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Abstract

Synchronization transitions are investigated in coupled chaotic maps. Depending on the relative weight of linear versus
nonlinear instability mechanisms associated to the single map two different scenarios for the transition may occur. When
only two maps are considered we always find that the critical couplifg chaotic synchronization can be predicted within
a linear analysis by the vanishing of the transverse Lyapunov exparnehtowever, major differences between transitions
driven by linear or nonlinear mechanisms are revealed by the dynamics of the transient toward the synchronized state. As a
representative example of extended systems a one dimensional lattice of chaotic maps with power-law coupling is considered. In
this high dimensional model finite amplitude instabilities may have a dramatic effect on the transition. For strong nonlinearities
an exponential divergence of the synchronization times with the chain length can be observeg aboivéthstanding the
transverse dynamics is stable against infinitesimal perturbations at any instant. Therefore, the transition takes place at a coupling
en definitely larger tharg, and its origin is intrinsically nonlinear. The linearly driven transitions are continuous and can be
described in terms of mean field results for non-equilibrium phase transitions with long range interactions. While the transitions
dominated by nonlinear mechanisms appear to be discontinuous.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction [1] to neuro-sciencdg]. The analysis of simple models
pursued in the last two decades has clarified several
Synchronization is a phenomenon observed in many aspects of synchronization (foracomprehensive review
different contexts, ranging from epidemics spreading on the subject see Rg8]).
Particularly interesting both from a theoretical and
"+ Corresponding author. Tel.: +39 055 2308284: an applied p(_)inj[ of view is synchronization Qf chaotic
fax: +39 055 2337755. systems. This is a phenomenon known since many
E-mail addresstorcini@inoa.it (A. Torcini). years[4] with important applications, e.g. in secure
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communications of digital signals, laser dynamics, etc.
Asimple but not trivial framework to study chaotic syn-
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to encompass both these limiting cases is certainly of
interest. A good candidate is represented by the follow-

chronization is represented by discrete-time dynamical ing coupled map lattice with power-law interactions

systems. Within this context, the essence of the phe-
nomenon can be captured already by considering two

coupled identical maps:

= (1- o) () +ef()
T =ef () + (1 - &) fO),

where f(x) is a chaotic map of the unit interval and
the coupling constant. For coupling larger than a critical
valueg a transition from a desynchronized state to a
completely synchronized one along a chaotic ogbit

is observed, i.ex’ = y' for ¢ > ¢. The coupling; can

be predicted within a linear analysis as the value of
¢ for which the transverse Lyapunov exponent (TLE)
AT, ruling the instabilities transversal to the line= y,
vanishes. Formodél) At = In(1 — 2¢)) + A0 [3], and
consequently

1)

1—e*
&l =—,
' 2
being 1o the Lyapunov Exponent (LE) of the single
(uncoupled) map.
While in low dimensional systems the basic mecha-

)

[14,15,10]

t+l
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which reduces to globally coupled maps (GCM's)
[16] for « =0, and to standard coupled map lat-
tices (CML's) with nearest neighbor couplin@7] in
the limit « — oco. In Eq. (3), t andi are the dis-
crete temporal and spatial indexkss the lattice size
(i=1,...,L), x} the state variables € [0 : 1] mea-
sures the strength of the coupling ands power-law
decay. Since the sum extends upltb= (L — 1)/2
the model is well defined only for odd-values, and
n(a) = 22,5':1 k™% is a normalization factor. Periodic
boundary conditions are assumed.

The synchronization between replicas of the same
spatial system has been the subject of a more system-
atic study than self synchronization and is now rather
well understood8,18,9,19,20] Two different mecha-
nisms of mutual synchronization have been identified

nisms ruling synchronization, in the absence of strong according to the predominance of linear versus nonlin-
nonlinear effects, have been well established since long ear effects. Nonlinearly dominated transitions are ob-

time [3,5,6], the studies devoted to synchronization in
extended systems are still limited to few specific ex-
ampleq7-10]. In the latter case, two main frameworks
have been considered.

On one hand, the investigation of mutual synchro-
nization between two replicas of a spatially extended

served when the local dynamics is ruled by a discon-
tinuous (e.g. the Bernoulli map) or “almost discontinu-
ous”maps (e.g. maps possessing very high values of the
first derivatives). In these cases a linear analysis is no
more sufficient to fully characterize the transition, be-
cause the instabilities associated with finite amplitude

system has been pursued for systems coupled eithemperturbations may desynchronize the system. In both
via local interaction9] or via spatio-temporal noise cases the transition to the synchronized state is typi-
[8]. In both cases, when the amplitude of the coupling cally of the second order. However, depending on the
(noise) overcomes a certain threshold, synchronization linear or non-linear nature of the prevailing mechanism
is observed: after a transient, the two systems follow two different universality classes characterize the tran-
the same spatio-temporal chaotic (stochastic) orbit.  sition itself. For continuous maps (e.g. logistic maps)

On the other hand, another commonly observed sit- critical exponents associated with the Multiplicative
uation corresponds to self synchronization of elements Noise (MN) universality class are usually foufii],
belonging to the same system. This occurs for instance while for (almost) discontinuous maps the transition
in large collections of coupled elements such as pop- belongs to the Directed Percolation (DP) clf23).
ulations of neurongl1], Josephson junctiori42] or The aim of the present work is to clarify the ef-
cardiac pacemaker cell$3]. In these systems the in-  fect of strong nonlinearities in the synchronization phe-
teraction among the elements can range from nearestnomenon, in particular in the case of self synchroniza-
neighbors to globally coupled. Therefore, a model able tion.
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As a first point, we show that strong nonlinearities
may induce nontrivial effects also in low dimensional
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L — oo the transition takes place at a critical coupling
enl > €. Finite scale instabilities are the key elements

systems such as two coupled maps. In particular, we for observing thisionlinear synchronization transition

find that even though the critical coupliagcan be al-
ways predicted within the linear framework, the tran-

Similarly to the case of diffusively coupled map lattices
it is possible to link the synchronization transition of

sient dynamics preceding the synchronization can be CML with power-law coupling with non-equilibrium

strongly affected by finite scale instabilities. To prop-
erly characterize the latter we introduce a new indicator,
the finite size transverse Lyapunov exponent (FSTLE),
which generalizes the concept of finite size Lyapunov
exponent (FSLE)23-25]to the transverse dynamics.
The FSTLE extends the definition of TLE to finite per-
turbation and is therefore able to discern linearly from
nonlinearly dominated transitions. Depending on the
behavior of the FSTLE at finite amplitudes two differ-
ent class of maps are singled oalass Imaps char-

acterized by a decreasing FSTLE at any finite scale,

andclass IImaps that present a peak in the FSTLE for
some finite amplitude value. Moreover, in the proxim-
ity of the transition the shape of the probability density
function (PDF),P(7), of the synchronization times

depends on the dynamics at finite scales and on the

multifractal properties of the map. For class | maps two

phase transitions. Indeed as shown in R21] syn-
chronization of replicas of CML with short range cou-
pling belong either to the MN or to the DP universality
classes. Here we shall discuss the connection of self
synchronization of modgB) with long range spread-
ing processef22,27]

The material is organized as follows. Secttdrs
devoted to synchronization of two coupled maps. In
Secttion3 coupled maps with power-law coupling are
examined. Finally in SectioA we briefly summarize
the reported results.

2. Synchronization of two coupled identical
maps

To analyze the synchronization of two coupled maps

cases can be identified. For maps, such as the symmet{(1) it is useful to introduce the following variables:

ric tent map and the logistic map at the crisis, which
are characterized by the vanishing of fluctuations of
the finite time LE at long times, the PDF exhibits a
fast falloff at larger’s. In particular, for the symmet-

rical tent map we provide an analytical expression for

P(7). For maps, such as the skew tent map, exhibiting

modulational intermittenciB] (which is related to the
persistence of fluctuations of the finite time LE also in
the long time limit),P(r) becomes an inverse Gaussian
distribution[26] originating by the diffusive motion of

the (logarithm of the) perturbation in transverse space.

For class Il maps the PDF’s display an exponential tail
at long times which, differently from the previous case,
is due to nonlinear effects.

As far as spatially extended systems are concerned,

Anteneodo et a[10] have performed a linear stability
analysis of modg(3) obtaining analytically the critical
coupling ¢ for the transition. This prediction works
perfectly for class | maps, as found for the coupled
logistic mapg10]. However, as shown in the present
paper, linear analysis may fail in class Il maps. In par-
ticular, for large system size4.(> 1) an exponential
divergence of the synchronization times witltan be
observed even for negative TLE, as a result in the limit

x4+ o= "
5

MZZ

in terms of which Eq(1) can be rewritten as

't = 3L+ ) + Flu =)

W= (Y= e) [ +u) = g —uh)

Itis easily checked that the synchronized solution (cor-
responding tav’ = 0 andu’ = f(u")) is an admissible
solution of(4) for any value of the coupling. The sta-
bility of such a solution can be studied by considering
the linear dynamics of an infinitesimal perturbatbasi

of the synchronized state. This evolves according to the
linearized equation:

swtl = (1= 2¢) f/(u')sw, (5)

where f' = df/dx. Clearly the stability of the state
w' = 0 is controlled by the sign of the transverse (or
conditional) Lyapunov exponent

A1 = In(1— 2¢) + Ao, (6)
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wherelg is the Lyapunov exponent of the single map 100

f(x). Therefore, by requiringt = 0 one obtains the 102

critical couplinge (2) above which the synchronized —

state is linearly stable. Notice that fer> ¢, A1 co- =

incides with the second Lyapunov exponggtof the 10¢

coupled systergl). 10 210* 4104 6107 8104  1010*

The synchronization transition has been mainly
studied for continuous maps, here denotealass |
maps, in particular for the logistic maf{x) = 4x(1 —

x) at the crisig5] and the skew tent mdp]

10°

10

Z 4o
X . 3
- ifo0<x<a 10°®
a 10
=915 - (7) 0 1104 210 310°
fa<x<1
l1-a

It should be noticed that inside this class of maps one
has to distinguish between two situations according to
the behavior of the fluctuations of the finite time Lya-
punov exponents in the long time limit. The vanishing
of such fluctuations is observed for the symmetric tent 0510  110*  1.510* 210

map and the logistic one at the crisis, while their persis-

tence characterizes the skew tent map that represents_ _ _ _

the generic casig]. Fig. 1. Typical evolution ofw,| = |x; — y;| starting from random

Recent studies however panted out that discon- e 202 PO % BT DR ML o0

tinuous or “almost” discontinuous maps (i.e. Maps the coupling has been chosen in order to engtre= —3 x 1074,

with | f’| > 1 in some point of the definition inter-  The dashed straight lines display tHé'edecay.

val), here termedlass Il maps, may give rise to non

trivial interesting phenomena. For instance, the syn- perturbations but also to finite ones ({8) this is true

chronization transition for two replicas of class Il for sufficiently smalls values).

CMLs is not driven, as usual, by infinitesimal per-  The main differences between synchronization tran-

turbations, but by the instability (spreading) of finite  sjtions ruled by linear mechanisms with respect to those

amplitude perturbatior8,9]. This nonlinear synchro-  griven by finite amplitude instabilities can be captured

nization is linked to the so-callestable chaog28]: already by considering the evolution f|. The typ-

a phenomenon characterized by information propaga- jca| pbehavior of this quantity for > & is reported in

tion evenin the absence of chd@8,25] Moreover,as  Fig. 1 for the Bernoulli, the logistic and the skew tent

we shall show in the following also the self synchro- map. For the logistic map, apart from (short time) fluc-

nization of a single CML can be strongly affected by tyations due to the multiplier variations, an average

nonlinearities. linear decrease of lw’| with slope given byt is
Representative examples of class Il maps are the gpserved. For the Bernoulli map, despite the TLE is

generalized Bernoullimafi(x) = rxmod 1thatisdis-  npegative and does not fluctuate in tirhe’| exhibits in-

continuous and its continuous version stantaneous jumps (1) values. These jumps, which
aix O<x<x are due to finite amplitude instabilities, are more prob-
f) =< m(x —x2) x1<x<x2 (8) able for largelw’| amplitudes. Completely analogous

behaviors have been found for the m@&p, where the
multipliers do fluctuate.

witha; = 1/x1,x12 = 1/a £ 8, m = —1/(26). As al- As shown inFig. 1 for the skew tent map with
ready mentioned, the peculiarity of such maps is that a > 1/2, |w,| displays an intermittent evolution dur-
they are not only unstable with respect to infinitesimal ing the transient preceding the synchronization, that is

at(x —x2) x2<x<1
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reflected in a diffusive motion of lrw,|. As a conse-

quence long transients are observed close to the transi-

tion. This phenomenon, known Bodulational Inter-
mittency[3] is induced by fluctuations of the finite time
TLE that do not average out in the long time limit and
as a consequence can be explained by linear analysis.

For the sake of completeness, we mention that long
synchronization transients have been reported also for
nonlinearly coupled expanding mgg§. In this model
resurgences dfw’| during the transient are due to the
presence of an invariant chaotic repelling set. We stress
that for class Il maps the transient is absolutely non
chaotic, i.e. their transverse dynamics in tangent space
is contracting at any time.

2.1. Finite size transverse Lyapunov exponent

To quantitatively characterize the different
transversespace dynamics (i.e. the evolution of
shown inFig. 1) for maps of classes | and I, let us
now introduce the finite size transverse Lyapunov
exponent. The FSTLEAT(A), generalizes the concept
of transverse Lyapunov exponent to finite value of the
perturbationw’| = A.

Following Aurell et al.[23] (see also Ref24]) we
have defined the FSTLE as follows. We introduce a set
of thresholdsA,, = Agk” withn =1, ..., N, since on

average a transverse expanding (resp. contracting) dy-

namics is expected in the desynchronized (resp. syn-
chronized) regime, we choog¢e> 1 (e.g.k = 2) for

e < g andk < 1 (e.g.k =1/2)fore > ¢. First, start-
ing from a random initial conditions we wait for

to relax onto its attractor. Then we initialize a second
variabley® asy® = x% + 8¢ by choosing an initial per-
turbationdg < Ag (resp.éo > Ag) if ¢ < ¢ (resp. if

¢ > g|), and letx! andy’ evolve according to Eq1).
Care should, of course, be taken to maintgwithin

the interval of definition of the map. During the evo-
lution we record the timeg(A,, k), needed forw’| to
pass for the first time from one threshalg to the fol-
lowing oneA,, 1 and also the value ¢&'| = w,, at the
moment of the passage. When the last thresho)d,

is reached the system is reinitialized with the above
described procedure and this is repedtetimes. The
FSTLE is thus defined as

o

(t(An, k))

Wp

AT(An) = A
n

©)
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Fig. 2. A7(A4) vs. A in the desynchronized regime for the Bernoulli
map witha = 1.5 (empty circles), its continuous version (empty
boxes) withs = 104, the logistic map (filled circles) and the skew
tent map (filled triangles). The coupling constants have been chosen
in such a way that in all systems the transverse LE is equat t5

0.03 (solid line).

where the averagg-]) is performed over the set &
different initial conditions. In the limiA — 0 the FS-
TLE converges ta.1. Notice that due to its definition,
the FSTLE cannot measure at the same time expansion
and contraction rates, i.e. we have limited the analysis
only to consecutive contractions (resp. expansions) in
the synchronized (resp. desynchronized) regime. This
implies that the sign ofA1(A) is always negative or
positive in accordance with the investigated situation.

InFig. 2A1(A) versusA is shown for different maps
inthe desynchronized regime. As expected, in all cases,
forvery small values gfw’|the TLE is recovered. How-
ever, at larger values dfv’| maps of the class Il dis-
play anincrease of the growth rate, itex(A) > A71(0)
for some finiteA value, while for maps of class | the
FSTLE is monotonically decreasing with. At(A)
provides a quantitative measure of the strength of the
nonlinear effects that, in maps of class Il, may in prin-
ciple overwhelm the linear mechanisms as pointed out
in Ref.[30,25]

In Fig. 3 we report the behavior ofiT(4) in the
synchronized regime. Again, while for very small
the (negative) TLE is recovered, at largéwalues the
Bernoulli-like maps display an increase which is due
to the jumpsO(1) of the transverse perturbation. A
closer inspection of the small regime reveals that
for the logistic mapAT(A) = At only for very small
scales~10~/, while for the skew tent map the asymp-
totic A1(A) ~ At in never exactly reached. The latter
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Fig. 3. A7(A4) vs. A in the synchronized regime for the Bernoulli
map ata = 1.5 (empty circles), the logistic map (filled boxes). The
inset show the logistic map (filled boxes) and the skew tent map
(empty boxes) . The straight lines correspond to the transverse LE,
herext = —4 104 for all systems.

convergence difficulties are probably due to the inter-
mittent behavior along the transverse direction, in the
proximity of the transitioff3]. In the regimes < ¢ the
finite time effects are less important and the asymptotic
behavior is recovered for all the investigated maps.
The results presented in this subsection clearly in-
dicate that finite scale instabilities can prevail on in-
finitesimal ones only for strongly nonlinear maps.

2.2. Statistics of the synchronization times

Notwithstanding the observed differences in the FS-
TLE, we found that the critical coupling for synchro-
nization to occur is always given §g) for both classes.

M. Cencini, A. Torcini / Physica D 208 (2005) 191-208

This means that, at least for the case of two coupled
maps, nonlinear effects do never modify the critical
coupling. It is natural to wonder whether other observ-
ables related to the synchronization transition could be
influenced by the presence of finite amplitude instabil-
ities. As we shall show in this section, this is the case
for the synchronization times statistics.

Let us define the synchronization time as the
shortest time needed ta’| for decreasing below a
certain threshol@, with the further requirement that
|lw’| < ® for a sufficiently long successive tinig;.
However, if the threshold value is small enough (e.g.
© ~ 108 — 1014 ¢ essentially coincides with the
first arrival time to the considere®. The quantities
of interest are the PDF'(z), and their moments (we
shall focus mainly on the first moment).

2.2.1. Class | maps

In Fig. 4we showP(z) for the logistic and the sym-
metric tent map. The main feature is the presence of
an exponential tail at short times and the faster than
exponential falloff at long times. This means that syn-
chronization times > (t) are not observed. As a first
result we derive, by following Ref6], an approximate
analytical expression foP(z), which is exact for the
symmetric tent map.

Letusdefineg’ = In|w’|, and consider its linearized
evolution, from Eqs(5) and (6)one obtains

= 2 In W) + AT — ro. (10)

Formally the above equation can be applied only in
the true linear regime, i.e. whegm?’| — 0, so that it
is not appropriate in the early stages of the evolution.

P(7)

410°
T

310°

Fig. 4. P(z) as a function of the synchronization time (a) tent map fods = (¢ — ¢)) = 0.001, the dashed line is the analytical expression
(14); (b) logistic map forse = 0.001, the solid line refers to the expressids)(with D = 0.82 andD’ = 0.72. In all cases the PDF have been
obtained by averaging over 4different initial conditions and by choosirg = 10~12,
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However, as shown iRig. 1, for maps like the logistic
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which is in fairly good agreement with the numerically

one, usually after areasonably short transient, the linearevaluated PDFKig. 4b). Notice thatC is not simply

regime sets in and the use of E#j0)is justified for the
successive evolution. From Hd.0)it is clear thatP(z)
is related to the PDFP(z) of the variablez and to that
of the local multipliers In £’ (u")|. The formal solution
of Eq. (10) up to timeN can be written as follows:

N =24 AN+ AxN, (11)

whereAy = 1/N Y, y_1In|f/(u’)| — Ao. For suf-
ficiently largeN, large deviation theory tells us that the
PDF of Ay takes the fornp(A) ~ exp(—Ng(A)), be-
ing g(A) the Cramer functiofB1], which is convex and
has its minimum value at(A = 0) = 0. Itis now clear
the distinction between the generic case in wiigh)
does not collapse ontdgunction, and the non-generic
one in which it does, as for the symmetric tent map and
the logistic one at the Ulam point. In the former case
the dynamics of’ becomes a biased Brownian motion,
with an average drift given byy.

For the sake of simplicity, let us start from the
tent map (Eq(7) for a = 1/2), for which In| ' (u")| =
In(2) = Ao. In this caser is simply given by:

z In®

T=— — — 12
ATl [ATI (12)

and P(t) can be directly related t&(z). Since, in the
proximity of the transitionP(z = In |w|) assumes the
form (analytically derived in Ref6]):

P(e) = 2 e @/ITDe

[AT] (13)

it can be easily obtained the related distribution

P(r) = 21O g @/l T (14)
which perfectly agrees with the numerical resufig(
4a).

Unfortunately the (short time) multiplier statistics of
the logistic map is nontrivial, impeding a straightfor-
ward derivation ofP(t). However, we numerically ob-
served thaP(w) ~ e P* (w = exp()) with D almost
constant in a neighborhood of the transition (namely,
D =0.82+0.02 for —0.01 < §¢ < 0.01). This im-
plies that

P(r)=2 gPlarlt+C e(Z/D\ATI)eDMTIwc’ 15)

given by D In ©, and a fitting procedure is needed. We
foundC = D’ In ®, with D’ = 0.72, 0.70 and 0.65 for
se = 1073,10~% and 10°°, respectively.

The above reported results allow us also to predict
the scaling of the average synchronization timjewith
3¢ in the proximity of the synchronization transition.
In particular, for the symmetric tent map the following
expression can be derived

(7) = /O“’ dr tp(z) ~ £L2O/AT)

[AT] (16)

where[32]

B = [ S U

n'n

s

00
=—y—|nx—z
n=1

being y ~ —0.57721. .. the Euler-Mascheroni con-
stant. Since @/|A7| <« 1, approximatively we have

—In® — y +In(|AT]/8)
) &
|AT]

where |A7| &~ 2 €0¢ = 43¢ (being Ao = In 2). Note
that (17) is in perfect agreement with the numerical
results for the tent map (sd€g. 5. For the logis-
tic map, a similar dependence @én, namely (t) =
(a + bIn(Se))/8e, has been found. The interesting point

: 17)

108 .

108 | o.

<T>
@

10* “o.

102 L

Fig. 5. (1) vs. 8¢ = ¢ — ¢ for the tent map (empty boxes) and the

logistic one (empty circles). The continuous line is the prediction
(17)with ©® = 10712, the dotted one is obtained by a best fit of the
form (7) = (a + bIn(3¢))/3¢, with a = 5.58 andb = 0.24. The data

of the logistic map have been shifted by a factor 100 for plotting
purposes.
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in (17) is the logarithmic correction to the scaling sient time statistics to be dramatically different from
(t) ~ 8¢~1, which would have not been predicted by a (14). Indeed, as seen Fig. 1, w;, is subject to notice-
naive guess based ¢h2). ably nonlinear amplifications induced by the (almost)
We now briefly discuss the generic situation (see discontinuities in the map. Therefore, the expression
Chapter 13 of Ref3] for more details). As mentioned (10)is no more appropriate to describe the dynamics
above,z’ = In |w'| performs a biased Brownian mo- of z; = In |w,|, and its full nonlinear dynamics has to
tion, so that computing®(r) amounts to evaluate the be taken into account. The latter is characterized by
distribution of the first passage times to a threshold of the fact that, with a finite probabilityw’| can jump
a Wiener process with drift that, as a standard result of to O(1) values at any time during the transient pre-
stochastic process theory ,is given by an inverse Gaus-ceding the synchronization, even if the transient is not

sian densityf26] that for long times becomes chaaotic.
32 ) Thisidea can be better clarified and its consequences
P(r)~1"e with v ocAg, (18) on theP() better appreciated by considering a simple

stochastic model for the dynamics of the transverse
variable at > ¢/. This model was originally proposed
in Ref.[33], and reads as

where the quadratic dependence from the TLE comes
from the diffusive dynamics of the perturbation.

For class Il maps the situation is completely differ- eTw wp. 1-p ) (19)

ent. For both the continuous Bernoulli magid. 6a)
and the discontinuous Bernoulli shiffify. 6b) we ob- whereit < 0 and w.p. is a shorthand notation for with
serve that foe > ¢ the PDF'’s are characterized by an  probability. The underlying idea is very simple: the
exponential tail at large, similar to Poissonian dis-  transverse perturbation’ is usually contracted, but
tributions. Moreover, we also observe that the PDF’s, with probability proportional to its amplitude can be
once rescaled asP(r), and reported as a function of  re-expanded to O(1) values, in agreement with the nu-
x = (tr — (1))/o (Whereo = /(12) — (1)2) collapse merical observations. The jumps occur whéandy’
onto a common curve in the proximity of the transi- are close but located at the opposite sides of the (al-
tion. These results are particularly striking in the case most) discontinuity.

of the Bernoulli map for which naively one would For this simple model, it is possible to derive the
have expected a complete similarity with the tent map, corresponding probability densiB(z), which displays
since its multiplierf'(x) = r is also constant. Here the  the same peculiar features of the PDFs reportdtgn
presence of strong nonlinear effects makes the tran-6a and b. In particular, the long time tail. First, notice

2.2.2. Class Il maps {1 w.p. p=éeTu
w =

(a)

(t-<1>)o (t-<t>)o

Fig. 6. (a)Po as a function of{ — (1))/o (Whereo = 1/ (12) — (1)2) for the continuous Bernoulli shift mg@) with a; = 1.1 ands = 103 at
different distancesie, from the critical coupling. Note the fairly good collapse, indicating a common decay‘gslashed line). The collapse
is however only approximate near the peak. (b) Same as (a) for the Bernoulli mapwithat different distances from the critical coupling.
The dashed line givesé.
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that the probability that an initial perturbatiarng is
never amplified t@’(1) up to timet is given by

O(t, wo) = [ 1 — woe'™ — Q(wo)

n=1

k a—|ATlk
wp€

= tll)ngo exp l— Z Ic(l—e—’\T'k)] . (20)

k=1

Interestingly, for—oo < A1 < 0 the quantityQ(wo)
is always positive and strictly smaller than 1 for any
perturbatiofwg| > 0, i.e. the probability that a pertur-
bation of amplitudgwg| can be amplified is finite at
any time.

The PDF of the times needed to observe®™ = @
can be factorized as

Po(1) = G(t —n)Q(n. 1),

whereG(r — n) is the probability to receive a kick at
timer — n, andQ(n, 1) is the probability of not being
amplified for the following: steps, where is given by

(21)

In®
[AT]”

7=

As shown in Ref[33] G(x) ~ exp (—vx), and therefore
at larger’s Eq. (21) can be rewritten as

In @)]
AT
that confirms the Poissonian character of the FIpF)

for the maps of class II. By properly normalizing Eq.
(22), one obtaingr) = 1/v — In ®/|A|, thatisin good

Po(t) «x Q(n, 1) exp [—v (r + (22)

agreement with the numerical results for the Bernoulli

map (in particular, we considered=2 and ® =
10-12). Moreover, inthe intervale € [107°; 102] we

found that the decay rate of the PDF is directly pro-

portional to the TLE, i.ev ~ 0.2|A/|, this should be
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also Ref[34]):
T

N
o1 1+Ty
a0 Jim % jm £33 1w
1= =

(23)

i.e.for each value of the couplimgone considens dif-
ferentrandom initial conditions and each one is iterated
for a transientr,, after which the time average pf’|
over a time lapsé& is considered and further averaged
over all the initial conditions. The value of the coupling
giving the synchronization transition is then implicitly
defined ag2(en)) = 0. In principle g may differ from
¢ defined by(2), since this expression is valid only
within a linear approximation formalism. Fig. 7 we
show the behavior of the order paramé&g3)as a func-
tion of ¢ for both classes of systems. Two observations
are in order. First, the transition to the synchronized
state always occurs at the critical coupling defined by
(2) (i.e.en = ¢). Second, the transition is continuous
for the Logistic map (simulations show that also the
tent map, which belongs to the same class, has a con-
tinuous transition) and discontinuous for the Bernoulli
shift. This confirms the results reported in RE¥4].
However, since the transition for the continuous ver-
sion of the Bernoulli shift mag8) is steep but clearly
continuous (see the insetleiy. 7a), this does not seem
to be a generic property for all the maps of class Il.
The behavior of the Bernoulli shift map can be eas-
ily understood by considering the map controlling the
dynamics ofuw’, i.e.
{xt cly Y el
(21— 2¢)ruf

t t
Wi+ xtelh Yy el

A-28)(rw' +1) x'elp,
A-29)(w' —1) x'el,

yel
y el
(24)

being Io= [0:1/r] and I = [1/r:1]. From the
above expression, it is evident that the attractor in the

contrasted with the quadratic dependence found in the (w', wtY) plane has always a finite width along the

case of class | maps, see Ef8).

2.3. Synchronization transition

transversal direction, unless = y’. This explains the
discontinuity observed at. In the continuous maf8)
the attractor in the planef, w'*') has a “transverse”
width that decreases continuously to zeroder ¢.

We conclude the investigation of two coupled maps In conclusion, the discontinuity in the transition is a
by studying the nature of the transition. For this purpose pathology of the Bernoulli map, and possibly of other

letusintroduce the order paramefr) defined as (see

discontinuous maps.
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Fig. 7. (a)£2(¢) vs. ¢ for the Bernoulli map with- = 1.1 and its continuous versi8) for different values of. For the Bernoulli map one
has that according #2) &, = 0.0454545.. The order parameter is computed according2®) averaging oveN = 10° different random initial
conditions, discarding the first §@teration and averaging over the following®lierations.£2(¢) has been estimated with asresolution 163,
The inset shows an enlargement of the critical region done with a coupling resolutiénth® same number of initial conditions and a longer
integration transient,, = 3 x 10° iterations. (b) The same for the logistic map at the crisis. H2y@redictss; = 0.25. The blow up of the
critical region (in the inset) shows that the transition is continuous. Note also tht farl we observéV o de.

The order parametdR3) can be seen as the time The above resulttells us that= v (if the integral does
average, once discarded an initial transient, of the fol- not diverge, i.e. ifv < |A1|). This is confirmed by nu-
lowing quantity merical checks.

W) = (Jw']) (= £2(s) for t — 00), (25)

where(-) indicates the average over many different ini-
tial conditions. Oncev is initialized O(1), depending

on whethere is smaller or larger thag, two differ-

ent asymptotic behavior are observed. In the desyn-
chronized regime, obviously(r) goes to a finite
values2(¢), while above the synchronization transition
W(t) — 0 with a decay law determined by the nature
of the considered maps. For class | maps, the decay is
ruled by the TLE:W(¢) ~ exp@.7t) with At < 0. For
class Il mapav(r) shows an initial exponential decay
~ exp(ut) (with u > 0), dueto the effect of the resur-
gences averaged over many different initial conditions,
followed by a final linear decay expfr).

The nonlinear ratg. can be simply related to the
exponential tail of the PDF of the first arrival times,
by assuming (as indeed observed) the following decay
Po(t) xx exp[-v(r — (In®/|A1]))]. SinceW(r) is the
average amplitude value of the at timet, one has

3. Coupled maps with power-law coupling

In this section we analyze high dimensional sys-
tems, namely the power-law coupled maps defined in
Eq. (3). In particular, for class Il maps we shall show
that there exist situations where, due to the nonlin-
earities, the synchronization time diverges exponen-
tially with the number of maps. As a consequence,
the transition takes place at a (nonlinear) critical cou-
pling en larger than the linear valug. A similar phe-
nomenon has been observed for GCM’s with nonlin-
ear coupling, where the synchronization time diver-
gence is due to a chaotic transigi}. Chaotic tran-
sients, diverging exponentially with the number of
coupled elements, have been reported also for spa-
tially extended reaction-diffusion systenfid5] and
for diluted networks of spiking neuror[86]. How-
ever, the emphasis of our work is on non-chaotic

1 1 transients similar to the stable-chaos phenomenon
W(t) = / 40 O Po(t) o eV / dooe e oy P
0 0 :
1 Let us start by reviewing the linear theory developed
— e—vt/ de e/l (26) in Ref.[10], which is able to account for the synchro-
0 nization transition of class | maps.
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3.1. Lyapunov analysis

When nonlinear effects are not sufficiently strong,
excluding the pathological cases of chaotic transients,
the critical coupling for observing the synchronization
transition can be predicted by computing the Lyapunov
spectrum. In particular, since above the synchroniza-
tion transition the transverse Lyapunov exponent coin-
cides with the second Lyapunov exponery, it suf-
fices to evaluate the dependence of the lattes.on

In order to compute the Lyapunov spectrum of the
model(3), it is necessary to consider the tangent space
evolution:

St = (1 — &) f(xl)sx!

L' /
n 2 Z f (xf—k)fsxf—k
(@) =

+ f’(x;+k)8xf+k
ko ’

(27)

In Ref. [10] it has been shown that the full Lyapunov
spectrum can be easily obtained for the Bernoulli map:

m=Inrin|l—et —— b, (28)
n(e)

where

L/

cos(Zr(k — L)m/L)

be=2) — k=1,... L.

m=a

(29)

In this notation the maximal Lyapunov exponent is
given byi; = In r and the second Lyapunov exponent
is Ao.

For generic maps it is still possible to obtain the
Lyapunov spectrum in an analytical way, but only in
the synchronized state, by substitutingrlmvith the
maximal LE of the single uncoupled map in (28).

From alinear analysis point of view one expects that
the synchronization transition has to occur when=
0. Therefore, the following expression for the critical
line in the g, ¢)-plane can be derived:

, -1
_ 2 & cos(Zrm/L)
— (1 — e 20 _ = PN =T
g=01-€e")]1 () E a

m=1

(30)
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As shown in Ref[10] this prediction is well verified

for the logistic map, which is here used as a benchmark
for our codes. Let us conclude this short review by
noticing that in the limitL — oo synchronization can

be achieved only foxr < 1 [10]. Therefore, we shall
limit our analysis to this interval.

3.2. Nonlinear synchronization transition

Let us now study the critical line for class Il maps,
exemplified by the Bernoulli shift map and its continu-
ous version. First of all we introduce the main observ-
ables and the numerical method employed to determine
it.

A meaningful order parameter for the transition is
represented by time average of the following mean field
guantity:

L

1 1&
S@t) = Zch; —X|, ¥= Z.Zxﬁ‘
i=1 i=1
This can be operatively defined as follows: firstly the
system(3) is randomly initialized and iterated for a
transient timely, proportional to the system sitethen
the time average of(r) is computed over a time win-
dowT, i.e.(S)t =1/T ) ,_; 7 S(t). Finally the state
of the system is defined as synchronizedSifr < ©,
being ® a sufficiently small value (16 to 10710 is
usually enough). The coupling value corresponding to
the synchronization transition is then obtained by using
a bisection method: chosen two coupling values across
the transition line one corresponding to a desynchro-
nized state 4) and the other to a synchronized case
(es) a third value is selected ag = (eq + ¢s)/2. If at
this new coupling value the system synchronizes (resp.
not synchronizes)y, is identified with the news (resp.
£d). The procedure is then repeated uniil £ ¢4) < 0,
(in our simulations, = 10~3to 10°). Finally the crit-
ical coupling is defined as, = (¢s + 4)/2. The algo-
rithm, tested on the logistic map, was able to recover
(30)with the required accuracy. In general one has that,
once fixed, en Will be a function ofT,, for a givenL.
In Refs.[7,10] it has been employed as a synchro-
nization indicator the time average of the following
mean-field quantity:

(31)

2mix’,

t
Rt: e A

(32)

-

~
Il
N

~) =
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Fig. 8. Synchronization transition lines for the Bernoulli shift map
with » = 1.1 atL = 17, 33, 65, 129 257. The solid lines are the an-
alytically estimated “linear” transition values E¢B0), while the
symbols refer to the numerically obtained values. We ugga=
1°L, T=10°L, 6 = 108 andg, = 1073,

We have verified that this indicator gives results com-
pletely analogous t¢S)T in all the considered cases.

In Ref. [10] the authors have reported for logistic
coupled maps a very good agreement betwggiven
by (30)andep, estimated vigR')7. However, this is not
the case for the Bernoulli map, as showrfig. 8 In
this case (depending on the slope of the mama and

M. Cencini, A. Torcini / Physica D 208 (2005) 191-208

on the chain lengtlv) strong disagreements between
the linear transition line given by and the numerically
obtained values are observed. These disagreements are
typical of class Il maps. Since the nonlinear effects
locally desynchronize the system evenijf < 0, in
generakp > ¢.

In obtaining the data reportedig. 8 the cpu time
restrictions forced us to employ a large but somehow
limited transient time (namelyl}, = 10° L). There-
fore, we checked for the dependence of the results on
T,, for fixed L. In particular, we measureg) for two
a-values only (namelyg = 0.3 and 0.8) for several
chain lengths and transient times. This analysis has
been performed for the logistic map at the crisis, for
the Bernoulli shift map withr = 1.1 and for its contin-
uous version. The results are reporteéig. 9. For the
logistic map we found that, for any value bfande,

a relatively small value of,(~10% was sufficient to
observe a clear convergencegfto the linear value,.
This is also the case of the Bernoulli map and its contin-
uous version for = 0.3 (though as one can seefiyg.

9c the discontinuous map is characterized by a slightly
slower convergence than its continuous version). On
the contrary fore = 0.8 with L > 21 we were un-
able to observe synchronization even fgr= 10'L,

024f(@ = T,=10° —— 0.35 [ (b)”
Ty=10% o
T =108 e
018 T,=10% —— 0.25
= Ty=107
w
.12} 015
0-061’?-’--!-005‘-"
20 40 60 80 100 120 140 20 40 60 80 100 120 140
L: L
0.asf

%/H_é‘
0.06

0.25 1

0.15
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L
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L

Fig. 9. ey as a function of_ for differentT,, in 103—10’ for the continuous Bernoulli shift map with= 1.1 ands = 3 x 104 ate = 0.3 (a)
anda = 0.8 (b). The same for the Bernoulli shift with= 1.1 for« = 0.3 (c) and fore = 0.8 (d). The continuous solid lines are the theoretical

values obtained in the linear analysis framew(s®).
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while atT,, ~ 10*L the logistic map had already con-
verged togs;. Summarizing forr = 1.1 we found that
for « < 0.5 the Bernoulli shift map and its continu-
ous version always converge toward the linear critical
value, while fore > 0.5 atincreasing. the critical cou-

203

lengthL we chose the coupling strength according to

o _ gh2

02 =aw) (S ) (34)

pling en becomes more and more independent of the Furthertests performed atdifferentlengths butatafixed

transient timeT,, (see the right oFig. 9for L = 129).
However, for a smaller value ofand for largel (we
investigated the case= 1.01 andL = 101, 501) we
observedey > ¢ for any value ofa € [0; 1]. In par-

distanceAe = ¢ — ¢/(L) from the critical line give es-
sentially the same results.

As shown inFig. 10, for the logistic map (but these
results can be extended to all the maps belonging to

ticular, we stress that also in the globally coupled case class |, se&ig. 1) the PDF’s of the synchronization

(corresponding ta = 0) we have clear evidences that
&nl > &;. Thisis due to the fact that fer— 1 nonlinear
finite amplitude instabilities becomes more and more
predominant with respect to the mechanism of linear
stabilization (se¢30,29]for more details).

On the basis of the previous results, it is natural
to conjecture that in the limif. — oo the non-linear
transition is well defined, i.e. that the limit

eni(@) = lim lim ep(a, L, Ty). (33)
Ty—00 L—>0o0
exists and is typically larger thaneg(a)=
lim; o €1(e, L). Note that in the above expres-
sion the order of the two limits is crucial, we expect
that performing at fixedl the limit 7,, — oo we should
always observe a convergencejtdHowever, as shown
in the following, the times to reach synchronization
may diverge exponentially fast with in the region
just aboves; making rapidly infeasible this limit.

3.3. Synchronization times

As for the case of two coupled maps, we study now
the synchronization time statistics. In particular, we
consider the system above the linear transition line
¢ > g and measure the first passage timeseeded
for S(z) (32)to decrease below a given threshéldin

times obtained at constant display a very weak (al-
most absent) dependence on the system size, and are
qualitatively similar to that found for two coupled maps
(compareFig. 10a with Fig. 4). Moreover, measure-
ments of the average synchronization tinjes done

by fixing the “distance”A¢ from the critical line, ex-
hibit a clear tendency to saturate for increadingrig.

11). Therefore, in the limit. — oo the synchroniza-
tion time will not diverge.

For the maps of class Il the situation is different.
Here, as shown ifig. 1Qc, for values ofx sufficiently
small P(z) is weakly dependent on the system size
as found for the logistic map. On the other hand, by
considering more local couplings (eqg= 0.8 in Fig.
10d), the tail of the PDF becomes more and more pro-
nounced as the system size increases. Results obtained
by fixing the distance from the critical coupling instead
of the value of the TLE display qualitatively similar
features.

This picture is further confirmed by examinirig)
as a function oL for fixed A, (i.e. by choosing ac-
cording to(34)). As one can see ifrig. 12 (r) dis-
plays a dramatic dependence bnin particular, at
A2 > —0.01 (see the inset dfig. 12 (t) grows expo-
nentially withL, while a power-like scaling is observ-
able forrp, ~ —0.05, at least for the chain lengths we
could reach. Deeperinside the “linear” synchronization

this way we determine the corresponding PDF and the region, i.e. fora, = —0.1, we observed a saturation

related momenta.
In the high dimensional case, it is fundamental to

of (r) with the system size. It is worth stressing here
that fore = 0.3 andr = 1.1, where no appreciable dis-

analyze the dependence of the synchronization time oncrepancies between ande; have been observe)

the system sizé&. However, as reported in E30),
the critical valueg itself depends oih. Therefore, to
perform a meaningful comparison of systems of dif-

saturates for largé. Nevertheless the corresponding
PDF exhibits the usual tail at long times characteris-
tic of maps of class Il but with weak dependencelon

ferent sizes we considered situations characterized by(seeFig. 10c). Notice also that, in principle, the transi-
the same linear behavior in the transverse space, i.e.tion from the exponential dependence to the saturation
having the same value @b. This means that for each  can be used to estimatg (see Ref[8]), however for
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Fig. 10. P(z) vs. 7 for different system sizes (see label) at fixed= —0.01 for different maps: (a) logistic map at the crisis with= 0.8 (for
« = 0.3 we obtained qualitatively similar results); skew tent nfapwith a = 2/3 (b); Bernoulli shift map withr = 1.1 for « = 0.3 (c) and
o = 0.8 (d). In the latter case sizes larger thiar= 17 were not drawn for the sake of clarity of the plot. The PDF’s have been obtained in all

cases by considering 4@ifferent initial conditions and witl® = 1012,

the present model a systematic study of this aspect istion associated with the local linear dynamics and to
infeasible due to the required computational resources the spatial coupling. This suggests that nonlinear ef-
We thus found clear indications that a nonlinear fects tend to decouple the single units of the chain.
synchronization transition can be observed for class This decoupling can be indeed related, by means of
I maps when finite size nonlinear instabilities are suf- the following simple argument, to the observed expo-
ficiently strong to overcome the effects of stabiliza- nential divergence with of the synchronization times

400

300

<T>

200 %

'EOO L 1 L L 1
0 100 200 300 400 500

L

Fig. 11. Average synchronization timg), as a function of the sys-
tem sizel for the logistic map at the crisis witla = 0.6 estimated
at a fixed distance from the linear threshald = 0.05. Data have
been averaged over 1tnitial conditions with® = 10-12,

109t

Fig. 12. Average synchronization timées as a function of for the
Bernoulli map withr = 1.1 and«a = 0.8 for various values of the
second Lyapunov exponent (see label). The inset shows the case of
A2 = —0.01inlinear scale. Data have been averaged oveirtial
conditions and® = 1012,
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aten > ¢ > ¢. Synchronization happens when the dif-
ferences! = |x! — x'| is contracted for ever in each site
until S(r) = 5 decreases below threshold. The proba-
bility that for a single site the initial differegcsé = wo

will be never amplified t@)(1) is given byQ(wo) < 1
(see EQ.(20)), therefore by assuming that each sites
is completely decoupled from its neighbors the proba-
bility of contraction for the whole chain is given by
p = 0%1)=exp[LIn Q(1)] (for simplicity we set
wo = 1 without loss of generality). And the probabil-
ity that the system settles onto this “contracting” state
aftern steps is

Py~ (1— p)"'p ~ exp(-np) (35)

this quantity represents a good approximatiom® ().
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sites is given by

So ~ (ec — &), for &< e, (36)

while at the critical point = ¢ the density of active
sites scales a&(t) ~ % and the average synchroniza-
tion time diverges as
(t) ~ L~ (37)

We denoted ag. the critical coupling to avoid at
this stage distinctions between linearly and nonlin-
early driven synchronization. Since continuous non-
equilibrium phase transitions are typically character-
ized by three independent critical exponents, once
(8, B, z) are known all the other scaling exponents can
be derived22].

Therefore, one expects a Poissonian decay for the PDF | et us now analyze CML's with power-law coupling

of the synchronization times with an associated av-
erage time(t) = 1/p o« exp[L In(1/Q(1))] exponen-
tially diverging with the chain length, as indeed ob-
served.

3.4. Properties of the transitions

Let us now characterize the synchronization tran-
sition in the spatially extended mod@) within the
framework of non-equilibrium phase-transitions. A

similar parallel was recently established in a series of

works concerning synchronization of two replicas of
CML’s with nearest neighbor coupling,9,33,37] In

these studies it has been shown that the synchroniza-

tion transition is continuous and belongs to the Mul-
tiplicative Noise (resp. Directed Percolation) univer-

sality class depending on the linear (resp. nonlinear)
nature of the prevailing mechanisms. In both cases one
observes a transition from an active phase (character-

ized by (S)T = So > 0) to a unique absorbing state
(identified by (S)T = 0). We indicated withS the or-
der parameter, however for sake of clarity it should be
said that for two replicas of a CML this corresponds
oS => 11 |xi — yi| and is not given by expres-
sion (32) used in the present paper for characterizing

self synchronization. The rationale for using the same

symbol is that the two definitions embody essentially
the same informationS)t is a measure of the density
of non synchronized (active) sites.

In the proximity of the transition (if continuous) the
scaling behavior of the saturated densStyof active

(3). We start with class | maps, for which the transition
is completely characterized by the linear dynamics, i.e.
&c = €. In particular, we consider the logistic maps at
the Ulam point for three different-values (namely,

o = 0.1, 0.3 and 0.6). The first observation is that the
critical properties of the model seem to be indepen-
dent ofa: we measured exactly the same critical ex-
ponents for the alk values, namely ~ 1, 8 ~ 1 (see
Fig. 13 andz ~ 0 (seeFig. 11). These exponents co-
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Fig. 13. Temporal evolution of the order parames§r) for ¢ =

ec — 1073 (filled circles)e = ¢; (empty boxes) and = &¢ + 103
(crosses). The solid straight line displays the power-law dechy
Data refer to the logistic map with= 0.1 andL = 501 and are ob-
tained after averaging over 1500—3000 initial conditions. In the inset
the average value of the order paramé®f as a function of; — ¢

is reported. The straight line shows the scaling behawipe(¢)?.
Data refer to the logistic map with= 0.3 andL = 501 the average

is performed over 1000 different initial conditions.
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incide with the mean-field exponents reported in Ref. tive Noise, is irrelevanf21,22] This leads us to con-
[38] for a model of anomalous Directed Percolation clude that, for continuous synchronization transitions,
(DP). The model differently from standard DP con- we would not expect any differences in the measured
siders the spreading of epidemics in the case of long- exponents between linearly and nonlinearly driven
range infection, namely in one spatial dimension the transitions.

probability distribution for a site to be infected at dis- In examining the critical properties associated to
tancer decays as A1, The critical behavior of this  coupled class Il maps, we confronted with hard nu-
model can be obtained by considering a Langevin equa- merical difficulties related to the fact that = ¢y, can-
tion with power-law decaying spatial coupling for the not be measured with the required precision. Moreover,
coarse grained density of infected sites. In [R&8], the due to the presence of exponentially long transients in
authors found that the critical exponents vary continu- the proximity of the nonlinear transition, simulations

ously witho, but below a critical values = 1/2in 1d) of model(3) with class Il maps become extremely time
the exponents coincide with the corresponding mean- consuming. For these reasons we were unable to find
field results, namelgyr = Swr = 1 andzyg = 0. In conclusive results. However, within these limitations,

the limit o — O the latter exponents are identical to our analysis (performed up tb = 501 and up to in-
the ones we have found for the logistic coupled maps. tegration times~10f) suggests that for class Il maps
In the following we shall give an argument to explain (both the Bernoulli map and its continuous vers{8h
these similarities and differences. with r = 1.1 were considered) the transition may be
As shown in Refs[8,9,33,37]there is a deep con-  discontinuous as suggested from the data showigin
nection between the synchronization problem for two 14. In the figure the temporal evolution of the order pa-
replicas of a diffusively coupled CML and nonequi- rameterS(¢) averaged over many initial conditions is
librium phase transitions. Indeed there the difference reported in proximity ok, and no indication of criti-
field d! = |x; — yi| can be mapped onto the density cal behaviour is observable. This indicates that in class
of infected (active) sites and an appropriate Langevin Il CMLs: short range interactions give rise to DP-like
equation describing the evolution @f can be de- continuous transitions, while power-law coupled maps
rived in proximity of the transitiofi20]. In our case of exhibit discontinuous transitions. We should mention
CMLs with power-law coupling we expect that the cor- that the introduction of long-range interactions in DP
responding Langevin equation for the spatio-temporal model can similarly modify the nature of the transition
coarse grained defectdensify= |x! — x'| shouldcon-  from continuous to discontinuous, as shown in a recent
tain a long-range interaction with a power-law spatial
coupling decaying with an exponeat Therefore, in
the proximity of the transition, it seems natural to map
the dynamics of3) onto the model studied {i38] once
the exponent is identified with 1— o. However, in(3)
the coupling is rescaled by the factgfer) ~ L1~ to
avoid divergences in the limit — oco. The rescaling 7Y
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L1~% amounts to consider effective interaction on large %ok, B
scales of the type /¥ independently ofr. This may ] g:g-gg - 4 ®
explain the fact that the exponents characterizing the 6040 s L
transition of modek3) coincide with the mean-field 02y o toh
values reported i38] for o = 0. A similar rescal- ,e;o:44 Segue ' \
ing was performed in Ref39] to show, for a chain 10° 102 104 108
of power-law coupled rotators, that all the equilib- t

rium properties of the system coincide forOx < 1, _ _
once suitably scaled. Let us also remark that since Fig. 14. Temporal evolution of the averaged order paramgfgr

we are dealing with a mean-field case the nature of for the Bernoullimap withr = 1.1, « = 0.8, L = 501, and different
9 coupling strength above and belaw (see the labels). Average is

the noise entering in the Langevin equation, which gone over 100-500 initial conditions, tests on shorter times and more
distinguishes Directed Percolation from Multiplica- initial conditions confirm the reliability of the statistics.
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paper27]. The authors have introduced a generalized exponents for coupled logistic maps with power-
directed percolation model, in which the activation rate law interactions in proximity of the synchronization

of a site at the border of an inactive island of length
is given by 1+ a/€°. In particular, in Ref[27] it has
been shown that the transition is continuousdos 1

transition.

with exponent coinciding with DP, and discontinuous Acknowledgements

for0 <o < 1.

4. Conclusions

In the present paper we have examined the influ-
ence of strong nonlinearities in the transverse synchro-
nization transition of low and high dimensional chaotic
systems. In particular, for two coupled maps we have
shown that finite amplitude nonlinear instabilities can
give rise to long transients, preceding the synchroniza-
tion, even when the dynamics is transversally stable at
any instant. This should be contrasted with the results
found for continuous maps where long transients may
happen only as a result of transient chaotic or inter-
mittent transverse dynamics. In high dimensional sys-
tems with long range (power-law) interactions strong
nonlinearities may invalidate the linear criterion to lo-
cate the critical coupling. In this case the transition oc-
curs, due to nonlinear mechanisms, at a larger coupling
value. The nonlinear transition is characterized by the
emergence of transients diverging exponentially with
the system size even above the linear critical coupling.
The origin of this transition is closely related to the
stable chaos phenomenon. The synchronization phe-
nomenabothinlinearly and nonlinearly driven systems
have been compared with models for long ranged con-
tact processes. We found that, for linearly driven sys-
tems, the transition is continuous and the critical expo-
nents are given by a mean field prediction. For nonlin-
early driven systems, though the results are not conclu-
sive, evidence of a discontinuous transition have been
found.

Note added in proof

Afterthe submission of the present paper we became
aware of a manuscript by C. Anteneodo, A.M. Batista,
and R.L. Viana, preprint (2005) (nlin.CD/0504012),
where the authors report analytical estimate for
the distributions of transversal finite-time Lyapunov

We are grateful to W. Just, A. Politi and A.
Pikovsky for useful discussions and remarks and to F.

Ginelli also for a careful reading of this manuscript.

Partial support from the Italian FIRB contract no.
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