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Front propagation in two-dimensional steady and unsteady cellular flows is investigated in the limit
of very fast reaction and sharp front, i.e., in the geometrical optics limit. For the steady flow, a
simplified model allows for an analytical prediction of the front spegedependence on the stirring
intensity U, which is in good agreement with numerical estimates. In particular, at largie
behaviorv s~ U/log(V) is predicted. By adding small scales to the velocity field we found that their
main effect is to renormalize the flow intensity. In the unsteditye-periodig flow, we found that

the front speed locks to the flow frequency and that, despite the chaotic nature of the Lagrangian
dynamics, the front evolution is chaotic only for a transient. Asymptotically the front evolves
periodically and chaos manifests only in its spatially wrinkled structure2@®3 American Institute

of Physics. [DOI: 10.1063/1.1541668

I. INTRODUCTION Two limiting cases of Eq.(1) are very well known:
o ) ) f(#)=0 andu=0. In the former case, the equation for a
~ Front propagation in fluid flows is relevant to many paggive scalar is recoverdfbr a review see Ref. 20 The
fields sz sciences and4 technology ranging from marin€atier corresponds to the reaction—diffusion equation, which
ecology? to ch.emlstrﬁ and combustion techngloéyA has gathered much attention since the seminal works of
complete description of the problem would require to con-gigher and Kolmogorov—Petrovsky—Piskung#KPP 12
sider the coupled evolution of reactants and velocity field,(See also Ref. 9 and references therein
including. the modification .of.the advec'tir)g field induced by Equation(1) can be studied for different geometries and
the reaction. In general, this is a very difficult FaﬁslHere W€ " poundary conditions. For instance, one can consider an infi-
consider a simplified but still physically significant problem pjite sirip in the horizontal direction with a reservoir of fresh
by neglecting the influence of the reactants on the velocity,aterial on the right, inert products on the left and periodic
field. This amounts to consider the reaction as a constanfio,ndary conditions in the transverse direction. With this
density process. Aqueous autocatalytic reactions, and gaa'eometry a front of inert materidstable phasepropagates
eous combustion with a large flow intensity but sufficiently o eft to right. If the medium is at rest with the FKPP

low values of gas expansion across the flame represent i”ﬂ)‘roduction termf(0)=6(1— 6), the front propagates with
portant examples of chemical—physical systems for whichy, asymptotic speed and thickness giveft'by?
this approximation is appropriafe.

In the simplest model, a scalar fiet#t{r,t), which rep- D,
resents the fractional concentration of the reaction's prod- vo=27\— §é=cVDo7, (2
ucts, is introduced{= 1 indicates inert materia=0 fresh

one and G<¢<1 means that fresh material coexists with wherec is a constant depending on the definition adopted for
productg. The field ¢ evolves according to the following ¢ This result is valid whenevef(6) is a convex function

advection—reaction—diffusion equatidn: (f"<0) with f(0)=f(1)=0 andf’(0)=1. For nonconvex
f(6) only upper and lower bounds for the front speed can be
1 H 9
U < provided?
0+ UV I=DoA G+ rf(a)’ D A more interesting physical situation occurs for nonzero

velocity fields. In this case, the front generically propagates
whereDg is the molecular diffusivity, andi is a given in-  with an average limiting speed;, much larger than that for
compressible ¥-u=0) velocity field. The functionf(#9) the fluid at resti.e.,v{>vy). In the limit of very slow reac-
models the production process occurring on a time-seale tion, the front speed can still be obtained @y replacingD
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with a renormalized diffusion coefficienD .+—i.e., the so- to situations in which the reaction time scale and reaction
called eddy diffusivity(see Ref. 10 for an exhaustive review zone thickness are much faster and much smaller than the
on its determination But in realistic systems, since the re- time and length scales of the flow, respectively. For instance,
action time scale is of the same order or often faster than thi@ turbulent flows this means that the front thickness is
velocity time scale(fast reactiol, a simple renormalization smaller than the Kolmogorov length scdlg, é<¢.°
of Dy is not sufficient to encompass the dynamical properties ~ Being the front sharp, its dynamics can be described in
of the systent® In some cases by renormalizing also theterms of the evolution of the surfadéine in 2d) which
reaction timer— 7o (Ref. 14, Eq. (2) still applies, but a divides inert @=1) and fresh ¢=0) material. In this limit
general method to computg for a generic velocity field is the problem can be recasted in terms of the evolution of a
not known. scalar fieldG(r,t), where the isolinéin 2d) G(r,t)=0 rep-
Here we consider the limit of fast reaction and thin front, resents the front, i.e., the boundary between in&tQ)
i.e., the so-called geometrical optics regimormally, this ~and fresh G<<0) material.G evolves according to the so-

corresponds to the limit—0 andD,—0 maintaining the called G-equatiofi*>2°2

ratio Do/ constant® From (2) this means thab, is finite

apd ¢—0.In this regime the front is id_enti_fied_as a sgrface ﬁ—+u-VG=vo|VG|. 3)
(line in 2d), and the effect of the velocity field is to wrinkle ot

the front increasing its aredength in 2) and thereby its

The analytical treatment of this equation is not trivial, and
even in relatively simple casés.g., shear flowsnumerical
analysis is needed.

speed
As far as the velocity field is concerned, we consider

steady and unsteady cellular flowse., with closed stream- Recently, Majda and collaborat8fspointed out that

lines) in two dimensions®~°Since coherent vortical struc- .. .. : . ) L .
: . ; situations exist for which th&-equation fails in reproducing
tures are typically present in real hydrodynamical systems

cellular flows offer an idealizedbut nontrivia) model to the front speed of the original reaction—advection—diffusion

studv their effects on front bropagation. Real flows. e tur_model. Indeed, in some systems the exact treatment of Eq.
y propag ' €9 1) in the limit 7—— 0, Dy— 0 with Do/ 7= const does not lead

bulent flows, are usually characterized by a very comple )
: . 10 the same results of th@é-equation. However, for the ap-
temporal dynamics and spatial development of scales. In this,. ~ ~ : ) L
. S plication we are interested in, the study of Beequation is
respect a steady cellular flow is oversimplified. Therefore sicallv sianificant®
we also consider either the presence of small scale spatigpym ch at?sence (‘)f stirfingui=0) the front evolves ac-
structures in the velocity field, or the effects of time depen- : rngue=o . .
S . cording to the Huygens principle, i.e., a poinbelonging to
dence, which induces a complex temporal behavior for par; . : - PN
. . ; . 1 the front moves with a velocity(x) =voA(X), wheref(x) is
ticle trajectories—Lagrangian chatfs? . o :
We found that the presence of small scales induces the perpendicular direction to the front surfacecir-or open

renormalization of the flow intensity at large scales. Thisgoundary conditions, at sufficiently long times the front sur-

means that front speed is mainly determined by the Iargef-ace approaches a sphercle in 2d). However, the pre-

scale properties of the velocity field. For time-periodic Cel_asymp';otlc behavior is mz?\themancally nontriviednd inter-
lular flows, the front speed is not significantly modified with est|r|19 ;2 some technoflogt_lcz_al pr;)&tz)ler::]s. blem i h
respect to the steady case, although rather subtle effects a#foren d'ﬁs plr e?ehnc? of stirringu 3 € pro ﬁm f's muc d
pear. First the front speed locks to the flow frequency: this e t'. e first attempt to determine t. e front spee
phenomenon is known dsequency locking,zg and it has in such a regime dates back to the 1940s with the work of

. 8 X o
been already found in models describing front propagation. Damkder.®° He suggested that, if the velocity field does not

Second, Lagrangian chaos is suppressed by the reaction alc;]raange the locabarg front speeds, then the effective front

only survives for a transient. At variance with the steadySpeed is proportional to the total front area divided by the

case, the spatial wrinkling‘complexity” ) of the front is  CroS Section of the flow area. In two-dimensional geometry
enhanced. this means that

The paper is organized as follows. In Sec. Il we discuss vilvo=L;/L, (4)
the geometrical optics limit. Numerical results for steady cel-
lular flows with one and more scales are presented in Segvherel is the transverse lengths andL; are the average
[, where we propose a simple model which well reproducedront speed and length, respectively, computed as time aver-
the numerical results. The effects of Lagrangian chaos andges of the instantaneous front spegd), and length£(t).
front speed locking in time dependent cellular flows are dis-Here we adopt the following definition for the instantaneous
cussed in Sec. IV. Final remarks are reported in Sec. V. Théont speed?®
Appendixes are devoted to the numerical methods employed 1L B
throyghout and to a more detailed treatment of the frequency v(t):&t(_f dyf dx 0(x,y;t)) (5)
locking phenomenon. L Jo —

and
Il. THE GEOMETRICAL OPTICS LIMIT
. . . . . 1 (= L
From a physical point of view the geometrical optics L(t)= |im_J dxj dy o (x,y;t) (6)
limit (in combustion jargon, the flamelet regihmrresponds e0€ J—= JO
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FIG. 1. Snapshot of the front shape with time s [from (a) to (d)], on | y
whereT is the period of the front dynamics, fer,=0.5, U=4.0, andL M
= 2. Unburnt(burnt material is indicated in whit¢black. I Ty e P i ]
0 I N | R | e &
0 2 4 6 8 10

for the instantaneous front lengthr (x,y;t) is O if #is con- _ ) ) _ _
stant inside a circle of radius centered in ( y) and 1 FIG. 3. Time evolution of the edge point;,(t) andyy,(t). The simulation
L - o - t th f Fig. 1.

otherwisel[i.e., o (x,y;t)=1 only if the eball centered in parameters are fhe same of F1g

(x,y) contains a portion of the froht

ported: peaks occur when the front length is maximal. The

ll. STEADY CELLULAR FLOW time average value{v(t))r, over a periodT defines the
We consider the following two-dimensional cellular effe(;uve front speed_f .I it ted in the d d ¢

flow, originally introduced in Ref. 30 to model roll patterns ere we are mainly interested in the dependenceo

on the flow intensityJ. Since the velocity field7) involves

in Rayleigh—Benard convection, ) _ ) ;
a single spatial scale, simple scaling arguments suggest for
the front speed the following dependence dn(see also

(2 2
Ux(x,y)=U S'”(TX CO{TV ’ Refs. 7, 25, and 26
(7 U
Uf:Uol//(v—O)- (8

__u 27 2w

Uy(X,y)= cog | —x/sin —y|,
whereU is the flow intensityL the roll size(all the results To our knowledge, no general methods exist to comppte
here presented are far=27), and periodic boundary con- from first principles, except for simple shear flojus such a
ditions in the transverse directions are assumed. casey(U/vg)=Ulvy+ 1 (Ref. 32]. However, for the cellu-

As shown in Fig. 1, whenever the value 6fs setto 1  lar flow under investigation, it is possible to obtain an ap-
for x—— and to 0 forx—o a front of burnt material proximate expression fog by mapping the front dynamics

onto a M problem. This can be done as follows.

(corresponding t@@=1) propagates from left to right. It is
also possible to see that cusps and pockets of unburnt mate- Since the interface is sharp, we can track the position of

rial are left behind the front edge. At high field intensity a the edge of the interfacex(;(t),ym(t)), i.e., the rightmost
trail of pockets develops. The appearance of cusps and pockeint (in the x direction for which 6(xy, ,yy ;t)=1. Thus
ets in this flow was first noticed by Ashurst and we can define a velocity
Sivanshinsky* As for the temporal dynamics, after a tran-
sient, due to the spatial periodicity of the flow, the front Te=lim XM(t), 9)
propagates periodically in tim@vith periodT). In Fig. 2 a e L
typical time series of the instantaneous veloaitft), is re- ) o o )
which, due to the periodicity of the dynamics, is equivalent
to the standard definition; (see Fig. 2 The strategy is now
to devise an “effective” equation for the edge point evolu-
s o & 8 o a tion (Fig. 3), and to compute the front speed by means of Eq.
RN PRRNY U PR P P (9). At sufficiently long times, the edge’s path in the cell
. [0,27]X[0,7] lies approximatively along the separatrices.
] Indeed, as shown in Fig. §,(t) assumes values very close
to 0 or 7, andx,,(t) grows in time(i.e., the edge moves in
the right direction. Therefore, one can model the edge dy-
namics in terms of the followingd problem,

1 j l dXp .
——=vot UB]sin(xy)], (10
0

- - - - dt
2 4 6 8 10
where the second term of the rhs is the “effective” horizontal
FIG. 2. Front speed as a function of time, measured in the standard Wayelocny‘ The parameteg takes into E_mcount the average
u(t) (5) (O) and asxy,(t)/t (9) (O). The straight line is the average front €ffect of the dependence on the vertical coordimatdue to
the periodicity of the rhs of Eq10) there exists a timd ),

—-

speedv;. The system parameters dde=4, vo=1 andL=2.
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FIG. 4. The measureg; /v, as a function ofJ/v, (O), data obtained using
the measured values in E(L4) with a=2 andd=1/2 (O) (see tex\, the
function ¢(U/vg) (12) for B=0.875(solid line), and the upper and lower
bounds,8=1 in Eq.(11) and Eq.(13), respectively(dotted lines.

such thatxy (t+Ty)=xu(t) + 7. Hence the front speed is
simply given byv¢=m/T,, and by derivingTy, from Eqg.
(10) the following expression is obtained:

m(UB)*—1
2 InUB+JUB)*-1)"

wherel/=U/v,. Notice that(11) makes sense only fdi3

V¢ _ _
ve p(U)= (11)

Cencini et al.

<P
2, B

FIG. 5. Images of the burnt ardalack for U=6, Q=3 (above and U
=10, Q=2 (below) with k=5, wherev,=0.5. The different scales are
clearly visible.

square field velocityand @ andd two parameters depending
on the flow. Equation14) has been frequently applied in
literature also to nonturbulent flows and various valueg of
have been reportéd In particular, Aldredg&?®has shown
that Eq.(14), with «=2 andd=1#2, is able to reproduce
fairly well cellular flow data. However, our data shown in
Fig. 4, for the same cellular flow, suggests tlhat 1. This

>1, which is the regime of interest for the present papervalue is in agreement also with the asymptotic behavior of

Due to the periodic nature of the front evolution algg(t)
is a periodic function of time with period, (see Fig. 3.
Obviously, T, and the front periodl' should be both com-
mensurable tdl'y,. For a specific values off andv, we
have computed the unknown paramegeas
1 (7
p== | "lcosyumniet 12
yJO
finding B~0.875 (this value do not change significantly in
the range of parameters here investigatd®ly employing
this value in Eq.(11) a remarkable agreement with the nu-
merical estimates af; is obtainedsee Fig. 4 the estimated
discrepancies range from 6% to 10% for the considésed
anduv, values.
Notice thatB=<1 by definition. Therefore, by inserting
B=1 in Eq.(11) an upper bound for the front speed can be

derived. Moreover, in Ref. 33, a rigorous lower bound has

been provided,
vi=U/In(1+Ulvy). (13

For largeU values, both Eq(11) with =1 and Eq.(13)
give the same asymptotic behavior for the front spegd
~U/InU.

vi~U/In(U), previously derived. In the following we inves-
tigate the effects of small scales on the front speed.

Effect of small scales

We consider the following generalization of Eg):
2
cosg v
N
2 2
+> Q, sin(—wkner d)’;) cos(—wkny+ &
n=1 L L
s ]
sin

—X
N 2
— 2 Q, cod —kx+ ¢}
A=1 L

m
—X

uy(x,y)=U sin( L

(15

__y 27
Ux(x,y)=—U cosg TV

(2 y
sin Tkny+ b3

whereN is the number of scales present in the flély,} are
integers giving the ratio between the different spatial scales,
Q, is the velocity intensity at scale-1/k,, and{¢x, ¢}
are (time-independentphase differences.

In Fig. 5 we present two snapshots of the front for dif-
ferent parameters values. By comparing with Fig. 1 it is clear

Despite the considered cellular flow has only one spatiathe presence of small structures in the front due to smaller
scale, it is interesting to compare the results with thescales inu.

relation’*

xg d , (14
Ug

originally proposed by Yakhdt and Shivanshinsi§ with
a=2 andd=1, to reproduce data frofmultiscalg turbu-
lent flows.U s is the turbulent intensityi.e., the root mean

Downloaded 31 Jan 2003 to 192.54.175.227. Redistribution subject to A

We computedv; for N=1 (two-scales flowand N=2
(three-scales floywwith different values ok,, Q, and ran-
dom phases. In the cade=2, Q,= Uk, “®* has been chosen
as a caricature of the power spectrum of three-dimensional
turbulence. The results, compared with the one-scale flow
(Q,=0) are summarized in Fig. 6, whevg /v is reported

as a function ofUs/vg [Ums=UV(1+Q%U?)/2, with
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FIG. 7. Snapshots at two successive times3.6 and 7.5, of the evolution

of passive(top) and reactive line of material for two values @f (middle

U/ Yy vo=Q.7 ar_ld bottor_rv0=2.1) forp=1.9, B=1.1, andw=1.1U. The initial
condition is a straight vertical line.

FIG. 6. Front speeds; /v, as a function olU,,s/v, for the flow (15) for
variousk,,, Q, values andq values. Filled line is the one scale data with

vo=1.0. Two scales data, withy=0.5, areQ,;=U/2 andk;=3 (A), Q;

2 2
=U/5 and k;=3 (X), Q;=U/2 and k;=5 (@), Q,=U/5 and k; Uy(X,y,t)=U sin —x+ B sin(wt) |co —vyl,
=5 (O). For a turbulent caricature field we useg=0.5, Q,=Uk;**, L L

k,=3". The reported data refer to two scal@s) and 3 scale$< ), only.

2 ) |27 (16
uy(xy,t)=—-U cos{Ter B sin( wt) sw{Ty},
Q2=2nQﬁ]. The quality of the data-collapse suggests that _ o
the principal effect of the small scales is to renormalize theVhere the termB sin(wt) models lateral oscillations of the
stirring intensity,U s (See Fig. 6. And this indicates that the roll pattern, which are generated by the oscillatory
front speed is mainly determined by the large scale propednstability> The steady casg) is recovered foB=w=0.
ties of the velocity field. In this respect it is interesting to When JB,0#0 Lagrangian - trajectories  are typically
note that usually the presence of small scales is taken intgh@otic:""" The presence of complex particle trajectories
account by renormalizing the bare front spegd while our ~ Constitutes a step toward more realistic flows. _
results indicate that it is the large scale velocity intensity ~ YVe are mainly interested in addressing the two following
which has to be renormalizegee Denéf for a discussion issues. First, it is natural to wonder about the role of La-
on this poin. Moreover, the dominance of large scales isgrangian chaos on front propagation. Second, since previous
consistent with previous observations that the absence &¥Orks'”* have shown that transport properties are strongly
open channels can be more important than the detailed mufnhanced for the flowl6), it is worth investigating whether
tiscale properties of the flow. However, because of the lim- Similar effects appear also in the front speed.
ited range of spatial scales here investigated it is difficult to _ )
say something definitive on the front propagation in multi-A- Effects of chaos: Transient dynamics
scale velocity fields. A direct consequence of Lagrangian chaos is the expo-
We conclude this section with a remark. The fact that thenential growth of passive scalar gradients and material
front speed is essentially given by the large scale velocityines??! A (passivé material line of initial length¢, for
field with a renormalized intensity does not mean that thgarge times grows as
front shape can also be recovered in this way. The compari- At
son between Fig. 5 and Fig. 1 suggests that small scales t(t)~Loe™, (17)
cause a wrinkling of the front shape roughly at the samavhereA is the first generalized Lyapunov exponent,

scales of the velocity field. These structure cannot be recov-

. o . . _ . 1 /|ér(t)]
ered neither by renormalizing the flow intensity nor the bare A = |im  |im Zin(———),
front speed. In this respect, previous studjés cellular t |oro) o b \[6r(0)]

flows described by Eql) see Ref. 37, for multiscale shear

flows described by the flame propagation equation see Re\]‘vhICh is in general larger than the maximum Lyapunov

gxponenﬁoﬂThe average in the previous equation is taken

38 and for the G-equation in a shear flow with superimpose . . .
a smaller Childress—Soward fidsee Ref. 3have shown along the Lagrangian trajectories. In the presence of molecu-
' lar diffusivity, the exponential growth of(t) stops due to

that the effects of small scales on the front wrinkling can bediffusion2° and chaos survives only for a transiéat.

significant also at large scales. A deeper understanding of this . . -
For reacting scalars something very similar happens. In

issue would be important to define strategies for large edd)éig. 7 we compare the evolution of material lines in the

simulations, where the effects of small scales need to be_~ . . - .
passive and reactive cases. While in the passive case struc-
properly modeled.

tures on smaller and smaller scales devéthpe to stretching
IV. UNSTEADY CELLULAR ELOW and folding, in the_reactlve one the gene_ratlon of structures
on smaller scales is limited to a few folding events because,
We now consider the problem of front propagation in theas a consequence of the Huygens dynamics, the interface
time dependent cellular flow between the two phases merges. This phenomenon is respon-
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FIG. 9. The average front lengthy as a function ob, for the time depen-
dent flow (O), with U=1.9, B=1.1, »=1.1U and the time independent
case (<) with U=1.9. The straight line indicates thev}/behavior. In the
inset it is displaye@; versusv for the time dependert©) and for the time
independent case.

FIG. 8. L(t)/£(0) as a function of time fold=1.9, B=1.1, andw
=1.1U for the passive ) and reactive case: from top,=0.3 (X),
0.5 (*), 0.7 @). The straight line indicates the curve eAp( with A
~0.5, which has been directly measured.

sible for the formation opockets'>?>*'Of course, “Mmerg-  the case of chaotic flows. For instance, for the simple shear
ing” is more and more efficient as, increasescompare the  fo\ [ux=U sin(y), u,=0] one has);=U+v, and from Eq.
middle and lower pictures of Fig.)7 (4) vi~Lvg, SO thatLi~1/vg (for Ulvg>1) even if the

In Fig. 8 we show the time evolution of the line length i\ is not chaotic. Nevertheless, by comparing Fig. 1 with
L(t) for the passive and reactive material at different valuesrig, 7, it is evident that the front in the chaotic case is char-
of vg. At short times both lines grow exponentially with a geterized by an increased spatial “complexity” with respect
rate close toA, while at long timest>t* (wheret* is a g the nonchaotic one. In the sequel we discuss a possible
transient time depending an,) the reacting ones stops due way to quantify this qualitative observation.
to merging. A rough argument to estimate is as follows: Let us callW; the size of the region in which burnt and

distance €¢,) become closer and closer, roughly as

2\ 1/2
~{€oexp(—At). When their separation becomes of the order :(J' 2 (X) dx— J X (x)dx (20)
of vt merging takes place. Matching the two behaviors, to f ’
leading order one obtains where u(x) is given by
o] (A€°> (18) |0, 8(x)]
o« —In| —

AT\ g p(x)=———, (2D)
At long times ¢>t*) both the spatial and temporal struc- Jax|ax6(x)]
tures of the flow become periodic. with B(x)=1/Lf56(x,y)dy. u(x) defines a measure which

. . is nonzero only in the region where the front is present and

B. Effects of chaos: Asymptotic dynamics W; is nothing but the standard deviation of this measure.

Let us now focus on the effects of Lagrangian chaos on  The degree of spatial complexityrinkling) can be de-
the asymptotic dynamics of front propagation. From @) fined as the ratid.; /W;. Now it is interesting to investigate

and for small enough values of, one obtains the behavior of this ratio at variougy. On one hand, it is
5 easy to see that for simple shear flolwg/W; does not de-
Lf~LeAt*~ﬂ (19) pend onvy. On the other hand, in chaotic flows the front
vo length increases while, due to enhanced mixiklg, de-

creases, so that their ratio will be high for low values gf
This is confirmed by simulations: in Fig. 10 one can see that
L¢/W; diverges for smallvy values for the chaotic flow,
\elpile it remains roughly constant for the nonchaotic one.
Loosely speaking, we can say that tieenporalcomplexity

of Lagrangian trajectories converts in theatial complexity

of the front.

i.e., the front length scales agl. As one can see from Fig.
9 this scaling is in fairly good agreement with the simula-
tions for the chaotic flow(in a Lagrangian sengewhile in
the steady case a different scaling can be seen. In the inset
Fig. 9 we showv versusv, for both time-dependent and
time-independent flows. For very smalj, when chaos en-
hances the front lengthy; increases. At large values of
the front speed for the steady flow is larger than the one fo& F dd q he f
the unsteady flow. As we will see in the next subsection, this™ ront speed dependence on the frequency
is a consequence of the frequency locking phenomenon, For passive particles transport in the flgd6), it has
which maintains constant the value of. been found that the eddy diffusivity coefficieDt.s(w) dis-
However, the scaling19) cannot be considered as an plays a resonant-like behavitf?! attaining values that are
unambiguous effect of chaos, because it is not restricted torders of magnitude larger than the steady flow v@yg(0).
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periodT, the front is rigidly translated in the direction by
100 e ] S, which is the spatial period. Due to the spatial flow peri-
“Q odicity, also the front should be spatially periodic with a
S periodS=2mN, whereN is a positive integer. Moreover, the
simulations suggest that the temporal front peribds a
multiple of the oscillation periodTo=27/w, ie., T
=MT,, with M a positive integer. Therefore, for the front

L/ Wy

T speed one obtains
_S_27TN_N _NU 09
‘ o 1 VT T MT, MY M€ (22

Yo that is in agreement with the behavior reported in Fig. 11.

FIG. 10. L;/W; as a function of, for the time depender(©) and inde- ~ Upon varyingo, the periodsS=2=7M and T=NT, with a
pendent ) cases for the same parameters of Fig. 9. given M andN can lose their stability so that a new couple
of N,M values is selected. This explains the presence of
different linear behaviors. By generalizing the one-
The physical mechanism responsible for such phenomenon @éimensional mode{10) to the time-dependent case one can
related to the interplay between oscillation of the separatricequalitatively reproduce the behavior of the front speed de-
and circulation inside the cell. Whenever the two “synchro-pendence on the frequen¢see Appendix B
nize,” a very efficient and coherent way of transferring par- It is interesting to compare the behavior of front propa-
ticles from one cell to the other takes place. Does somethingation in the flow(16) with previous studies that considered
similar happen to the front speed in the reactive case? a different time dependence, i.e., with— U cos(t) and B
In Fig. 11 we reporb; as a function o= w/U. Asone =0 in (16). As recognized by most authdt$>(see also Ref.
can seep;(€) varies both above and below the time inde-44) the latter choice results in a depletion of the front wrin-
pendent valuep;(0), and itsrange of variability is very kling upon increasing the flow frequency. As a consequence,
small (about 30% compared with that of the diffusion coef- a strong bending of the; curve with respect to the steady
ficient. The reason is that the front speed is bounded by thease has been observed. This phenomenon has been quanti-
inequalityv;<U+uv, therefore the front speed cannot vary tatively understood for the case of time-dependent shear
too much by changing only the flow frequency. However,flows [i.e., u=(U sin(et)siny),0)] by Majda and
remarkablyv(€) maintains a sort of resonant-like behavior. collaborators? With the choice(16) such a depletion is not
In particular,v¢(€) is a piecewise linear function of with observed because the features of the front behavior is domi-
slope given byJ times a rational number. In other words the nated by the frequency locking.
front speed locks to the flow frequency. This is the so-called
frequency locking phenomenti?® (see Appendix B for a
brief review on its origin. Notice that this behavior is very \ FINAL REMARKS
robust with respect to changes of the flow parameters; indeed
by varyingv,, U andB the curve remains qualitatively the In this paper we studied thin front propagation in steady
same. and unsteady cellular flows. In particular, we investigated the
The frequency locking of the front speed can be underdependence of the front speed and spatial structure on the
stood with the following argument. At large timeas; t*, the ~ system parameters.
front is time and space periodic. This means that after atime As far as the one-scale steady case is concerned, we
were able to give a quantitative estimate of the front speed
by means of a simple one-dimensional model. For large flow
1.2 — — — intensity U,,s the front speed grows as;~U, s/
P log(Umd, in agreement with the asymptotic behavior of
@y g s Sy Yakhot-type formula14) with o= 1. Moreover, small scales
o ' ] structures have been added to the flow in order to study their
P i effect on the front speed. Numerical simulations show that,
oo | ',"i el oncev; is rescaled withvy and plotted as a function of
’ R Ums/vo, the results for the one and multiple-scale flows
P fairly collapse onto a single curve. Therefore, the front speed
A S TP is essentially determined by the large scale behavior of the
A A A velocity field.
06 —————————— ‘ Small scales spatial structures may also be induced by
' . ' Lagrangian chaos. In this respect, our results on the unsteady
] ) cellular flow indicate that the effect of chaos is limited to a
FIG. 11.vi(€) as a function ofe=w/U, for the flow (16) with U=1.9, 0 et during which the front behavior is close to the
vo=0.2, andB=1.1. The straight horizontal line indicates the front speed ’

for the steady cas&=0. The dashed lines indicates the curaeN/M for ~ Passive Scala_r case. A_syn_1ptotical|y, the reaCtinQ_ term in-
different (N,M) integers. duces a drastic regularization on the front evolution: small

Vi(e)

08

0.7 |
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scale fluctuations and Lagrangian chaos are suppressed and t " t+At
the front propagates periodically exhibiting a frequency lock- 1 S e
ing phenomenon. i)

The only asymptotic effect of Lagrangian chaos can be -+ o -

identified in the structure of the front which is more and ;
more wrinkled a® o approaches zero. On the contrary, in the
case of steady velocity fieldgegular Lagrangian motign
the degree of wrinkling does not change with. To quan-
tify the spatial “complexity” of the front we used the ratio
between the front length and width; /W; which is large
(diverging asvy—0) for the unsteady case and is roughly
constant for the steady one.

We conclude with a brief remark. As stated at the begin-
ning we considered a simplified model in which the feedbacliz) at each point of the evolved interface one constructs a
of #onu has been neglected. A natural question would be if ~ icle of radiusuyAt, obtaining the new frontier as the
and how the picture which has been drawn modifies when envelope of the circles.
feedback is taken into account, i.e., when one considers a

system where the heat release of the reactant is not negli- The numerical algorithm can be easily implemented us-
gible. Of course the model has to be changed if the feedbadkg a time reversal procedure: starting on a grid POiRL, .
can induce large scales instabilities. However, the numericalf the scalar field at time¢+ At one applies the backward
work by Meneveau and Poinddsuggests that the main ef- evolution obtaining the point=F !, , at timet. Around
fect of heat release is to induce local density fluctuations ands we construct a circle of radius,At. If in this circle there
therefore, small scale turbulence. Small eddies have a shag at least one burnt point of the scalar field at timeve fix
lifetime, therefore one can reasonably expect that they cany(x, m;t+At)=1 otherwise 6(x, n;t+At)=0. (See Fig.
not qualitatively change the large scale features of the?2)
front.*° As for the accuracy and robustness of the algorithm, we
performed a series of tests by varying resolutidrx, and
time step,At. The results are rather robust, and the typical
values used to obtain the reported results are €480
We gratefully thank A. Malagoli and A. Celani for dis- <0.1, 27/2048<Ax<2m/1024. The backward Lagrangian
cussions and correspondences and S. Lepri for a critical reaéitegrationF~2!(x) has been performed with a fourth order
ing of the paper. This work has been partially supported byRunge—Kutta algorithm. However, for the steady flow we
the INFM Parallel Computing Initiativeand MURST(Cofi-  also used the exact backward mapping which can be ob-
nanziamentdFisica Statistica e Teoria della Materia Con- tained in terms of elliptic functiongésee also Ref. 14 and
densatd M.C., D.V, and A.V. acknowledge support from the results are indistinguishable.
the INFM Center for Statistical Mechanics and Complexity ~ The only critical parameter for the stability and reliabil-
(SMC). ity of the algorithm is the ratio between the circle radius,
voAt, and the grid-sizé& x. Testing the algorithm in systems
for which exact results are already knowag., sheajswe
APPENDIX A: NUMERICAL ALGORITHM empirically found that that ,At/Ax =3-4 it is enough to

In numerical approaches one is forced to discretize bot/¥'V€ reliable results.

space and time. We introduce a lattice of mesh size In Fig. 13 we show at varyingx, for s?eady anc_;l un-
and Ay (we assumeAx=Ay) so that the scalar field is steady flow, the convergence of the numerical algorithm. As

defined on the pOINts X, m=(NAX,MAY): 6 m(t) it is possible to see our numerl_cal scheme is already con-
— G(NAX, MAY1). verged for the resolution used in the paper. Moreover, we
The time discretization implies a discretization of the observe that for the unsteady flow the front speed converges

dynamics. Looking at th&-equation(3) one recognizes two to the high resolutlpn value very rapidly. Th|s happens be_—
different terms: the advection temV G, accounting for the cause the geometrical construction used in the algorithm is

transport properties of the flow, and the “optical’ term stabilized by the enhanced mixing taking place in the un-

vo| VG|, which locally propagates the front in a direction steady chaotic flow.
perpendicular to it with a bare velocity, .

Let us callFA! the Lagrangian propagator for the dis- APPENDIX B: FRONT SPEED LOCKING
cretized advection equation. Then, given the field at ttme
one can compute the field at tinie- At using the following
two steps algorithm:

FIG. 12. Pictorial scheme of the numerical algorithm for the geometrical
optics limit.
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Frequency locking arises in many physical systems rang-
ing from Josephson-junction arrays to chemical reactions and
nonlinear oscillatoré>=2* This phenomenon has been ob-
(1) using the Lagrangian propagatd¥''(x), one evolves served for coupled oscillators or for forced oscillators. In the

each point of the interface between burnt and unburntast case the system synchronizes with the external forcing

region; making its internal frequency commensurable with the exter-

Downloaded 31 Jan 2003 to 192.54.175.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 3, March 2003 Thin front propagation in cellular flows 687

2.60 — —
1.1 (1,‘_,1") 3.4 1,2y
I ; : .
; 1.05
250} _
ES % 10 PPN -
E ¥ T
245 |
0.95
240 | .
b 0.90 |
2.35 : . ; s
0.001 0.003 001 0.03 0.001 0.003 001 0.03
Ax Ax

FIG. 13. Numerical convergence of; at varying Ax, where Ax FIG. 14 ‘ . fe— /U for th del(B ith
=2mIN,, N,=512, 724, 1024, 1448, 2048, 2896. On the left-hand side the"'C- 14- vm(e) as a function ofe=w/U, for the model(B3) with U

steady casé7) with U=4, v,=1.0, andAt=0.04. On the right-hand side leﬁ,ﬁvozoi\?,'\?r?del.l. The dashed lines indicates the curasN/M
the unsteady cas€16) with U=2.0, B=1.0, w=2.0, v¢y=0.5, and or differentN, M integers.
At=0.1.
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