
we can estimate the magnetization exponent, corresponding to the behavior of the ST
for subcritical couplings, obtaining β = 2.36(9), as shown in figure 6(c). Summarizing,
θ is in fairly good agreement with the estimate for the CML with skewed tent maps,
and β, while still compatible if error bars are considered, appears to be slightly larger.
Finally, the dynamical exponent z is estimated via the finite-size scaling relation (10) with
θ = 1.8. A satisfactory data collapse can be obtained with z = 1.63(5) (not shown), which
is compatible with the value obtained for the tent map.

It is worth concluding by remarking that in [26] it has been shown that the probability
distribution of the first depinning time (i.e. the first time at which an initially flat and
pinned surface depins) does not follow a standard finite scaling relations in the MN case.
The numerical simulations of the SSW model, however, show that other quantities of
interest, such as the density of pinned sites, follow the typical scaling of absorbing phase
transitions. This peculiarity can be probably ascribed to the ‘weakly absorbing’ nature
of the MN absorbing state [33].

3.2. Random multiplier model

We now consider the random multiplier (RM) defined by the dynamics [7]

wt+1(x, y) =

{
1, w.p. αw̃t(x, y)

αw̃t(x, y), w.p. 1 − αw̃t(x, y)
if w̃t(x, y) > Δ (14)
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wt+1(x, y) =

{
w̃t(x, y)/Δ, w.p. αΔ

αw̃t(x, y), w.p. 1 − αΔ
if w̃t(x, y) ≤ Δ (15)

where ‘w.p.’ is the shorthand notation for ‘with probability’, wt(x, y) ∈ [0 : 1] and
w̃t(x, y) = ∇2

εwt(x, y) is the discrete diffusive operator, as in equation (1), with ε = 4/5,
on a square lattice (x, y = 1, 2, . . . , L) with periodic boundary condition.

Before discussing the results of the model, it is worth briefly reviewing its properties
and its meaning. The model (14) and (15) was originally introduced in [7] to describe
the synchronization error evolution in proximity of the synchronization transition of both
continuous and discontinuous maps. Essentially the value of parameter Δ discriminates
between discontinuous or continuous character of the local dynamics, switching the
behavior from the DP to the MN universality class. To better understand the origin
of the model, first consider equation (1) equipped with the Bernoulli map (3). One can
formally compute the linearized evolution equation for the synchronization error, which
is

wt+1(x, y) = w̃t(x, y)(1 − 2γ)∂uF (ũt(x, y)). (16)

Such an equation holds locally for any finite synchronization error wt(x, y) such that
ũt(x, y) and ṽt(x, y) fall on the same branch of the Bernoulli map. In this case one simply
has wt+1(x, y) = w̃t(x, y) a (1−2γ). However, whenever ũt(x, y) and ṽt(x, y) fall on the two
different branches of the Bernoulli map, the synchronization error is typically expanded
to order 1 values, a fact overlooked by the linearization. This latter situation can occur
with a probability proportional to w̃t(x, y) [7]. Setting Δ = 0, so that only equation (14)
is relevant, reproduces the Bernoulli map dynamics with α = a(1 − 2γ).

On the other hand, for the skewed tent map (11)—as well as any continuous map—
the full dynamics is well captured by linearized dynamics. For the local map (11) the
local multiplier assumes one of the two values ∂uF (a, u) = a or ∂uF (a, u) = a/(1 − a)
according to the chaotic dynamics. By approximating the chaotic signal with randomly
chosen multipliers, the RM model with finite Δ mimics exactly this latter situation,
cf. equation (15), while equation (14) simply provides a nonlinear saturation effect.
Interestingly, in [7] it has been shown that there exist a threshold Δ̄ > 0 below which
the transition still belongs to the DP class. This corresponds to the case of almost-
discontinuous piecewise linear maps on the unit interval, characterized by a very steep
branch (with slope 1/Δ and width of order Δ); for a complete discussion see [7, 12].

In the following, being interested in the MN transition, we investigate the RM model
for Δ = 0.2, which is a sufficiently large parameter value to drive the system into its
‘linear’ regime. The parameter α is the control parameter of the transition; indeed, from
equation (16) it follows that α is essentially equivalent to (1 − 2γ)∂uF (a, u) so that to
increase the coupling γ in the deterministic model amounts to decrease α in the stochastic
one. The synchronized regime is thus obtained for α smaller than the critical value αc.

The critical coupling αc implies a zero transverse Lyapunov exponent; it can be
estimated evaluating the value of α for which 〈lnwt〉 grows at most logarithmically in the
linear regime [7]. This estimation is in agreement with the usual analysis performed to
evaluate the critical point from the scaling of the order parameter in time (figure 7(a)). In
particular, by considering lattices of linear sizes L = 2× 103 and 4 × 103 the best scaling
of ρ(t) is observed at αc = 0.529 825(5), in agreement with the Lyapunov estimate which
gives αc = 0.529 81(1). Moreover, the critical exponent is found to be θ = 1.76(5), as

doi:10.1088/1742-5468/2009/12/P12018 13

http://dx.doi.org/10.1088/1742-5468/2009/12/P12018


J.S
tat.M

ech.
(2009)

P
12018

Synchronization of spatio-temporal chaos as an absorbing phase transition

Figure 7. Critical behavior of the RM model in 2 + 1 dimensions with size
L = 2000. (a) Power law decay of the order parameter at criticality. Data have
been obtained by averaging over 100 realizations. The dashed line marks the
power law t−1.76. (b) Order parameter multiplied by t1.76; notice the asymptotic
plateau at large times. (c) Subcritical behavior computed from up to 400
independent realizations, from which β is estimated to be 2.18 (dashed line).

Table 2. Critical exponents for CMLs of skewed tent maps, random multipliers’
model (RM) and single-step model with a wall (SSW). Also the values that can
be deduced from scaling arguments (see text) and the KPZ numerical estimates
are reported.

θ β z ν‖

CML (skewed tent maps) 1.81(5) 2.19(9) 1.55(8) 1.21(8)
RM 1.76(5) 2.18(8) 1.63(5) 1.25(8)
SSW 1.80(4) 2.36(9) 1.7(1) 1.31(4)
KPZ [36] and scaling relation [35] 1.607(3) 1.32(1)

shown in figures 7(a) and (b). For α slightly above αc, from the saturated value of the
asymptotic density we also find β = 2.18(8) (see figure 7(c)). Finally, finite-size scaling
via equation (10) gives z = 1.7(1) (not shown).

3.3. Scaling arguments and comparison among the critical exponents

This subsection is devoted to a discussion of the results obtained so far for the MN
universality class. Our three independent estimates of the critical exponents for the MN
class in 2 + 1 dimensions are reported in table 2. For θ and β, ST in CMLs, the SSW
and RM model are in remarkable agreement, and the exponents are essentially coincident
within error bars. In particular, θ also coincides with the early estimates of [27], while a
remarkable difference (by a factor of two) is observed for β. This is most likely due to the
preliminary nature of the d = 2 Langevin dynamics simulations [40]. It should be noted
that typically a fairly small lack of accuracy in the estimation of the critical point can
result in a quite large error in evaluating the exponent β. Also the dynamical exponent
z measured from finite-size scaling essentially agrees with the expected KPZ value, see
table 2.
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Exploiting the relation with free (without walls) KPZ scaling, it has also been
conjectured that [35]

ν⊥ =
1

2(z − 1)
(17)

which, from zKPZ = 1.607(3) as obtained in [36], implies ν⊥ = 0.824(5) and ν‖ = zν⊥ =
1.32(1). This latter exponent can be compared with the ratio ν‖ = β/θ as obtained for
the models here analyzed: as reported in table 2, there is an agreement within error bars
with the KPZ estimate, as far as the RM and SSW are concerned. On the other hand, ν‖
is slightly underestimated when CMLs of skewed tent maps are considered.

A further estimate of the correlation exponent ν⊥ can be obtained from the finite-size
corrections to the critical point: from scaling theory one has (for large L) γc(L)−γc(∞) ∼
L−1/ν⊥ , where γc(L) is the finite-size approximation of the critical point and γc(∞) the
asymptotic value. For what concerns CMLs with continuous maps, the critical point
analytically depends on the largest Lyapunov exponent (LE) of the uncoupled CML λ
via the coupling equation γc = (1 − exp(−λ))/2 (see equation (4)). In turn, it has
been shown that the finite-size correction to the largest LE for spatially extended chaotic
dissipative systems behaves as the finite-size corrections to the growing velocity of a free
KPZ interface [4]. The latter are known to scale as V (L) − V (∞) ∼ L−α‖ [41] (with an
unfortunate choice of notation being present in the literature). Therefore, for L� 1 one
has

γc(L) − γc(∞) ∼ exp(−λ(∞)) − exp(−λ(L)) ∼ L−α‖ , (18)

which implies ν⊥ = 1/α‖. In one spatial dimension α‖ = 1 is exactly known, while direct
numerical estimation in two spatial dimensions yield (depending on the considered model)
α‖ = 1.28(8) or α‖ = 1.32(9) [41], which in turn implies ν⊥ = 1/α‖ = 0.78(6) and 0.76(5),
respectively. These values are in excellent agreement with our estimates obtained using
ν⊥ = ν‖/z. Finally, we note that the following scaling relation holds, α‖ = 2(1 − ζ) [41],
where ζ is the KPZ asymptotic roughness (or wandering) exponent. Since ζ = 2− z, one
has α‖ = 2(z − 1) in agreement with the scaling argument of [35] (see equation (17)).
It is worth noticing that using equation (17) and the measured z one can obtain further
independent estimates of ν⊥ which are, within error bars, once again compatible with the
ones of [41].

To summarize, our numerical results for both the dynamical and the spatial and
temporal correlation exponents are in fairly good agreement with the known estimates for
KPZ exponents in 2 + 1 dimensions.

4. Synchronization in the presence of mismatch

As discussed in section 1, in typical experimental settings it is impossible to produce two
exact replicas of the same system. Systematic errors, slight differences in the preparation
of the system or inhomogeneous external influence should always be taken into account.
Such small differences can be mimicked at the level of the CML model as a quenched
random mismatch between the dynamical parameters of two otherwise identical systems
(this idea was introduced in [6] in the context of low-dimensional maps). In practice, we
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consider the following model, written in generic spatial dimension d:

u
(1)
t+1(r) = (1 − γ)F (a1(r), ũ

(1)
t (r)) + γF (a2(r), ũ

(2)
t (r))

u
(2)
t+1(r) = (1 − γ)F (a2(r), ũ

(2)
t (r)) + γF (a1(r), ũ

(1)
t (r))

(19)

where r is a d-dimensional vector and

ũ(i)(r) = (1 − ε)u(i)(r) +
ε

2d

∑

r′∈NN{r}
u(i)(r′), (20)

where the sum runs over the nearest neighbors of r, denoted as NN{r}. The local

map F (a, u) depends both on the dynamical variable u ≡ ũ
(i)
t (r) and on the quenched

parameter a ≡ ai(r) (where i = 1, 2 labels the replica). Periodic boundary conditions are
considered as usual in a d cube of linear dimension L. We consider two cases, the skewed
tent map defined in equation (11) and the Bernoulli one (equation (3)). Without loss of
generality, we can write the map parameter a as

ai(r) = a0 + ωi(r), (21)

with ωi(r) being a quenched random variable uniformly distributed in [−h, h].
Let us now consider the linearized dynamics for the synchronization error wt(r) =

u
(1)
t (r) − u

(2)
t (r), which is (see also [6])

wt+1(r) = w̃t(r)(1 − 2γ)∂uF (a1(r), ũ
(1)
t (r)) + (1 − 2γ)δa(r)∂aF (a1(r), ũ

(1)
t (r)), (22)

where δa(r) ≡ a1(r) − a2(r) is the parameter mismatch. Obviously, ||δa(r)|| ∼ h
(regardless of the chosen norm). The first term on the rhs of equation (22)—i.e. the
fluctuating ‘field derivative’ (1 − 2γ)∂uF (a, u)—leads as usual to a stochastic term
proportional to the amplitude of the synchronization error itself, while the second term—
i.e. the ‘parameter derivative’ (1 − 2γ)∂aF (a, u)—also typically fluctuates according to
local dynamics, but it depends only on the parameter mismatch amplitude and thus acts
as an effective ‘external field’ which locally prevents the complete synchronization of two
replicas. At a field theoretical level, this suggests describing the parameter mismatch as
an external driving field with amplitude h. For instance, considering the MN class, one
can add an additive Gaussian11 white noise ζ to the Langevin equation (12)

∂tφ = bφ− cφ2 +D∇2φ+ φη + hζ. (23)

Implicit in the above formulation is the assumption that the noise terms η and ζ are
completely decorrelated. Of course, the statistical independence between the second and
the first term in the rhs of equation (22) has to be tested a posteriori. Unfortunately, we
are not able to solve analytically equation (23). While efficient numerical methods [42]
are known to directly simulate multiplicative noise Langevin equations, we choose instead
to focus on microscopic models. We consider the RM model (24) and (25). The external
field can then be described as an extra additive white noise χ(r) uniformly distributed in

11 Note that 〈ζ〉 can always be set to zero by an appropriate transformation of the field, φ → φ + q.
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[0, h], so that

wt+1(r) =

{
1 + χt(r), w.p. αw̃t(r)

αw̃t(r) + χt(r), w.p. 1 − αw̃t(r)
if w̃t(r) > Δ (24)

wt+1(r) =

{
w̃t(r)/Δ + χt(r), w.p. αΔ

αw̃t(r) + χt(r), w.p. 1 − αΔ
if w̃t(r) ≤ Δ. (25)

Indeed, the additive noise term χ(r) creates local activity with an amplitude proportional
to h, thus preventing complete synchronization between the two replicas.

In the following we compare direct numerical simulations of the modified RM
model (24) and (25) with the ones of the coupled CMLs (19) with skewed tent maps
with a quenched mismatch. We expect the asymptotic order parameter ρ∞ to saturate to
an h-dependent value, which at criticality should scale as

ρ∞ ∼ hκ (26)

where κ is a new critical index (associated with the external field in the field theoretical
treatment).

Choosing 〈ai(r)〉 = a0 = 2.2, the critical point estimated in section 2 (γc = 0.131 76)
remains unchanged for h > 0. Equally, we set Δ = 0.2 for the RM model so that
αc = 0.529 81.

Starting from random initial conditions, we measure ρ∞ as a function of h in both one
and two spatial dimensions. The results in two spatial dimensions, reported in figures 8(a)
and (b), show a remarkable agreement between CMLs and the modified RM model,
thus confirming that the correlations between the additive and the multiplicative terms
in equation (22) are irrelevant. In particular, we found κ = 0.50(5) for the RM and
κ = 0.46(7) for the CMLs. In one spatial dimension (not shown) we have κ = 0.21(2)
(RM) and κ = 0.23(2) (CMLs). This is in rough agreement with the d = 1 early
estimates obtained by direct simulation of the Langevin equation (23) in [35]. In [28]
a zero-dimensional version of equation (23) has been exactly solved via a Fokker–Planck
approach to yield a logarithmic increase with the field h. While we have not been able to
put forward any analytical argument in d > 0, these results lead us to conjecture κ = d/4
for MN in an external field.

We finally consider the case of a Bernoulli map with 〈ai(r)〉 = a0 = 2. Here, we can
exploit the fact that the scaling theory for directed percolation in an external field is well
known (see [5] and references therein), and thus test if the dependence of ρ∞ on h follows
the DP prediction. In particular, at criticality, the order parameter should saturate to an
asymptotic value ρ∞(h) ∼ hκ with κ = β/σ, where β links to the behavior of the density
close to the critical point and σ controls the mean size of inactive clusters close to the
critical point, and is related to the other exponents by the formula [5]

σ = ν‖(d/z + 1 − θ) = ν‖ + dν⊥ − β.

By means of the best available DP numerical estimates [5], we have κDP = 0.108 247(4) in
d = 1 and κDP = 0.268(4) in d = 2. As shown in figure 8(c) direct numerical simulations
of (2+1)-dimensional CMLs with mismatched Bernoulli maps are in very good agreement
with this prediction. This is also true in 1 + 1 dimensions (not shown).
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Figure 8. Critical dependence on the mismatch in CMLs in 2 + 1 dimensions.
(a) Mismatch amplitude dependence of the saturated order parameter at
criticality for skewed maps CMLs (black circles) and RM with an additive noise
(red squares). The dashed red line marks the h1/2 power law. (b) Same data
as (a) rescaled by a factor h−1/2 to highlight critical behavior. System size is
L = 2048. (c) For Bernoulli maps we check the DP expectation κDP = β/σ by
plotting ρ(t)h−κDP (see text): notice the collapse on a single plateau at large
times. From top to bottom: h = 10−7, 2.5 × 10−7, 6.25 × 10−7, 10−6, 2 × 10−6.
System size is L = 1024 and data have been averaged over 50 initial conditions.
Inset: non-rescaled data compared with the h = 0 behavior (dashed black line).

5. Conclusions

The synchronization transition between spatially extended systems exhibiting spatio-
temporal chaos is a prototypical example of a fluctuation-driven phase transition induced
by microscopic chaos. The present numerical study in 2 + 1 dimensions has clearly
confirmed that, analogously to the (1+1)-dimensional case, the synchronization transitions
can been described in the framework of continuous out-of-equilibrium critical phenomena
towards an absorbing phase. In particular, depending on the perturbation propagation
properties of the spatio-temporal dynamics, the synchronization transition belongs to two
possible universality classes, namely directed percolation and multiplicative noise. The
above results confirm that the ST belongs to the DP universality class whenever the
transverse Lyapunov exponent is negative at the critical point. Differently, MN behavior
sets in when a zero transverse Lyapunov exponent characterizes the critical point. As
for the latter universality class, we have produced the best available numerical estimates
of the critical exponents in two spatial dimensions. Furthermore, by analyzing different
deterministic and stochastic models, we have been able to confirm universality in the MN
class and its link with deposition processes.

We have also addressed the effect of a small difference in the dynamics of the two
replicas, an experimentally relevant question given the practical impossibility to produce
two exactly identical systems in any experimental set-up. By modeling this difference as a
quenched parametric mismatch in the local dynamics, we have shown that it amounts to
the action of an external field within the Langevin description. Numerical simulations in
one and two spatial dimensions for discontinuous local maps confirm DP scaling theory,
which predicts a power law dependence of the saturated density from the external field
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with an exponent κ depending on the usual zero-field critical ones. Finally, we obtained
an estimate for this exponent also for MN in an external field (smooth maps).

Before concluding, a comment on the behavior in higher dimensions is in order. In
d > 2 naive power counting in the MN Langevin equation (12) predicts the coexistence
of two different fixed points in the renormalization group flow, a mean-field one acting at
small but finite noise amplitude and a strong coupling one at large noise amplitudes [28].
Estimates obtained from numerical simulations of equation (12) for MN in 3+1 dimensions
can be found in [43].

We conclude by expressing our hope that these results will stimulate experimental
studies on the synchronization of extended systems exhibiting spatio-temporal chaos.
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for fruitful discussions. MC and AT were partially supported by the Italian project
‘Dinamiche cooperative in strutture quasi uni-dimensionali’ no. 827 within the CNR
program ‘Ricerca spontanea a tema libero’.

References

[1] Pikovsky A S, Rosenblum M and Kurths J, 2001 Synchronization: A Universal Concept in Nonlinear
Sciences (Cambridge: Cambridge University Press)

[2] Baroni L, Livi R and Torcini A, 2000 Dynamical Systems: From Cristal to Chaos ed J M Gambaudo,
P Hubert, P Tisseur and S Vaienti (Singapore: World Scientific) p 23

Baroni L, Livi R and Torcini A, 2001 Phys. Rev. E 63 036226
[3] Ahlers V and Pikovsky A S, 2002 Phys. Rev. Lett. 88 254101
[4] Pikovsky A S and Kurths J, 1994 Phys. Rev. E 49 898

Pikovsky A S and Politi A, 1998 Nonlinearity 11 1049
[5] Hinrichsen H, 2000 Adv. Phys. 49 815
[6] Pikovsky A S and Grassberger P, 1991 J. Phys. A: Math. Gen. 24 4587
[7] Ginelli F, Livi R, Politi A and Torcini A, 2003 Phys. Rev. E 67 046217
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[9] Muñoz M A, 2004 Advances in Condensed Matter and Statistical Mechanics ed E Korutcheva et al (New

York: Nova Science Publishers)
[10] Torcini A, Grassberger P and Politi A, 1995 J. Phys. A: Math. Gen. 28 4533

Cencini M and Torcini A, 2001 Phys. Rev. E 63 056201
Ginelli F, Livi R and Politi P, 2002 J. Phys. A: Math. Gen. 35 499

[11] Politi A, Livi R, Oppo G L and Kapral R, 1993 Europhys. Lett. 22 571
Politi A and Torcini A, 2010 Stable chaos in Nonlinear Dynamics and Chaos: Advances and Perspectives

ed M Thiel et al (Berlin: Springer)
[12] Bagnoli F and Rechtman R, 2006 Phys. Rev. E 73 026202
[13] Kardar M, Parisi G and Zhang Y C, 1986 Phys. Rev. Lett. 56 889
[14] Ginelli F, Ahlers V, Livi R, Mukamel D, Pikovsky A S, Politi A and Torcini A, 2003 Phys. Rev. E

68 065102
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