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Front propagation in two-dimensional steady and unsteady cellular flows is investigated in the limit
of very fast reaction and sharp front, i.e., in the geometrical optics limit. For the steady flow, a
simplified model allows for an analytical prediction of the front speedv f dependence on the stirring
intensity U, which is in good agreement with numerical estimates. In particular, at largeU, the
behaviorv f;U/ log(U) is predicted. By adding small scales to the velocity field we found that their
main effect is to renormalize the flow intensity. In the unsteady~time-periodic! flow, we found that
the front speed locks to the flow frequency and that, despite the chaotic nature of the Lagrangian
dynamics, the front evolution is chaotic only for a transient. Asymptotically the front evolves
periodically and chaos manifests only in its spatially wrinkled structure. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1541668#
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I. INTRODUCTION

Front propagation in fluid flows is relevant to man
fields of sciences and technology ranging from mar
ecology1,2 to chemistry3,4 and combustion technology.5 A
complete description of the problem would require to co
sider the coupled evolution of reactants and velocity fie
including the modification of the advecting field induced
the reaction. In general, this is a very difficult task.6 Here we
consider a simplified but still physically significant proble
by neglecting the influence of the reactants on the velo
field. This amounts to consider the reaction as a const
density process. Aqueous autocatalytic reactions, and
eous combustion with a large flow intensity but sufficien
low values of gas expansion across the flame represent
portant examples of chemical–physical systems for wh
this approximation is appropriate.7

In the simplest model, a scalar fieldu(r ,t), which rep-
resents the fractional concentration of the reaction’s pr
ucts, is introduced (u51 indicates inert material,u50 fresh
one and 0,u,1 means that fresh material coexists w
products!. The field u evolves according to the following
advection–reaction–diffusion equation:8,9

] tu1u"“u5D0Du1
1

t
f ~u!, ~1!

whereD0 is the molecular diffusivity, andu is a given in-
compressible (“"u50) velocity field. The functionf (u)
models the production process occurring on a time-scalet.
6791070-6631/2003/15(3)/679/10/$20.00
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Two limiting cases of Eq.~1! are very well known:
f (u)[0 and u[0. In the former case, the equation for
passive scalar is recovered~for a review see Ref. 10!. The
latter corresponds to the reaction–diffusion equation, wh
has gathered much attention since the seminal works
Fisher and Kolmogorov–Petrovsky–Piskunov~FKPP!11,12

~see also Ref. 9 and references therein!.
Equation~1! can be studied for different geometries a

boundary conditions. For instance, one can consider an
nite strip in the horizontal direction with a reservoir of fres
material on the right, inert products on the left and perio
boundary conditions in the transverse direction. With t
geometry a front of inert material~stable phase! propagates
from left to right. If the medium is at rest with the FKP
production term,f (u)5u(12u), the front propagates with
an asymptotic speed and thickness given by9,11,12

v052AD0

t
, j5cAD0t, ~2!

wherec is a constant depending on the definition adopted
j. This result is valid wheneverf (u) is a convex function
( f 9,0) with f (0)5 f (1)50 and f 8(0)51. For nonconvex
f (u) only upper and lower bounds for the front speed can
provided.9

A more interesting physical situation occurs for nonze
velocity fields. In this case, the front generically propaga
with an average limiting speed,v f , much larger than that for
the fluid at rest~i.e., v f@v0). In the limit of very slow reac-
tion, the front speed can still be obtained by~2! replacingD0
© 2003 American Institute of Physics
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with a renormalized diffusion coefficient,Deff—i.e., the so-
called eddy diffusivity~see Ref. 10 for an exhaustive revie
on its determination!. But in realistic systems, since the r
action time scale is of the same order or often faster than
velocity time scale~fast reaction!, a simple renormalization
of D0 is not sufficient to encompass the dynamical proper
of the system.13 In some cases by renormalizing also t
reaction timet→teff ~Ref. 14!, Eq. ~2! still applies, but a
general method to computev f for a generic velocity field is
not known.

Here we consider the limit of fast reaction and thin fro
i.e., the so-called geometrical optics regime.7 Formally, this
corresponds to the limitt→0 and D0→0 maintaining the
ratio D0 /t constant.15 From ~2! this means thatv0 is finite
and j→0. In this regime the front is identified as a surfa
~line in 2d), and the effect of the velocity field is to wrinkl
the front increasing its area~length in 2d) and thereby its
speed.8

As far as the velocity field is concerned, we consid
steady and unsteady cellular flows~i.e., with closed stream
lines! in two dimensions.16–19 Since coherent vortical struc
tures are typically present in real hydrodynamical syste
cellular flows offer an idealized~but nontrivial! model to
study their effects on front propagation. Real flows, e.g.,
bulent flows, are usually characterized by a very comp
temporal dynamics and spatial development of scales. In
respect a steady cellular flow is oversimplified. Therefo
we also consider either the presence of small scale sp
structures in the velocity field, or the effects of time depe
dence, which induces a complex temporal behavior for p
ticle trajectories—Lagrangian chaos.20,21

We found that the presence of small scales induce
renormalization of the flow intensity at large scales. T
means that front speed is mainly determined by the lar
scale properties of the velocity field. For time-periodic c
lular flows, the front speed is not significantly modified wi
respect to the steady case, although rather subtle effect
pear. First the front speed locks to the flow frequency: t
phenomenon is known asfrequency locking22,23 and it has
been already found in models describing front propagatio24

Second, Lagrangian chaos is suppressed by the reaction
only survives for a transient. At variance with the stea
case, the spatial wrinkling~‘‘complexity’’ ! of the front is
enhanced.

The paper is organized as follows. In Sec. II we disc
the geometrical optics limit. Numerical results for steady c
lular flows with one and more scales are presented in S
III, where we propose a simple model which well reproduc
the numerical results. The effects of Lagrangian chaos
front speed locking in time dependent cellular flows are d
cussed in Sec. IV. Final remarks are reported in Sec. V.
Appendixes are devoted to the numerical methods emplo
throughout and to a more detailed treatment of the freque
locking phenomenon.

II. THE GEOMETRICAL OPTICS LIMIT

From a physical point of view the geometrical opti
limit ~in combustion jargon, the flamelet regime! corresponds
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to situations in which the reaction time scale and react
zone thickness are much faster and much smaller than
time and length scales of the flow, respectively. For instan
in turbulent flows this means that the front thickness
smaller than the Kolmogorov length scale,K , j!,K .8

Being the front sharp, its dynamics can be described
terms of the evolution of the surface~line in 2d) which
divides inert (u51) and fresh (u50) material. In this limit
the problem can be recasted in terms of the evolution o
scalar fieldG(r ,t), where the isoline~in 2d) G(r ,t)50 rep-
resents the front, i.e., the boundary between inert (G.0)
and fresh (G,0) material.G evolves according to the so
calledG-equation8,15,25–28

]G

]t
1u"“G5v0u“Gu. ~3!

The analytical treatment of this equation is not trivial, a
even in relatively simple cases~e.g., shear flows! numerical
analysis is needed.

Recently, Majda and collaborators27 pointed out that
situations exist for which theG-equation fails in reproducing
the front speed of the original reaction–advection–diffus
model. Indeed, in some systems the exact treatment of
~1! in the limit t→0, D0→0 with D0 /t5const does not lead
to the same results of theG-equation. However, for the ap
plication we are interested in, the study of theG-equation is
physically significant.18

In the absence of stirring (u50) the front evolves ac-
cording to the Huygens principle, i.e., a pointx belonging to
the front moves with a velocityv(x)5v0n̂(x), wheren̂(x) is
the perpendicular direction to the front surface inx. For open
boundary conditions, at sufficiently long times the front s
face approaches a sphere~circle in 2d). However, the pre-
asymptotic behavior is mathematically nontrivial29 and inter-
esting in some technological problems.

In the presence of stirring (uÞ0) the problem is much
more difficult. The first attempt to determine the front spe
in such a regime dates back to the 1940s with the work
Damköler.8 He suggested that, if the velocity field does n
change the local~bare! front speedv0 then the effective front
speed is proportional to the total front area divided by
cross section of the flow area. In two-dimensional geome
this means that

v f /v05L f /L, ~4!

whereL is the transverse length,v f andL f are the average
front speed and length, respectively, computed as time a
ages of the instantaneous front speed,v(t), and length,L(t).
Here we adopt the following definition for the instantaneo
front speed:16

v~ t !5] tS 1

L E
0

L

dyE
2`

`

dx u~x,y;t ! D ~5!

and

L~ t !5 lim
e→0

1

e E
2`

`

dxE
0

L

dy se~x,y;t ! ~6!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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681Phys. Fluids, Vol. 15, No. 3, March 2003 Thin front propagation in cellular flows
for the instantaneous front length.se(x,y;t) is 0 if u is con-
stant inside a circle of radiuse centered in (x,y), and 1
otherwise@i.e., se(x,y;t)51 only if the e-ball centered in
(x,y) contains a portion of the front#.

III. STEADY CELLULAR FLOW

We consider the following two-dimensional cellula
flow, originally introduced in Ref. 30 to model roll pattern
in Rayleigh–Be´rnard convection,

ux~x,y!5U sinS 2p

L
xD cosS 2p

L
yD ,

~7!

uy~x,y!52U cosS 2p

L
xD sinS 2p

L
yD ,

whereU is the flow intensity,L the roll size~all the results
here presented are forL52p), and periodic boundary con
ditions in the transverse directions are assumed.

As shown in Fig. 1, whenever the value ofu is set to 1
for x→2` and to 0 for x→` a front of burnt material
~corresponding tou51) propagates from left to right. It is
also possible to see that cusps and pockets of unburnt m
rial are left behind the front edge. At high field intensity
trail of pockets develops. The appearance of cusps and p
ets in this flow was first noticed by Ashurst an
Sivanshinsky.31 As for the temporal dynamics, after a tra
sient, due to the spatial periodicity of the flow, the fro
propagates periodically in time~with periodT). In Fig. 2 a
typical time series of the instantaneous velocity,v(t), is re-

FIG. 1. Snapshot of the front shape with time stepT/8 @from ~a! to ~d!#,
whereT is the period of the front dynamics, forv050.5, U54.0, andL
52p. Unburnt~burnt! material is indicated in white~black!.

FIG. 2. Front speed as a function of time, measured in the standard
v(t) ~5! ~h! and asxM(t)/t ~9! ~s!. The straight line is the average fron
speedv f . The system parameters areU54, v051 andL52p.
Downloaded 31 Jan 2003 to 192.54.175.227. Redistribution subject to A
te-

k-

ported: peaks occur when the front length is maximal. T
time average value,̂v(t)&T , over a periodT defines the
effective front speedv f .

Here we are mainly interested in the dependence ofv f

on the flow intensityU. Since the velocity field~7! involves
a single spatial scale, simple scaling arguments sugges
the front speed the following dependence onU ~see also
Refs. 7, 25, and 26!:

v f5v0cS U

v0
D . ~8!

To our knowledge, no general methods exist to computc
from first principles, except for simple shear flows@in such a
casec(U/v0)5U/v011 ~Ref. 32!#. However, for the cellu-
lar flow under investigation, it is possible to obtain an a
proximate expression forc by mapping the front dynamics
onto a 1d problem. This can be done as follows.

Since the interface is sharp, we can track the position
the edge of the interface (xM(t),yM(t)), i.e., the rightmost
point ~in the x direction! for which u(xM ,yM ;t)51. Thus
we can define a velocity

ṽ f5 lim
t→`

xM~ t !

t
, ~9!

which, due to the periodicity of the dynamics, is equivale
to the standard definitionv f ~see Fig. 2!. The strategy is now
to devise an ‘‘effective’’ equation for the edge point evol
tion ~Fig. 3!, and to compute the front speed by means of E
~9!. At sufficiently long times, the edge’s path in the ce
@0,2p#3@0,p# lies approximatively along the separatrice
Indeed, as shown in Fig. 3,yM(t) assumes values very clos
to 0 or p, andxM(t) grows in time~i.e., the edge moves in
the right direction!. Therefore, one can model the edge d
namics in terms of the following 1d problem,

dxM

dt
5v01Ubusin~xM !u, ~10!

where the second term of the rhs is the ‘‘effective’’ horizon
velocity. The parameterb takes into account the ‘‘average
effect of the dependence on the vertical coordinate,y. Due to
the periodicity of the rhs of Eq.~10! there exists a timeTM

ay

FIG. 3. Time evolution of the edge point:xM(t) andyM(t). The simulation
parameters are the same of Fig. 1.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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such thatxM(t1TM)5xM(t)1p. Hence the front speed i
simply given byv f5p/TM and by derivingTM from Eq.
~10! the following expression is obtained:

v f

v0
5cb~U!5

pA~Ub!221

2 ln~Ub1A~Ub!221!
, ~11!

whereU5U/v0 . Notice that~11! makes sense only forUb
.1, which is the regime of interest for the present pap
Due to the periodic nature of the front evolution alsoyM(t)
is a periodic function of time with periodTy ~see Fig. 3!.
Obviously, Ty and the front periodT should be both com-
mensurable toTM . For a specific values ofU and v0 we
have computed the unknown parameterb as

b5
1

Ty
E

0

Ty
ucos~yM~ t !!udt, ~12!

finding b;0.875 ~this value do not change significantly i
the range of parameters here investigated!. By employing
this value in Eq.~11! a remarkable agreement with the n
merical estimates ofv f is obtained~see Fig. 4!: the estimated
discrepancies range from 6% to 10% for the consideredU
andv0 values.

Notice thatb<1 by definition. Therefore, by insertin
b51 in Eq. ~11! an upper bound for the front speed can
derived. Moreover, in Ref. 33, a rigorous lower bound h
been provided,

v f>U/ ln~11U/v0!. ~13!

For largeU values, both Eq.~11! with b51 and Eq.~13!
give the same asymptotic behavior for the front speedv f

;U/ ln U.
Despite the considered cellular flow has only one spa

scale, it is interesting to compare the results with
relation34

v f

v0
5expFdS U rms

v f
D aG , ~14!

originally proposed by Yakhot35 and Shivanshinsky36 with
a52 andd51, to reproduce data from~multiscale! turbu-
lent flows.U rms is the turbulent intensity~i.e., the root mean

FIG. 4. The measuredv f /v0 as a function ofU/v0 ~h!, data obtained using
the measured values in Eq.~14! with a52 andd51/2 ~s! ~see text!, the
function c(U/v0) ~11! for b50.875 ~solid line!, and the upper and lowe
bounds,b51 in Eq. ~11! and Eq.~13!, respectively~dotted lines!.
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square field velocity! anda andd two parameters dependin
on the flow. Equation~14! has been frequently applied i
literature also to nonturbulent flows and various values oa
have been reported.7,34 In particular, Aldredge25,26has shown
that Eq.~14!, with a52 andd51/&, is able to reproduce
fairly well cellular flow data. However, our data shown
Fig. 4, for the same cellular flow, suggests thata51. This
value is in agreement also with the asymptotic behavior
v f;U/ ln(U), previously derived. In the following we inves
tigate the effects of small scales on the front speed.

Effect of small scales

We consider the following generalization of Eq.~7!:

ux~x,y!5U sinS 2p

L
xD cosS 2p

L
yD

1 (
n51

N

Qn sinS 2p

L
knx1fn

xD cosS 2p

L
kny1fn

yD ,

~15!

ux~x,y!52U cosS 2p

L
xD sinS 2p

L
yD

2 (
n51

N

Qn cosS 2p

L
knx1fn

xD sinS 2p

L
kny1fn

yD ,

whereN is the number of scales present in the flow,$kn% are
integers giving the ratio between the different spatial sca
Qn is the velocity intensity at scale;1/kn , and $fn

x , fn
y%

are ~time-independent! phase differences.
In Fig. 5 we present two snapshots of the front for d

ferent parameters values. By comparing with Fig. 1 it is cl
the presence of small structures in the front due to sma
scales inu.

We computedv f for N51 ~two-scales flow! and N52
~three-scales flow! with different values ofkn , Qn and ran-
dom phases. In the caseN52, Qn5Ukn

21/3 has been chosen
as a caricature of the power spectrum of three-dimensio
turbulence. The results, compared with the one-scale fl
(Qn50) are summarized in Fig. 6, wherev f /v0 is reported
as a function ofU rms/v0 @U rms5UA(11Q2/U2)/2, with

FIG. 5. Images of the burnt area~black! for U56, Q53 ~above! and U
510, Q52 ~below! with k55, wherev050.5. The different scales are
clearly visible.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Q25(nQn
2]. The quality of the data-collapse suggests th

the principal effect of the small scales is to renormalize
stirring intensity,U rms ~see Fig. 6!. And this indicates that the
front speed is mainly determined by the large scale prop
ties of the velocity field. In this respect it is interesting
note that usually the presence of small scales is taken
account by renormalizing the bare front speedv0 , while our
results indicate that it is the large scale velocity intens
which has to be renormalized~see Denet38 for a discussion
on this point!. Moreover, the dominance of large scales
consistent with previous observations that the absenc
open channels can be more important than the detailed
tiscale properties of the flow.19 However, because of the lim
ited range of spatial scales here investigated it is difficul
say something definitive on the front propagation in mu
scale velocity fields.

We conclude this section with a remark. The fact that
front speed is essentially given by the large scale velo
field with a renormalized intensity does not mean that
front shape can also be recovered in this way. The comp
son between Fig. 5 and Fig. 1 suggests that small sc
cause a wrinkling of the front shape roughly at the sa
scales of the velocity field. These structure cannot be rec
ered neither by renormalizing the flow intensity nor the b
front speed. In this respect, previous studies@for cellular
flows described by Eq.~1! see Ref. 37, for multiscale shea
flows described by the flame propagation equation see
38 and for the G-equation in a shear flow with superimpo
a smaller Childress–Soward flow10 see Ref. 39# have shown
that the effects of small scales on the front wrinkling can
significant also at large scales. A deeper understanding of
issue would be important to define strategies for large e
simulations, where the effects of small scales need to
properly modeled.

IV. UNSTEADY CELLULAR FLOW

We now consider the problem of front propagation in t
time dependent cellular flow

FIG. 6. Front speedsv f /v0 as a function ofU rms/v0 for the flow ~15! for
variouskn , Qn values andv0 values. Filled line is the one scale data wi
v051.0. Two scales data, withv050.5, areQ15U/2 andk153 (n), Q1

5U/5 and k153 (3), Q15U/2 and k155 (d), Q15U/5 and k1

55 (s). For a turbulent caricature field we usedv050.5, Qn5Ukn
21/3 ,

kn53n. The reported data refer to two scales~h! and 3 scales~L!, only.
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ux~x,y,t !5U sinF2p

L
x1B sin~vt !GcosF2p

L
yG ,

~16!

uy~x,y,t !52U cosF2p

L
x1B sin~vt !GsinF2p

L
yG ,

where the termB sin(vt) models lateral oscillations of the
roll pattern, which are generated by the oscillato
instability.30 The steady case~7! is recovered forB5v50.
When B,vÞ0 Lagrangian trajectories are typicall
chaotic.20,30 The presence of complex particle trajectori
constitutes a step toward more realistic flows.

We are mainly interested in addressing the two followi
issues. First, it is natural to wonder about the role of L
grangian chaos on front propagation. Second, since prev
works40,41 have shown that transport properties are stron
enhanced for the flow~16!, it is worth investigating whether
similar effects appear also in the front speed.

A. Effects of chaos: Transient dynamics

A direct consequence of Lagrangian chaos is the ex
nential growth of passive scalar gradients and mate
lines.20,21 A ~passive! material line of initial length,0 for
large times grows as

,~ t !;,0eLt, ~17!

whereL is the first generalized Lyapunov exponent,

L5 lim
t→`

lim
udr (0)u→0

1

t
lnK udr ~ t !u

udr ~0!u L ,

which is in general larger than the maximum Lyapun
exponent.20,21 The average in the previous equation is tak
along the Lagrangian trajectories. In the presence of mole
lar diffusivity, the exponential growth of,(t) stops due to
diffusion20 and chaos survives only for a transient.42

For reacting scalars something very similar happens
Fig. 7 we compare the evolution of material lines in t
passive and reactive cases. While in the passive case s
tures on smaller and smaller scales develop~due to stretching
and folding!, in the reactive one the generation of structur
on smaller scales is limited to a few folding events becau
as a consequence of the Huygens dynamics, the inter
between the two phases merges. This phenomenon is res

FIG. 7. Snapshots at two successive times,t53.6 and 7.5, of the evolution
of passive~top! and reactive line of material for two values ofv0 ~middle
v050.7 and bottomv052.1) forU51.9, B51.1, andv51.1U. The initial
condition is a straight vertical line.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sible for the formation ofpockets.25,26,31Of course, ‘‘merg-
ing’’ is more and more efficient asv0 increases~compare the
middle and lower pictures of Fig. 7!.

In Fig. 8 we show the time evolution of the line leng
L(t) for the passive and reactive material at different valu
of v0 . At short times both lines grow exponentially with
rate close toL, while at long timest.t* ~where t* is a
transient time depending onv0) the reacting ones stops du
to merging. A rough argument to estimatet* is as follows:
two initially separated parts of the line~e.g., originally at
distance ,0) become closer and closer, roughly
;,0 exp(2Lt). When their separation becomes of the ord
of v0t merging takes place. Matching the two behaviors,
leading order one obtains

t* }
1

L
lnS L,0

v0
D . ~18!

At long times (t.t* ) both the spatial and temporal stru
tures of the flow become periodic.

B. Effects of chaos: Asymptotic dynamics

Let us now focus on the effects of Lagrangian chaos
the asymptotic dynamics of front propagation. From Eq.~18!
and for small enough values ofv0 one obtains

L f;LeLt* ;
L2L

v0
, ~19!

i.e., the front length scales asv0
21. As one can see from Fig

9 this scaling is in fairly good agreement with the simu
tions for the chaotic flow~in a Lagrangian sense!, while in
the steady case a different scaling can be seen. In the ins
Fig. 9 we showv f versusv0 for both time-dependent an
time-independent flows. For very smallv0 , when chaos en-
hances the front length,v f increases. At large values ofv0

the front speed for the steady flow is larger than the one
the unsteady flow. As we will see in the next subsection,
is a consequence of the frequency locking phenomen
which maintains constant the value ofv f .

However, the scaling~19! cannot be considered as a
unambiguous effect of chaos, because it is not restricte

FIG. 8. L(t)/L(0) as a function of time forU51.9, B51.1, and v
51.1U for the passive (1) and reactive case: from topv050.3 (3),
0.5 (* ), 0.7 (h). The straight line indicates the curve exp(Lt) with L
'0.5, which has been directly measured.
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the case of chaotic flows. For instance, for the simple sh
flow @ux5U sin(y), uy50# one hasv f5U1v0 and from Eq.
~4! v f;L fv0 , so thatL f;1/v0 ~for U/v0@1) even if the
flow is not chaotic. Nevertheless, by comparing Fig. 1 w
Fig. 7, it is evident that the front in the chaotic case is ch
acterized by an increased spatial ‘‘complexity’’ with respe
to the nonchaotic one. In the sequel we discuss a poss
way to quantify this qualitative observation.

Let us callWf the size of the region in which burnt an
unburnt material coexist, which we define as24

Wf5S E x2m~x!dx2S E xm~x!dxD 2D 1/2

, ~20!

wherem(x) is given by

m~x!5
u]xũ~x!u

*dxu]xũ~x!u
, ~21!

with ũ(x)51/L*0
Lu(x,y)dy. m(x) defines a measure whic

is nonzero only in the region where the front is present a
Wf is nothing but the standard deviation of this measure

The degree of spatial complexity~wrinkling! can be de-
fined as the ratioL f /Wf . Now it is interesting to investigate
the behavior of this ratio at variousv0 . On one hand, it is
easy to see that for simple shear flowsL f /Wf does not de-
pend onv0 . On the other hand, in chaotic flows the fro
length increases while, due to enhanced mixing,Wf de-
creases, so that their ratio will be high for low values ofv0 .
This is confirmed by simulations: in Fig. 10 one can see t
L f /Wf diverges for smallv0 values for the chaotic flow,
while it remains roughly constant for the nonchaotic on
Loosely speaking, we can say that thetemporalcomplexity
of Lagrangian trajectories converts in thespatial complexity
of the front.

C. Front speed dependence on the frequency

For passive particles transport in the flow~16!, it has
been found that the eddy diffusivity coefficientDeff(v) dis-
plays a resonant-like behavior,40,41 attaining values that are
orders of magnitude larger than the steady flow valueDeff(0).

FIG. 9. The average front lengthL f as a function ofv0 for the time depen-
dent flow ~s!, with U51.9, B51.1, v51.1U and the time independen
case (3) with U51.9. The straight line indicates the 1/v0 behavior. In the
inset it is displayedv f versusv0 for the time dependent~s! and for the time
independent case.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The physical mechanism responsible for such phenomeno
related to the interplay between oscillation of the separatr
and circulation inside the cell. Whenever the two ‘‘synchr
nize,’’ a very efficient and coherent way of transferring p
ticles from one cell to the other takes place. Does someth
similar happen to the front speed in the reactive case?

In Fig. 11 we reportv f as a function ofe5v/U. As one
can see,v f(e) varies both above and below the time ind
pendent value,v f(0), and its range of variability is very
small ~about 30%! compared with that of the diffusion coe
ficient. The reason is that the front speed is bounded by
inequalityv f<U1v0 , therefore the front speed cannot va
too much by changing only the flow frequency. Howev
remarkablyv f(e) maintains a sort of resonant-like behavio
In particular,v f(e) is a piecewise linear function ofe with
slope given byU times a rational number. In other words th
front speed locks to the flow frequency. This is the so-cal
frequency locking phenomenon22,23 ~see Appendix B for a
brief review on its origin!. Notice that this behavior is very
robust with respect to changes of the flow parameters; ind
by varyingv0 , U andB the curve remains qualitatively th
same.

The frequency locking of the front speed can be und
stood with the following argument. At large times,t.t* , the
front is time and space periodic. This means that after a t

FIG. 10. L f /Wf as a function ofv0 for the time dependent~s! and inde-
pendent (3) cases for the same parameters of Fig. 9.

FIG. 11. v f(e) as a function ofe5v/U, for the flow ~16! with U51.9,
v050.2, andB51.1. The straight horizontal line indicates the front spe
for the steady case,B50. The dashed lines indicates the curvesUeN/M for
different (N,M ) integers.
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periodT, the front is rigidly translated in thex direction by
S, which is the spatial period. Due to the spatial flow pe
odicity, also the front should be spatially periodic with
periodS52pN, whereN is a positive integer. Moreover, th
simulations suggest that the temporal front periodT is a
multiple of the oscillation periodT052p/v, i.e., T
5MT0 , with M a positive integer. Therefore, for the fron
speed one obtains

v f5
S

T
5

2pN

MT0
5

N

M
v5

N

M
Ue, ~22!

that is in agreement with the behavior reported in Fig.
Upon varyingv, the periodsS52pM and T5NT0 with a
given M andN can lose their stability so that a new coup
of N,M values is selected. This explains the presence
different linear behaviors. By generalizing the on
dimensional model~10! to the time-dependent case one c
qualitatively reproduce the behavior of the front speed
pendence on the frequency~see Appendix B!.

It is interesting to compare the behavior of front prop
gation in the flow~16! with previous studies that considere
a different time dependence, i.e., withU→U cos(vt) andB
50 in ~16!. As recognized by most authors31,43~see also Ref.
44! the latter choice results in a depletion of the front wri
kling upon increasing the flow frequency. As a consequen
a strong bending of thev f curve with respect to the stead
case has been observed. This phenomenon has been q
tatively understood for the case of time-dependent sh
flows @i.e., u5(U sin(vt)sin(y),0)] by Majda and
collaborators.32 With the choice~16! such a depletion is no
observed because the features of the front behavior is do
nated by the frequency locking.

V. FINAL REMARKS

In this paper we studied thin front propagation in stea
and unsteady cellular flows. In particular, we investigated
dependence of the front speed and spatial structure on
system parameters.

As far as the one-scale steady case is concerned
were able to give a quantitative estimate of the front sp
by means of a simple one-dimensional model. For large fl
intensity U rms the front speed grows asv f;U rms/
log(Urms), in agreement with the asymptotic behavior
Yakhot-type formula~14! with a51. Moreover, small scales
structures have been added to the flow in order to study t
effect on the front speed. Numerical simulations show th
once v f is rescaled withv0 and plotted as a function o
U rms/v0 , the results for the one and multiple-scale flow
fairly collapse onto a single curve. Therefore, the front spe
is essentially determined by the large scale behavior of
velocity field.

Small scales spatial structures may also be induced
Lagrangian chaos. In this respect, our results on the unste
cellular flow indicate that the effect of chaos is limited to
transient, during which the front behavior is close to t
passive scalar case. Asymptotically, the reacting term
duces a drastic regularization on the front evolution: sm
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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scale fluctuations and Lagrangian chaos are suppressed
the front propagates periodically exhibiting a frequency lo
ing phenomenon.

The only asymptotic effect of Lagrangian chaos can
identified in the structure of the front which is more a
more wrinkled asv0 approaches zero. On the contrary, in t
case of steady velocity fields~regular Lagrangian motion!
the degree of wrinkling does not change withv0 . To quan-
tify the spatial ‘‘complexity’’ of the front we used the rati
between the front length and widthL f /Wf which is large
~diverging asv0→0) for the unsteady case and is rough
constant for the steady one.

We conclude with a brief remark. As stated at the beg
ning we considered a simplified model in which the feedba
of u on u has been neglected. A natural question would b
and how the picture which has been drawn modifies w
feedback is taken into account, i.e., when one conside
system where the heat release of the reactant is not n
gible. Of course the model has to be changed if the feedb
can induce large scales instabilities. However, the numer
work by Meneveau and Poinsot45 suggests that the main e
fect of heat release is to induce local density fluctuations a
therefore, small scale turbulence. Small eddies have a s
lifetime, therefore one can reasonably expect that they c
not qualitatively change the large scale features of
front.46
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APPENDIX A: NUMERICAL ALGORITHM

In numerical approaches one is forced to discretize b
space and time. We introduce a lattice of mesh sizeDx
and Dy ~we assumeDx5Dy) so that the scalar field is
defined on the points xn,m5(nDx,mDy): un,m(t)
5u(nDx,mDy,t).

The time discretization implies a discretization of t
dynamics. Looking at theG-equation~3! one recognizes two
different terms: the advection termu"“G, accounting for the
transport properties of the flow, and the ‘‘optical’’ term
v0u“Gu, which locally propagates the front in a directio
perpendicular to it with a bare velocityv0 .

Let us call FDt the Lagrangian propagator for the di
cretized advection equation. Then, given the field at timt
one can compute the field at timet1Dt using the following
two steps algorithm:

~1! using the Lagrangian propagator,FDt(x), one evolves
each point of the interface between burnt and unbu
region;
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~2! at each point of the evolved interface one construct
circle of radiusv0Dt, obtaining the new frontier as th
envelope of the circles.

The numerical algorithm can be easily implemented
ing a time reversal procedure: starting on a grid point,xn,m ,
of the scalar field at timet1Dt one applies the backwar
evolution obtaining the pointy5F2Dtxn,m at timet. Around
y we construct a circle of radiusv0Dt. If in this circle there
is at least one burnt point of the scalar field at timet, we fix
u(xn,m ;t1Dt)51 otherwiseu(xn,m ;t1Dt)50. ~See Fig.
12.!

As for the accuracy and robustness of the algorithm,
performed a series of tests by varying resolution,Dx, and
time step,Dt. The results are rather robust, and the typi
values used to obtain the reported results are 0.02<Dt
<0.1, 2p/2048<Dx<2p/1024. The backward Lagrangia
integrationF2Dt(x) has been performed with a fourth ord
Runge–Kutta algorithm. However, for the steady flow w
also used the exact backward mapping which can be
tained in terms of elliptic functions~see also Ref. 14!, and
the results are indistinguishable.

The only critical parameter for the stability and reliab
ity of the algorithm is the ratio between the circle radiu
v0Dt, and the grid-sizeDx. Testing the algorithm in system
for which exact results are already known~e.g., shears! we
empirically found that thatv0Dt/Dx >3 – 4 it is enough to
give reliable results.

In Fig. 13 we show at varyingDx, for steady and un-
steady flow, the convergence of the numerical algorithm.
it is possible to see our numerical scheme is already c
verged for the resolution used in the paper. Moreover,
observe that for the unsteady flow the front speed conve
to the high resolution value very rapidly. This happens b
cause the geometrical construction used in the algorithm
stabilized by the enhanced mixing taking place in the u
steady chaotic flow.

APPENDIX B: FRONT SPEED LOCKING

Frequency locking arises in many physical systems ra
ing from Josephson-junction arrays to chemical reactions
nonlinear oscillators.22–24 This phenomenon has been o
served for coupled oscillators or for forced oscillators. In t
last case the system synchronizes with the external forc
making its internal frequency commensurable with the ex

FIG. 12. Pictorial scheme of the numerical algorithm for the geometr
optics limit.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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nal one. Almost all the systems displaying frequency lock
can be mapped to the damped forced nonlinear oscillato22

a
d2u

dt2
1b

du

dt
1g sin~u!5d1s cos~vt !. ~B1!

The solutionu(t) is periodic and the frequency, i.e., the a
erage angular velocity, turns out to be

K du

dt L 5 lim
t→`

u

t
5

M

N
v ~B2!

with M ,N integers. Moreover, if~B2! is realized for a certain
set of the parameters, then an entire parameter interva
ways exists where~B2! still holds for the same values ofM
and N. This kind of behavior persists also whena50 and
for other kind of nonlinear terms~i.e., the third term of the
lhs!. An exhaustive description of such a phenomenon can
found in Ref. 23.

Coming back to our system, we can generalize thed
model ~10! to the time-dependent case:

dxM~ t !

dt
5v01Uusin~xM1B sin~vt !!u. ~B3!

Note that in principle one should also take into account
dynamics ofyM , but for the sake of simplicity we presen
just the y-independent version of the model. This mod
although very idealized, is able to reproduce behaviors qu
tatively similar to the ones observed in simulations~compare
Fig. 14 with Fig. 11!. By introducing the variablez(t)
5xM(t)1Bsin(vt), Eq. ~B3! can be rewritten as

dz~ t !

dt
5v01Uusin~z!)u1Bv cos~vt ! ~B4!

which corresponds to~B1! for a50, and for which fre-
quency locking has been studied in details. In a rec
work47 the problem of locking in a model very similar t
~B4!, but in presence of noise, has been examined. The
thors found that the locking phenomenon is rather rob
under the effect of noise and, moreover, it gives rise to re

FIG. 13. Numerical convergence ofv f at varying Dx, where Dx
52p/Nx , Nx5512, 724, 1024, 1448, 2048, 2896. On the left-hand side
steady case~7! with U54, v051.0, andDt50.04. On the right-hand side
the unsteady case~16! with U52.0, B51.0, v52.0, v050.5, and
Dt50.1.
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tatively very similar to the behavior of the system here stu
ied.
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