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Macroscopic equations for the adiabatic piston
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A simplified version of a classical problem in thermodynamics—the adiabatic piston—is discussed in the
framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the
gases contained in the left and right chambers of the piston are always in equilibrium (that is, the molecules are
uniformly distributed and their velocities obey the Maxwell-Boltzmann distribution) after any collision with
the piston. Then by using kinetic theory we derive the collision statistics, from which we obtain a set of
ordinary differential equations for the evolution of the macroscopic observables (namely, the piston average
velocity and position, the velocity variance, and the temperatures of the two compartments). The dynamics of
these equations is compared with simulations of an ideal gas and a microscopic model of a gas devised to
verify the assumptions used in the derivation. We show that the equations predict an evolution for the macro-
scopic variables that catches the basic features of the problem. The results here presented recover those
derived, using a different approach, by Gruber, Pache, and Lesne [J. Stat. Phys. 108, 669 (2002); 112, 1177

(2003)].
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I. INTRODUCTION

The so-called adiabatic piston is a long-known problem
in classical thermodynamics, which can be stated as follows
[1-3]. An isolated cylinder of length L, containing a gas, is
divided by an adiabatic wall (no internal degrees of free-
dom), the piston, into two compartments (Fig. 1). The initial
condition is prepared in the following way: the piston is kept
fixed by a clamp at a given position X,; the gases in the left
(1) and right (r) compartments are in equilibrium defined by
their pressure, temperature, and volume: P;,,T;,,{},,. By as-
suming that the two gases are perfect and composed of N,
=N,=N molecules with equal masses m, the gas equation of
state P;,{);,=NT;, holds in both chambers (where the
Boltzmann constant is set to unity by rescaling the tempera-
tures). Since the piston is adiabatic, the two subsystems are
in equilibrium even if 7;# T,. At t=0 the clamp is removed
and the piston is free to move without friction with the cyl-
inder. The nontrivial question is to predict the system evolu-
tion and the final position of the piston and values of the
thermodynamic quantities.

In the early 20th century, the above setup was used as an
experimental device for measuring the ratio c¢,/c, of the spe-
cific heat of gases [4], which is linked to the period of the
piston oscillations. Renewed interest in the problem has led
to recent experiments [5,6].

Meanwhile, several attempts have been made to predict
the final equilibrium state by using the laws of thermody-
namics only, ending in controversial answers. A naive appli-
cation of the first two laws of thermodynamics led to the
(wrong) conclusion that the equilibrium condition is P;/T,
=P,/T,. A more careful treatment [7] shows that the correct
answer is P;=P,. However, this condition says nothing about
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the final position of the piston and the gas temperature,
which remain undetermined. Therefore, equilibrium thermo-
dynamics cannot predict the final state. To shed light on the
problem one has to cope with the nonequilibrium process
that occurs after clamp removal.

From a microscopic point of view the adiabatic piston
problem for ideal gases (noninteracting particles) can be de-
scribed in terms of a one-dimensional model, where the pis-
ton is a heavy particle of mass M much larger than the mass
m of the gas molecules, which collide elastically with the
piston. As argued by Feynman, the system first converges
toward a state of mechanical equilibrium with P,=~ P;, con-
sistently with the thermodynamic prediction. Then the pres-
sure fluctuations, which are asymmetric because 7;# T, very
slowly drive the system toward thermal equilibrium 7,=T;
[2]. In this way, the final position of the piston and the ther-
modynamic quantities are determined.

More recently, the problem was the subject of renewed
attention, mainly stimulated by Lieb [8], and by the connec-
tion of this problem with the physics of mesoscopic systems
[9,10] and Brownian motors [11].

L

X

FIG. 1. Sketch of the adiabatic piston. The subscripts / and r
indicate the left and right compartments, respectively.
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Among the first attempts to understand quantitatively the
time evolution of the adiabatic piston, we mention Crosig-
nani et al. [12], who introduced a set of ordinary differential
equations for the macroscopic observables. However, this
model was able to account only for the position of the piston
in the state of mechanical equilibrium and not for the final
thermodynamic one.

Remaining in the framework of ideal gases, a systematic
investigation in statistical mechanics terms, together with nu-
merical simulations, has been carried on in the last decade by
Gruber and co-workers [13-20]. In these works, the problem
has been examined in several limits (see Ref. [3] for a re-
view). In particular, in the thermodynamic limit taken by
letting the system size L and the piston mass M go to infinity
by holding fixed the ratios py=N/L and R=mN/M, it has
been shown that the system evolution can be reduced to a set
of ordinary differential equations for the macroscopic ob-
servables (i.e., the gas left and right temperatures, and the
moments of the piston velocity). These equations were ob-
tained by using the Liouville and Boltzmann equations.
Within such an approach, it is possible to control the devia-
tions from the Maxwell-Boltzmann distribution for the gas
velocities, observed in the simulations, and a whole hierar-
chy of equations can be written for all moments of the piston
velocity. Remarkably, these equations describe not only the
reaching of mechanical equilibrium, which comes from the
treatment at zero order in m/M [18], but also the final equi-
librium state, which comes from the first-order terms in m/M
[19]. These analytical results have been shown by the same
authors to be in agreement with numerical simulations of the
ideal gas piston problem, though the problem of a detailed
description of the early stage of the dynamics remains open,
because in this regime the presence of shock waves has an
important impact on the dynamics. Some recent attempts in
this direction can be found in Ref. [21].

When the initial pressures are different, the system phe-
nomenology can be described as follows [3]. In a first stage,
the piston oscillates driven by the pressure difference. These
oscillations are then damped until the “mechanical equilib-
rium” state, P,= P, but T,# T}, is reached. Then, as argued
by Feynman, the system follows a regime controlled by the
asymmetry in the fluctuations experienced by the left and
right walls. This phase is characterized by a very slow ap-
proach to the thermodynamic equilibrium, P,=P; and T,
=T,, with the piston position fluctuating around the middle
of the cylinder. In the oscillatory phase, both experiments
[5,6], numerical computations, and analytical arguments
[17,18,20] have shown the existence of two different re-
gimes: weak and strong damping, the relevant parameter be-
ing R. For R<R, the adiabatic oscillations of the piston are
weakly damped, while for R>R,. they are overdamped, R,
being O(1) [18].

Still in the context of ideal gases, it is worth mentioning
some recent approaches based on dynamical systems theory
that have been developed by Chernov, Lebowitz, and Sinai
[22]. In this context, also the case of gases starting from
nonequilibrium conditions has been considered [23,24].
Clearly, the ultimate goal would be to quantitatively under-
stand the behavior of the system for an interacting gas, but
this seems to be still too ambitious. Indeed, only very few
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studies have analyzed the case of a gas composed of inter-
acting particles [25].

In this paper, we consider a limiting case which has the
advantage of being more tractable while displaying most of
the nontrivial features of the problem. The basic idea of our
approach is to assume that the gases in the two compart-
ments are composed of interacting molecules and thus char-
acterized by a relaxation time toward the equilibrium state.
Our main hypothesis is that this time is very short compared
with all the other characteristic times of the system. In par-
ticular, we require that any fluctuation away from equilib-
rium (which is characterized by homogeneously distributed
gas molecules with a Maxwell-Boltzmann velocity statistics)
induced by the collision with the piston is readsorbed before
a new collision with the piston walls. Physically speaking,
the efficient readsorption of the fluctuations means that the
(mechanical) work done by the piston is immediately con-
verted into heat; an obvious consequence is that shock waves
are ruled out. For the sake of simplicity, we also assume that
the gases follow the perfect gas law. This hypothesis makes
the problem tractable while retaining the basic phenomenol-
ogy of the original problem.

Although a microscopic model of a gas able to satisfy the
above requirements may sound rather artificial, at a practical
level such a “microscopic model” can be easily implemented
on a computer. The basic idea is to start with an equilibrium
configuration with temperatures 7;, for the gases, and then
reinitialize the gas molecules as soon as one particle collides
with the piston. The temperatures are recomputed after the
collision and used for extracting a new configuration of the
gas molecules. The procedure is then repeated. In the follow-
ing we shall call this model a randomized gas. Even though,
no actual interaction among the particles is actually consid-
ered, one can think that the regeneration of the gas configu-
ration from an equilibrium one (but with the new tempera-
ture) is the result of such “unresolved” interactions.

With the above assumptions for the gas, we will derive a
set of ordinary differential equations for the time evolution
of the macroscopic quantities describing the state of the sys-
tem. Indeed, the fact that the gas is always homogeneous and
following the Maxwell-Boltzmann distribution allows us to
compute the joint probability density function that, in a given
state of the system, the first colliding gas particle hits the
piston at a time ¢ and with a velocity v. Then, by averaging
over this joint distribution the energy and momentum ex-
change due to the collisions with the piston, we derive the
evolution of the macroscopic observables. The minimal set
of variables required to have a closed set of equations is
made up of the gas temperatures, the mean piston position,
and the first and second moments of the piston velocity. The
second moment is required to account for the piston fluctua-
tions, which, as argued by Feynman, are crucial for recover-
ing the correct thermodynamic equilibrium [2,15,19]. The
equations are derived perturbatively up to the first order in
m/M. As we will see, these equations are very similar to
those derived by Gruber and co-workers [18,19], though
with a different approach and assumptions; in particular, at
the zeroth order in m/M they are identical.

We compare then the evolution of the system obtained by
simulations of the ideal and randomized gases. In particular,
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the agreement in the first (mechanical) regime is quantita-
tively perfect in the case of the randomized gas, while in the
second regime, which is dominated by the fluctuations, the
agreement seems to be only qualitative. Somewhat surpris-
ingly, we found that, in this regime, a better quantitative
agreement seems to be possible if we disregard some
O(m/M) terms. However, with such terms excluded, the eq-
uipartition of energy at equilibrium is violated by the piston.
Some hints to explain these findings could come from
higher-order terms in the expansion. Unfortunately, the com-
putation of the higher-order terms is very cumbersome. Since
the interesting aspect of our work is in the proposed deriva-
tion and in the introduction of the randomized gas model, we
present in this paper the whole approach up to first order in
miM.

The paper is organized as follows. In Sec. II we present
our approach based on collision statistics and derive the
equations for the macroscopic observables. In Sec. III we
compare the results of the model with those obtained by
simulations. Discussions and conclusions can be found in
Sec. IV. In order to avoid long appendixes, the technical
material, with the detailed derivation and all the formulas
needed to make explicit the equations, is presented as elec-
tronic supplementary material [26].

II. DERIVATION OF THE MACROSCOPIC EQUATIONS

The underlying idea of our approach is to derive a set of
deterministic dynamical equations for the macroscopic vari-
ables describing the evolution of the thermodynamic state of
the system under the assumption that, at any time, the gases
in both chambers are perfect and at equilibrium. In other
words, the gases are able to instantaneously dissipate the
fluctuations induced by the collisions with the piston. Thus a
Maxwell-Boltzmann equilibrium state holds always in both
compartments but, in general, with different temperatures
and volumes.

While the above hypothesis defines the macroscopic state
of the gas, for the piston the problem is more subtle. We
would like to describe its motion on times longer than the
single collisions, that is to average its instantaneous position
and velocity (X,V) over the collisions so to obtain a deter-
ministic (macroscopic) trajectory defined by the average po-

sition x=X and velocity v,=V. The overbar denotes the av-
erage over the collisions. As discussed in the introduction, it
is crucial to account also for the fluctuations of the piston
velocity. For this reason, the second moment of the piston
velocity V7 is included in the description.

In the thermodynamic limit we will consider, one can ar-
gue that the fluctuation of the piston position can be safely
ignored. This means that in the following we will consider
the piston position as a deterministic quantity and we shall
use only the mean piston position x.

Given the piston position, the gas is characterized by the
temperature 7, and volume (};,, with ;=x and Q,=L-x
[we assume a one-dimensional (1D) geometry for the sake of
simplicity]. Since these are perfect gases, the pressures are
given by the equation of state P; (), ,=NT),.
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In the following, we show how to derive a set of differ-
ential equations for the evolution of x, v,, V2, and T;,. In
order to keep the presentation as simple as possible, here we
shall sketch how the equations can be derived and the aver-
ages performed, skipping all the algebra of the computation,
which is detailed in [26].

A. Macroscopic equations from the collision rule

For the formal derivation of the deterministic equations,
we need only the above discussed assumptions and a micro-
scopic ingredient: the elastic collision rules

V' =V+ w-V),

M+m

2M
T=p- -V). 1
v =v M+m(v ) (1)

The primes denote postcollisional velocities, and v the col-
liding gas particle velocity. The quantities we are interested
in are the time derivatives of the macroscopic observables,

2o, @
Leavi-w, (3)
dg =(v2-v3), )

ddL;’r =m(v'* = v?),,, (5)

where we set the Boltzmann constant kz=1. The time deriva-
tives should be computed starting from the collision rules as
the averages ([--]),,=[- -],/ &, 6t being the mean collisions
time (for a more precise and operative definition, see Sec.
IT C). The subscripts [, r denote averages performed over the
collisions with particles residing on the left (right) compart-
ments.

It is useful to introduce 0%,:?— \_/2, which evolves as

dv,
dr’
where we used Egs. (3) and (4). It should be noted that, at
this level, the piston is completely described by v, and a'%,

This amounts to assuming that its velocity distribution is
Gaussian,

do;
—E=(V2- VA -2,

dr ©

P(V) = (V=007 (7)

\2770'%,

Since at the initial time =0, one starts with v,=0 and o'%,
=0, the above probability distribution is initially a & func-
tion. Plugging (1) into (3)—(5), we obtain

dv, 2m

— =N

dt M+m

(v)=(W)), (8)
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da? 4m
7:=NW[ M{(a) +m(?) + (M = m)(wV)

— (m+M)v o) + (m+ M)v (V) -M@D], (9

d aM
d_fl - W’;’)Z[M@, + M2, = (M = m){(Vo), - mw?)],

(10)

AT,  4M
O 0, MO, (1 - m)V0), )]

(11)

The equation for 0'%, (9) is obtained from (6) and (4) by using
the collision rules (1). In (8) and (9), the prefactor N appears
as a result of a time rescaling, which sets the time unit to the
average collision time, which is of order 1/N. Said differ-
ently, the change of the gas temperatures due to the collision
with the piston is of order 1/N.

Notice that, for reasons that will become clear in the fol-
lowing, the average of the type (Vv) is different from v (v).
We anticipate that this difference is due not to a breakdown
of the molecular chaos hypothesis (as one may naively think)
but to the fact that the collision statistics depends on the
instantaneous value of the piston velocity. More explicitly,
v.{v) represents only the zeroth-order term of (Vv), and a
term coming from the fact that V is a fluctuating quantity will
also appear.

Notice also that the above equations conserve the total
(gas plus piston) energy

_RMTy+T, M

Tt W+ a3). (12)

The consistent (first order in m/M) equations can then be
obtained from (8)—(11) by expanding the various prefactors,
performing the limit N—cc, and suitably expanding around
it. Since the procedure is delicate, we proceed step by step.

B. Thermodynamic limit and formal expansion
of the equations

First of all, we have to specify the limiting procedure,
which as explained in [3] can be done in different ways. We
are interested in the limit N,M,L— %, in which we keep
fixed py=N/L and the nondimensional mass ratio R
=Nm/M. We have now to expand around this limit, retaining
all terms which are first order in m/M (and consequently at
first order in 1/N). Aiming to make explicit the zeroth- and
first-order terms we formally write the averages as

D= DO+ DY, (13)

where the first and second terms on the right-hand side
(RHS) are the zeroth- and first-order terms of the expansion.
How to explicitly perform such an expansion will be ex-
plained in the following subsections. We warn the reader that
to make the notation as compact and explicit as possible in
the following, we adopt the convection to indicate by
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{---PD all averages which are O(m/M), regardless of
whether this comes from the expansion of the average or
from the averaged quantity. For instance, by direct inspection
of Eq. (9) at equilibrium, one easily realizes that oy is
O(m/M). Therefore, we shall always indicate its average
with (ot)("). Finally, notice also that all the terms involving
powers of (V-v,) vanish at the zeroth order. Keeping in
mind these simplifications, the (expanded) equations become

ddit—ZR@ v)(0)+2R<<v v —(V-p )V
- v- vx><°>), (14)
dditv - 4R( (V4w =0))"
+<<v—vx)v>“>+<(v—vx)vx>“>), (15)
‘Z’ 4m{<v =)+ (<vx(vx—v)>§”—2%<v§>§°>

m m
+3 )" + (o) = (V-vo)” - A—/I(v2>§°))} :

(16)

di’ = 4m{<vx<vx —o)+ (<vx<vx o) -2 )

+3 ) + (@) (V=0 Jo)! - %m@)]

(17)

Before sketching the way the above averages can be com-
puted (see Secs. IIC and [26]), we briefly discuss some
properties of the above equations.

The first observation is that Eqs. (14)—(17) ensure the en-
ergy conservation (12) at both the zeroth and first order,
meaning that the expansion is consistent. Notice also that the
relative importance of the various terms is not the same at all
times. As the system evolves, their relative weights change,
corresponding to the different stages of the evolution, briefly
summarized in the Introduction and detailed in the following.
For example, consider 02‘, At the beginning o‘%,:O; then it
grows until it reaches its equilibrium value. Consequently,
the terms that involve the velocity fluctuations are not impor-
tant at the beginning, while they become O(m/M) and play a
crucial role in the final stage of the system evolution. The
opposite is true for the terms involving the average drift v,,
which is close to zero in the second (Brownian) stage of the
evolution, and large in the first (mechanical) part of the sys-
tem evolution. Among the terms involving the piston veloc-
ity fluctuations, we should mention the special role played by
those in which 0'2 does not (exphcltly) appear These are
terms of the forms ((V VU >lr and ((V-v )v)l ; as we will
see they will both be proportional to o2 and, as anticipated,
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find their origin in the way the fluctuations of V affect the
collision statistics (see the next subsections and the supple-
mentary material [26]). However, a closer inspection shows
that ((V— vx)v));,lr) is very small at all times. In the first stage
the fluctuations are negligible, while in the second stage the
average drift is very small. Although we retained this term in
the equations and in the numerical simulations, one can show
that they can be removed without problem. In contrast, the
terms ((V— vx)v)gylr) are very important in the final stage of the
evolution and, as discussed below, for obtaining the correct
equilibrium state.

We are still left with performing the infinite-volume limit.
We anticipate here that all the terms appearing in the aver-
ages are proportional to either 1/x, when coming from a
left-chamber average, or 1/(L—x), when coming from a
right-chamber average. There is no other dependence on x or
L in Egs. (2)—-(5) and, consequently, Eqgs. (14)—(17). This
implies that one can simply introduce the hydrodynamic time
ty=t/L and the rescaled x coordinate xy=x/L. With this res-
caling, L no longer appears in the equations, and there is no
need to perform the limit, meaning that there are no correc-
tions to the results due to finite-size effects. For a simpler
comparison with the simulations, we will keep writing in the
following the equations for finite values of L; the corre-
sponding expressions in the hydrodynamic time can be sim-
ply obtained with the above substitution, which in practice
corresponds to setting L=1.

1. Equation at the zeroth order in m/M: Mechanical regime

Let us start a closer inspection of the equations starting
from the zeroth-order terms, i.e. assuming m/M —0. The
velocity fluctuations of the piston are ignored (meaning the
motion of the piston is purely deterministic) and the final
equilibrium position depends on the initial conditions. The
result is nontrivial in any case. As discussed in [12,18], hav-
ing considered the dynamics and not only the thermostatics
(which tells us only the equality of pressures), we can now
determine the mechanical equilibrium position. In the fol-
lowing, we shall show that at the zeroth order in m/M we
obtain, by using a different approach, the same equations as
Gruber and co-workers [18], and following them we sketch
how the mechanical equilibrium point can be computed.

For obtaining the equations at the zeroth order, we need to
set m/M=0 and to ignore all averages indicated with the
superscript () in Eqgs. (14), (16), and (17). In other words,
we need only the averages

<v>(0) {l —erf( \/%)} ,
o___ Ir ; /ﬂ)}
(), = 2(L—x)m{1 +erf<vx ) | (18)

with erf(x)=2/ Vi [§dz exp(=z°), and the averages
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v, T, 27 Us Us ( m )
R e LT, EIRY e B
woi” x [ 2am’ 2 T 27,
)= /Le_mvz/ZT,+&+v_erf( /ﬂ) .
L—x 27m 2 2 2T,

(19)

See the supplement [26] for the derivation of the above ex-
pressions. Assuming v, <\7,,/m (which is reasonable for
realistic values of the physical parameters), and expanding
(18) and (19) in v,, Egs. (14), (16), and (17) read

dv, R(T, T, ) R
=—|—=-—-— TI,,T v, 20
dt m(x L—x my(vx b T (20)
dT, 2T
— == 2 + 27[(UX,T[’ Tr)v,%’ (21)
dt X
dr, 2Twv
L= —= 42 ,T,,T,)vs, 22
T ) Y (v T, T,)v3 (22)

where for the friction coefficients y=y,+y, holds, ensuring
energy conservation (12) at the zeroth order; from (18) and
(19), at the lowest order in v, one has

1 8mT1,
—\/ . 23
oV (23)

We recall that );=x and ),=L-x. Note that, clearly, in the
limit L — 0, v, ,— 0, this is not the case if the hydrodynamic
rescaling is properly applied. Indeed, taking the hydrody-
namic limit the above expression remains unchanged, keep-
ing in mind that in this case the “hydrodynamic volumes” are
Qf’ =xy and Qf =1-xy. In particular, the damping coeffi-
cients go to a finite value also in the hydrodynamic limit. It is
worth remarking that the equations (20)—(22) coincide with
those derived in Ref. [18] by a different method. In the ab-
sence of friction, one can easily see that they describe a
purely adiabatic transformation of a one-dimensional perfect
(monatomic) gas. Indeed, the first term on the RHS of Egs.
(20) is simply the pressure difference on the two sides of the
piston, while the first term of Egs. (21) and (22) can be
obtained by differentiating with respect to time the equation
of an isoentropic process, namely,

YZ,r(Ux = 09 Tls Tr) =

TGC’)/CU—l — C[ ,

Tr(L - x)cp/cv—l = Cr’ (24)
where c¢,/c,=3 is the specific heat ratio and the initial con-
ditions ﬁx C,, T,,(0)Q;7 #/%=1(0). In the absence of the fric-
tion terms, this would give rise to periodic oscillations of the
piston. As discussed in [12,18], the friction terms are respon-
sible for the irreversible evolution toward a state of mechani-
cal equilibrium for which
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l
1

|2

l=p=P=P,= , (25)

where the tilde indicates the mechanical equilibrium quanti-
ties. Notice that in this framework irreversibility naturally
emerges as a result of the averaging over the collisions [27].
Equation (25) is also the result of thermostatics, but it is not

enough to determine X and 71,. Indeed, the full dynamics
given by (20)—(22) is needed to predict this mechanical equi-
librium point, as shown in the following, where we briefly
summarize the results first derived by Gruber et al. [18].

First, notice that (25) together with (12) tells us that 7~‘,,f
=2TQ,;,/L, with To=E/N=[T/(0)+7,(0)]/2, so that the

equlllbrlum pressure is P= 2NTy/L. Second, defining Z
—\T,x NT(L- x) and by using (20)—(22) one can easily see
that dZ/drt= O(Ux), which if v, << 1 means that Z is conserved.
Z=const provides the missing condition to determine the me-
chanical equilibrium. The resulting equation for the equilib-
rium point is therefore [18]

VT \TAL =9 = \T(0)x(0) ~ T, (0)[L - x(0)].
(26)

which should be solved for ¥ after plugging in T)=2T,%/L
and T,=2T,(1-%/L).

2. Equation at the first order in m/M: Brownian regime

When the first-order (in m/M) terms are retained, the
terms in 0'2 [among which, as discussed above, we have also
to con51der the terms ((V-v,)v)" and ((V-v v )] allow
for energy exchange among the two compartments, mediated
by the fluctuation of the piston. Of course, such terms start to
play a role once the mechanical regime (described by the
zeroth-order terms) is finished, i.e., when the fluctuations of
the piston become relevant. This regime, driven by the fluc-
tuations, results from the expansions in m/M and 1/N
which, as happens commonly in Brownian-motor-like sys-
tems [11], are intertwined and add new (sometimes unex-
pected) features to the dynamics. In particular, in this case
one can show that Egs. (14)—(17) evolve toward a nontrivial
stable fixed point corresponding to the thermodynamic equi-
librium, i.e.,

Xeg _ 1
L

=5 T,=T,, o —q. (27)

U= O» Tl eq> Veq —

The last equality cannot be explicitly seen from (15), which
simply states that at equilibrium (o'%,)(l)=(m/M)(vz)(0)+((V
—v )V, As we discussed, ((V—vx)v)(l)OCo%, and with the
explicit computation at equilibrium [26] one can see that
o%,eq:Teq/M , which is a pleasant result since it is in agree-
ment with the condition of equipartition of energy. Notice
that Eq. (27) suggests interpreting Moy= T, as the tempera-
ture of the piston.

We conclude this section by mentioning that the above
equations are similar to the ones obtained by Gruber, Pache,
and Lesne [19]. Due to the very long expressions involved in
the equations at the first order, we could not decipher
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whether they are exactly equal. At the end of the next section
we shall discuss the possible source of differences. However,
we stress that in these two works a different approach and
different assumptions were made about the gases. In particu-
lar, Gruber et al. derived the equations from an expansion of
the Boltzmann and Liouvulle equations. In some sense, our
and their different assumptions can be seen as two different
ways to close the hierarchy of equations to the second order,
and one should expect the phenomenology of the two equa-
tions to be, at least, qualitatively similar.

Section III is devoted to comparing the evolution of the
macroscopic observables obtained by integrating (14)—(17)
with that of the microscopic model. In the following section,
we detail the procedure by which the averages can be com-
puted.

C. Computation of the averages

In order to finalize our program we have now to make
explicit the averages in (14)—(17). Let us start by making
explicit the formal expression of averages such as {[--]); .
which should be interpreted as follows. Denote by
G, (t,v|V) the probability of having a left (right) collision in
a time ¢ with a velocity v for the r (/) particle conditioned to
a realization in which the piston has velocity V, and indicate
by G their sum, i.e., G=G;+G,, which is normalized to 1.
Then performing the average (A(v,V,1)),, of a generic func-
tion A(v,V,) means that

Jdtffdv dv P(V)G,,(t,u|V)A(v, V1)
<A(U,V,t)>]’r= 5

fdtffdvd
(28)

where &t=[dt [ [dv dV tP(V)G(t,v|V) is the mean collision
time.

1. Derivation of G,(t,v|V)

Let us now derive G, and G,. In particular, we shall com-
pute them in the thermodynamic limit by explicitly consid-
ering the terms order 1/N and consequently m/M. These
terms are those entering the averages we indicated as
D

We start by the equilibrium distribution of the gases,
which is uniform in the particle positions y and Maxwell-
Boltzmann for the velocities v:

1

1
Piy.v) =p(¥)pi) = — ===

2
— e My /2T,,
XN2mm™ T,

1 1
(L=x)\27m™'T,

p(y,0) = p,(y)p,(v) = e 2T (29)

which, under our assumptions, describe the gases at all
times. Note that the above distributions depend (parametri-
cally) on the dynamical variables x and 77,.
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From the equilibrium joint distributions (29) we can de-
rive the probability density g; (t|v,V) that a particle on the
left (right) collides in a time ¢ given its velocity v and the
macroscopic state of the system defined by the temperatures,
the piston position x and velocity V, and the equation of
state. Of course, most of the weight in such a hitting prob-
ability comes from particles that are close to the piston and
that have a large (negative) relative velocity with respect to
it. These particles are far from the bulk of the gas, and in this
derivation we assume that we can use the evolution of free
particles to compute their hitting time with the piston. Within
such an assumption, it is easy to realize that the probability
g1 (y,v) is simply obtained through a change of variables

from (29):
(L—t)éﬁ(v— b=V
v-V X
~ OO - V)%/ , (30)
L- V-
g (V— —t)(V—v)L_x

~ @(t)@(V—v)Z: (31)

O being the unitary step function. Note that in the second
expression we ignored the second © function. This is justi-
fied by the fact that 7 indicates the time between two con-
secutive collisions, which for N>1 is always much shorter
than the time needed for a particle to travel along a whole
chamber. Further, considering only positive times, the func-
tions g;,(z,v|V) do not depend on ¢. We shall then use the
compact notation f;,(v|V)=g; (t,v|V). Notice also that we
use the instantaneous piston velocity V and not its average
v,, while we ignore the fluctuations in position. Moreover,
we neglected possible correlations between the velocities and
positions, which amounts to implicitly assuming molecular
chaos.

Given g, ,(t|v,V), the joint probability of having an im-
pact of a particle with v in a time 7 is

gl,r(t’U|V) zgl,r(t|v’v)pl,r(v)' (32)

The probability F; (t,,) that a left (right) particle collides in a
time =<t,, is then given by

Fl r(tm) f dtf dv 8Lr

=1 f de[,(U|V)

(33)
which we rewrite as
Fl,r([m) = thl,r(x’ V’ Tl,r) ’ (34)
with
“ v-V
Hy(x,V,T) = f dvF—— e
v \2mm T

PHYSICAL REVIEW E 76, 051103 (2007)

V-vu

— e—mu2/2T,. (35)
V2mm ™' T(L - x)

H.(x,V,T,) = f dp———

In the following we will use the shorthand notation H,,
=H,,(x,V.,T,) and h;,=H, (x,v,,T},).

Considering that we have N particles on both the left and
right, the probability densities that one of them on the left
(right) impacts the piston in x with a velocity v are given by

Gl(tm7v) = N[l - Fl(tm)]N_l[l -F (tm)]Nfl(v|V)a

G,(t,,0) =N[1 = F(t,)"'[1 = F(t, ) 1", (v|V).  (36)

We can now perform the limit N— o and f,,— 0, holding
Nt,, =7 fixed. Noticing that F; (r,,) — 7H; /N, expanding (1
—F, )N=exp[N In(1-F,,)]=exp[N(~F,,—F; /2)], and re-
taining terms only up to 1/N, we find

Gl,r

H H>+H
(1 er l r72>Glr
N 2N

with
G, (1u|V) = et (u]V). (38)

By recalling that N=MR/m, and aiming to retain only the
first-order m/M terms, (37) can be rewritten as

(hzr (hf + ) 72>
R 2R

vy, (39)

where we substituted % in place of H and v, in place of V in
the part which is already at the first order in m/M. However,
another contribution to the O(m/M) term comes from the
expansion of the first term in (39).

Glr

X él,r

2. Expansion of the average

We need now to further expand (39) in V around v,; this
can be accomplished by Taylor expanding G,

vx)

X(V-v,)> (40)

Noticing that [dV P(V)(V-v,)=0 and that [dV P(V)(V
—vx)zzo%/, we can write, for example, the (expanded) aver-
age collision time:

m_hi+h;

— 1
ot= 1-
h,+h,( M R(h;+h,)?

+’%h’olvff u,)). (41)

Finally, we can write the correct expansion of (28) at the
first order in m/M, by plugging all the expanded terms in
(28), to have the zeroth- and first-order terms of the average
of a generic observable (A), ;= (A)(O)+<A)(l) The result is

051103-7



CENCINI et al.

PHYSICAL REVIEW E 76, 051103 (2007)

0.6 w w w 0.6 0.6
\
b
055 flo /\\ | 055 0.55 N=10% M=102 R=10
= | OC,’OO&OOW@M \
g WAV,
0.5 [ 05 0.5 [ TS e
0.4 ‘ ‘ : 0.4 3 3 e P 0.4 4 210 a0t aerol 4
0 500 1000 1500 2000  2x10 8x10 14x10 20x10 0 2x10" 4x10" 6x10" 8x10" 10x10
t t t
07t I\ A N 0.7t o7t
ARQOOSOOQOOdOO OooPOdOOA\OO?OO 00¢00 m
-102 M=5 10° R=
2 06 ;f C\/w 06 AVAVAVAVAVAVA 06 OMMM N=10" M=5 10° R=0.2 |
B 09%221&9 Ry
0.5 0.5 (R e e e 0.5 |- s R
0.4 0.4

‘ 0.4
0 2x10° 4x10%1.040x10°

t

1.042x10°
1

1.044x10° 0O 5x10° 10x10° 15x10°

t

FIG. 2. (Color online) (Top) Comparison between the evolution of the piston position x(¢) in a simulation of an ideal gas (red solid line)
and of the randomized model (blue open circles). In both models we set N=1000, M =100, and L=2000 corresponding to R=10, at time zero
T,=40, T,=60, and x=0.6L. To have a clean curve we performed an average over about 100 independent realizations. (Bottom) The same as
above with N=1000, M =5000, and L=2000, corresponding to R=0.2, and the initial state set as 7;=150, 7,=50, and x=0.6L. Here, for the
ideal gas, the oscillations last for a much longer time and are damped very slowly before the Brownian-motor-like regime sets in; while the

randomized gas is much more efficient in damping the oscillations.

(W) = (hy+h,) f f f drdv dV P(V)G,,

(42)
<A>rl _fjdedv dVP(V)(&VGl,
6 )
+§ VG (Tv A
(m hlr (hl"'hr)2
MR(h+h) V2
Xff vx)>fdvf,,,(v|vx)A,
(43)

which can be used to compute all the averages in (14)—(17).
However, we mention that there are exceptions to the above
recipe. For instance, the average of A=(V-v,)?, whose result
is (02)" and not (¢2)®. This is due to the convention
adopted for the average: remember that we chose to write the
superscript () also when the m/M order comes from the
averaged quantity and not from the expansion of the collision
distribution, as in this case.

Notice that in the first term of the RHS of (43), as for the

average collision time, we expanded G with the aid of (40).
Depending on the observable A, which may have or not a

linear term in V—uv,, also the first derivative of G may ap-
pear.

III. COMPARISON BETWEEN MODEL AND MOLECULAR
DYNAMICS SIMULATIONS

In this section we compare the evolution of the macro-
scopic observables given by (14)—(17) with numerical simu-
lations of the microscopic model. We consider two kinds of
microscopic simulations: the ideal and the randomized gas.
The latter is meant to satisfy the assumptions we made on the
gas in deriving the equations. Let us now better clarify how
this is realized.

From a computational point of view, it is very easy to
realize the randomized gas; the idea is to let the gases relax
in an artificial manner through a randomization procedure.
More precisely, the simulations are performed in the follow-
ing way. We generate an equilibrium configuration of the
system, corresponding to given values of the macroscopic
observables. Then the system is allowed to evolve up to the
first collision of the piston without interactions among the
gas particles. After the collision, the energy of the gas con-
taining the colliding particle changes; the fast relaxation of
the system is mimicked by updating the gas temperature
(corresponding to the new energy) and redrawing an equilib-
rium configuration of the gases corresponding to the new
temperatures (and volumes). Then the process is iterated.
Notice that in this way one keeps track of all the observables
except the piston velocity fluctuation, which needs some
kind of average to be defined or measured. Collisions are
evaluated, as for the ideal gas, with an event-driven algo-
rithm.

In Fig. 2 we show the evolution of the piston position by
numerical simulations of the ideal and randomized gas for
two different values of R [namely, R=10 (top) and 0.2 (bot-
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FIG. 3. (Color online) Evolution of the system in the tempera-
ture volume (7)) plane. The dotted line indicates the adiabatic
phase T V2, and the solid straight line the isobar that character-
izes the final phase (Brownian-motor-like regime). The leftmost ar-
row indicates the initial state of the gas in the left compartment
T,(0)=150,Q,(0)=x(0)=0.6L, which evolves (blue dots) toward the
final equilibrium in the middle. The rightmost arrow indicates the
initial state of the gas in the right compartment 7,(0)=50,,(0)
=L-x(0)=0.4L, which evolves (red dots) toward the final equilib-
rium in the middle. The simulation is done with the ideal gas, for
which the initial oscillations are much more evident than for the
randomized one.

tom)]. As discussed in the Introduction (see [3,19] for a more
detailed treatment), these two choices correspond to the
cases of strongly and weakly damped oscillations, respec-
tively. In both cases one has two regimes: mechanical and
Brownian. The former is characterized by damped oscilla-
tions of the piston, which in the strongly damped case are
very few or nonexistent. For the ideal gas, as discussed by
Gruber et al. [3,18,19], the detailed damping of the oscilla-
tions depends on the presence of shock waves, which are
absent in the randomized gas. In fact, the latter is damped
much more efficiently than the former. As shown in the bot-
tom panel, for R=0.2 the evolution is weakly damped and
many oscillations are observable. In this case, the piston is
very slow and the gases perform quasiadiabatic oscillations,
which are damped more and more mildly as R— 0. Again, in
this case also the damping appears to be much more efficient
in the randomized case.

The Brownian-motor-like regime [11] occurs when the
oscillations are completed damped, i.e., the mechanical equi-
librium 1is realized with approximately equal pressures P,
=~ P,, which differ only for terms O(m/M). From now on,
both the ideal and randomized gases remain in a state of
marginal equilibrium approximately along the isobar T;/x
=T,/(L-x), which is the prediction of thermodynamics
(shown in Fig. 3 for the ideal gas only). The Brownian-
motor-like mechanism is responsible for heat transfer from
the warmer to the colder chamber mediated via the piston
fluctuations [11,25]. This stage occurs on a long time scale
(proportional to M). For realistic values of the various pa-
rameters, one can realize that the time scales necessary for
reaching the thermodynamic equilibrium state are enormous.
It is therefore very difficult to observe this regime in experi-
ments, and well-controlled numerical simulations are manda-
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tory. In the final state the two chambers have the same tem-
peratures and the piston fluctuates, reaching equipartition
with the same temperature. It is worth noticing that, for the
ideal gas, since the molecules interact only through collisions
with the piston, the probability distributions of the velocities
of the gas molecules may (and actually do) deviate notice-
ably from the Maxwell-Boltzmann distribution, which is re-
covered only after the reaching of the final equilibrium state
[3,19]. By construction, this problem is not present in the
randomized gas, which is forced to remain Maxwell-
Boltzmann distributed.

In the following we shall compare the evolution of the
macroscopic equations with the simulations.

A. Mechanical regime

We start the comparison by considering the oscillatory
regime in the weakly damped case. Here we know from pre-
vious studies [18] that the model is able to correctly predict
the period of the oscillations.

The period of the oscillations in the model can be esti-
mated from the linearized dynamics at the zeroth order in
m/M, Egs. (20)—(22). As discussed in Sec. II B, the oscilla-
tions will occur around a mechanical equilibrium position X
defined by Eq. (26). Then to recover the period of the oscil-
lations it is enough to linearize (20)—(22) around the me-

chanical equilibrium state defined by X, Tl,r? and v,=0. Lin-
earizing Egs. (21) and (22), one can easily recognize that the
equations define an isoentropic process, i.e., (24), meaning
that T,(x)=T,(%/x)”"" and T,(x)=T [(L-%)/(L—x)]"",
which, after being plugged in (20) and expanded in Sx=x
—X, lead to the equation of a damped oscillator:

d’5x R ddx R, PL
oty o ox=0, (44)
dr m" dt  mNc,x(L-X)

where we recall that c,/c,=3 and ﬁ=2NT0/L (see Sec.
II B 1). Since the friction coefficient does not modify the
period one immediately gets

Toomy [YmL=D), (45)
R(c[,/cv)PL

this formula is at the basis of the measurement of the specific
heat ratio in experiments [4].

In Fig. 4, we compare the ideal gas simulations with those
of the randomized gas and the numerical integration of the
deterministic equations (14)—(17). As one can see, the ideal
and randomized gases have the same period, while the damp-
ing is different, and the model is in perfect agreement with
the randomized gas simulations. Integrating the equation at
the zeroth order, we find ¥=6.39 X 103, which agrees with
the predicted value (26), and Eq. (45) predicts 7=2.17
X 10%, which is in very good agreement with the measured
period in both the randomized and ideal gases.

We mention that in Ref. [18] a detailed study of the period
of the oscillations was reported. Since our linearized equa-
tions coincide with those of Ref. [18], we shall not repeat
this study here. It is interesting, however, to compare the first
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FIG. 4. (Color online) Comparison between the simulations of
the noninteracting 1D gas, the randomized one and the prediction
given by the macroscopic equations. The parameters are 7;=40,
T.=60, L=12 000, xo/L=0.6, M=10°, N=10? corresponding to R
=0.01. (Top) Evolution of the piston position. (Bottom) Evolution
of the temperatures. Blue open squares refer to the ideal gas and red
filled circles to the randomized gas; the solid line is the model
(14)-(17).

stage of the evolution of the ideal and randomized gases with
the model in the case of strong damping. In Fig. 5 we show
the leftmost plot of Fig. 2 (top); as one can see that, although
the model is unable to reproduce the oscillation of the ideal
gas, its evolution coincides with that of the randomized gas.

As discussed in Ref. [3], estimating the decay rate of the
oscillations for the ideal gas is a nontrivial task, since it
requires a detailed study of the dissipation mechanisms of
the shock waves created by the piston motion. These shock
waves survive for a long time in the ideal gas, while their
lifetime is expected to be shorter in the presence of interac-
tions, which should be able to decrease their coherence. The
randomized gas represents a sort of limiting case of interac-
tion in which the shock waves are completely absent. Most
likely the absence of shock waves is at the origin of the faster
damping of the oscillations in the randomized gas and of the
very good agreement between its evolution and that obtained
from the macroscopic equations. It would be interesting to
investigate the transition between weak and strong damping
in the randomized model. This is far from the aim of the
present paper; however, the above results suggest that the
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FIG. 5. (Color online) The same as the leftmost plot of Fig. 2
(top). The thick black line superimposed on randomized gas data
(blue empty circles) is obtained by the numerical integration of
(14)—(17). The agreement of the model with the randomized gas is
perfect also for the temperatures (not shown).

critical value of R for the transition will probably be smaller
than (but of the same order as) that of the ideal gas, which is
of order unity.

B. Brownian-motor-like regime

As mechanical equilibrium is reached, P;~ P,, the system
slowly evolves, along an approximate isobar, driven by fluc-
tuations toward the thermodynamical equilibrium defined by
Eq. (27), which is the (stable) fixed point of the ordinary
differential equations (14)—(17).

We shall now compare the evolution given by the macro-
scopic equations with those of the ideal and randomized
gases in the Brownian regime. To minimize the possible dif-
ferences between the ideal and randomized gases, we per-
formed a simulation which starts in a mechanical equilibrium
state having the gas molecules distributed according to the
Maxwell-Boltzmann distribution. For the ideal gas, this
might not be the typical situation: usually when the system
arrives at mechanical equilibrium from a nonequilibrium
state, it may be strongly non-Maxwellian [3,19]. As exem-
plified in Fig. 6, where we show the deviation from the final
equilibrium of the piston position, x—xeq|/L, the relaxation
is exponential. The randomized gas relaxes faster than the
ideal one, likely because the latter develops a slightly non-
Maxwellian distribution (we observed that the difference in
the relaxation times tends to diminish as the number of par-
ticles is increased). Note that the simulation has been per-
formed with R>1 because the time scale for reaching equi-
librium is controlled by M; with N= 10%, as here, working
with R<1 would have implied the necessity to reach too
large time scales to study the relaxation.

As shown in the figure, the macroscopic equations
(dashed line) predict a relaxation slower than that of both the
randomized and ideal gases. This came as a surprise for us,
because we were encouraged by the very good agreement in
the mechanical regime discussed in the previous section.
With the aim of understanding this difference, we examined
all the terms appearing in the macroscopic equations, and we
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FIG. 6. (Color online) Comparison between the molecular dy-
namics of a noninteracting 1D gas and the model in the Brownian-
motor-like regime. Simulations have been performed setting the ini-
tial state as 7,=40, T,=60, and x(0)=0.4L with M=500 and L
=12N with N=10* red triangles refer to the randomized gas and
blue squares to the ideal gas. The dashed line is the prediction of the
macroscopic equation; the solid line (which perfectly superimposes
on the randomized gas data) is explained in the text. The simulation
data are obtained by performing an average over about ten realiza-
tions to reduce the fluctuations.

realized that the mismatch in the relaxation was due to the
terms ((V—v,)v)flr), which, as discussed in Sec. II B 2, are
those that ensure the equipartition of energy at equilibrium,
i.e., the fact that Ma%,eq=Teq. In particular, by eliminating
such terms from (14)—(17) (note that this does not affect the
conservation of energy), we found a perfect agreement be-
tween the macroscopic equations, now modified, and the ran-
domized gas, as shown by the solid line in the figure. Nev-
ertheless, with such a modification the energy equipartition is
no longer verified and at equilibrium M a'%,gq=2Teq.

One may think that the agreement is incidental, and so we
did a more severe test. In Fig. 7 we show the evolution of the
piston position (top) and of the gas temperatures (bottom)
with the simulations of the randomized gas previously shown
in Fig. 2 (bottom). As one can see, the modified (solid lines)
and original (dashed lines) macroscopic equations generate,
apart from 0'%, two indistinguishable dynamics for x and 7,
up to times for which mechanical equilibrium is reached.
Actually, for such times the dynamics is essentially given by
the zeroth-order equations (20)—(22), which are the same for
both the original and modified equations: this explains their
behavior in the mechanical regime. As one can see, the main
difference in the dynamics is that retaining the terms ((V
—vx)v>§,lr) leads the system to stay for a longer time interval in
a state of approximate mechanical equilibrium and thus to a
slower relaxation to equilibrium. The evolution of the piston
temperature M 0'%, shown in Fig. 7 (bottom) clearly shows the
difference in the two dynamics, and in particular the break-
ing of equipartition at equilibrium for the modified dynam-
ics.

It should be stressed that the behaviors shown in the
above figures are not related to the particular parameter
choice, as has been verified in other simulations (not shown).

The picture emerging from this comparison is that the
model we introduced goes to the correct equilibrium state
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FIG. 7. (Color online) (Top) Evolution of the piston position for
parameters as in Fig. 2 (bottom) now plotted in log-linear scale. The
(red) symbols refer to the randomized gas simulations, the dashed
curve to the evolution predicted by the macroscopic equations, and
the solid curve (which perfectly superimposes on the simulation
data) is explained in the text. (Bottom) Same as above, but for the
evolution of the gas temperatures 7; and 7,. The two curves which
start from zero show the evolution of the piston temperature T,
=M o’%/ as obtained from the macroscopic equations (dashed curve
which saturates to 7,~ 100 and as explained in the text the solid
one which saturates at 7),~200.

and respects the basic physics principles such as conserva-
tion of energy and its equipartition. On the other hand, the
relaxation is slower than that of the microscopic model to
which it should correspond (i.e., the randomized gas). As
shown in the above figures, the terms responsible for this
slowing down are the ones coming from the fluctuation of
the piston velocity in the expansion of the function G. At
present, we do not have a definite understanding either of
this difference in the dynamics of the macroscopic equations
and the randomized gas, or of the very good agreement be-
tween the modified equations and the randomized gas. We
suspect that the contribution to the relaxation time of these
terms might be counterbalanced by the resummation of
higher-order terms in the m/M expansion. However, carrying
the analysis to higher-order terms is very demanding due to
the proliferation of terms in the expansion, and therefore we
shall not discuss it here.

We conclude this section by mentioning that the equations
derived by Gruber and co-workers [19] predict a reasonable
relaxation time and equipartition at the same time. We re-
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mark that going to higher order in their approach requires
including in the description also higher-order moments of the
piston velocity, namely, V?,...; while within our approach
the description remains at the level of the second-order mo-
ment because the statistics are constrained to remain Gauss-
ian (Maxwell-Boltzmann) for the gases and the piston. This
may be the origin of the difference between our and their
derivation. Their equations at the first order might likely cor-
respond to a resummation of higher-order terms in our ap-
proach, meaning that their closure with the second moment
of the velocity is exact, while ours remains only approxi-
mate.

IV. CONCLUSIONS

In the framework of kinetic theory, we derived a set of
deterministic equations describing the evolution of the mac-
roscopic variables in the adiabatic piston problem. Our basic
assumptions are that at each time the gases in the two com-
partments are perfect, spatially homogeneous, and described
by the Maxwell-Boltzmann statistics. Thus, at the level of
simulations, a (randomized) gas model has been introduced
with the aim of having a microscopic model respecting such
assumptions. We obtained a set of five ordinary differential
equations for the variables that describe the macroscopic
state of the system, namely, the mean position of the piston,
the average velocity of the piston, the temperatures of the
gases in the two compartments, and the second moment of
the piston velocity. The equations are derived up to the first
order in m/M.
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At the zeroth order, they describe a deterministic piston
characterized by a velocity distribution collapsed on the
mean, namely, P(V)=48(V—-v,). This is enough to solve the
problem of finding the final state of mechanical equilibrium,
and the result coincides with that derived in Ref. [18] using a
different approach.

At the first order, the fluctuations of the piston velocity,
now assumed to be Gaussian, allow for recovering the cor-
rect final thermodynamic equilibrium. Although the evolu-
tion of the macroscopic observables provided by this set of
equations is in good qualitative agreement with simulations
of the randomized gas, we found some quantitative discrep-
ancy for the relaxation time scales.

Apart from the performance compared with the simula-
tions, we would like to stress the conceptual aspects of the
method we developed. It allows for a transparent description
of the macroscopic dynamics of a nontrivial nonequilibrium
problem, similar to the derivation of the perfect gas law from
microscopic collisions by using elementary kinetic theory.
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In these notes, we detail the derivation of the model introduced in the paper “Macroscopic
equations for the adiabatic piston” (main text in the following). For the sake of clarity, we shall
follow (partially repeating it) Section II of the main text including all the technical aspects there
omitted.

These notes are organized as follows. In Section I we formally derive the equations. In Section II
we discuss the thermodynamic limit and expand the equations around it. In Section III, we derive
the collision distribution. In Section IV, we show how to expand the averages up to the first order
in m/M. All the integrals appearing in these expansions are calculated explicitly in section V.

Section VI concludes these supplements.

I. DERIVATION OF THE EQUATIONS

The differential equations for the macroscopic quantities introduced in the main text are ob-
tained by performing suitable averages (detailed later) on the collision between the gas particles

and the piston, which in one dimension are ruled by:

2m

— —
Vi=Vtarnt V)

, 2M

= — — 1
S VG Ok (1)

where v and V are the velocities of the colliding particle and the piston, respectively; primes

denote post-collisional velocities. The quantities we are interested in are the time derivatives of



the macroscopic observables which, as discussed in the main text, are: the piston position, its
velocity and the second moment of the velocity, together with the gas temperatures in both the
left /right chambers. In the following we shall denote with ﬁ averages performed over the collision
statistics and with ([...]) the averages performed again on the collision statistics but divided by
the mean collision time (see later for a more detailed definition). Moreover, since the variation of
the temperatures in the two chambers are caused only by the collisions with the particles on the
left /right side of the piston, we also introduce the notation ml,r and ([...]);, to denote averages

on the left (1) or right (r) collision distribution only. With this notation the equations for the

macroscopic observables formally read:

dr —
dv, T ,
5 =V =V)it= (V' -V) (3)
=
—d;; = (V2 -V2) /5t =(V"?-V?) (4)
S
e m(v? —v2),, /0t =m (v — 02>lﬂ, , (5)

where we set the Boltzmann constant kg = 1 by rescaling the temperatures. It should be noted
that at this level the piston is completely described by its average velocity V = v, and its second

moment V2. This amounts to assume a Gaussian distribution for its velocity:

1 V —vy,)?
P) = e |V )
2 20

2oy, %4
where

ot = (V-V)? (7)
Substituting Eq.(1) into the above equations yields:
dx
de _ 8
ik (8)
dv, 2m

T = N ()= (V)) )

0'2 m
%V - N(miM)z [FM (o) +m(v?) 4 (M =m) (V) = (m+M Jvg (v) +(m+ M )va (V) = M (v3)] (10)
= Qg MR MG = (Ve = i) (1)
s A i 0t~ ), B

where (10) is obtained by plugging (7) into (4) and using the collision rules (1). Notice that in (9)

and (10) the prefactor N which sets the time scale of the collision time to be 1/N.



II. THE THERMODYNAMIC LIMIT AND EXPANSION OF THE EQUATIONS

We are interested in performing the limit N — oco. In general, there are several ways to perform

such a limit. Here we take the limits
N — o M — oo L — o0 (13)
keeping fixed the density

_N
Po—L

and the ratio between the total mass of the (left/right) gas and the one of the piston:

r="

As discussed in the main text, the thermodynamic equilibrium is reached thanks to a Brownian
regime which starts when the mechanical equilibrium is attained. In order to describe this Brownian
regime, we have to perform an expansion around the above defined limit. This is done up to the

first order in m/M and, consequently, at the first order in 1/N. As for the notation, to make

explicit the zeroth and first order terms, in the following, we formally write the averages as:

C-D=0-DO+.. DY 4., (14)

where the first and second terms on the r.h.s are the zeroth and first order terms of the expansion.
Notice that we adopt the convection to indicate with ([...])") all terms which are O((m/M)
irregardless if this comes from the expansion of the average or from the averaged quantity. For
instance, by direct inspection of Eq. (10) one can easily realize that o3 is O(m/M). Therefore, we
shall indicate its average with (0%)("). Notice also that all the terms involving powers of (V — v,

vanish at the order zero. Keeping in mind these simplifications, the (expanded) equations become:

%:2R<U—’L)x + 2R | [ v — )M — (V=)D — %(v—vﬁ(o)} (15)
%% 4R [~ + T2 (0 = 0 4 (V= 1)) D+ ((V =)o) (16)
% :4m{<vx(vm—v)>l(0)—|— [(vx(vx—v»( ) 2M< >( )+3M<vxv>(0)+<a‘2/>l(l) -

(v —v o= 1)} (17)
L — {0 — DO+ (e~ )2 T (2 OB () O

(V =va)o)I= ()] | (18)



III. COLLISION PROBABILITY DISTRIBUTION

In order to proceed with our program we need to define and compute averages in (15-18). Let
us start by introducing the formal expression of the averages ([...]);, which should be interpreted
as follows. Denote with Gy, (t,v|V') the probability of having a left/right collision in a time ¢ with
a velocity v for the r/l-particle conditioned to a realization in which the piston has velocity V', and
indicate with G their sum, i.e. G = G; 4+ G,.. Clearly, f dvdtG = 1. Then performing the average
(A(v, V,t));, of a generic function A(v, V,t) means:

_ [dvadt [dVP(V)Gy,(t,v|V) A(v, V1)
B [dtdv [dVtP(V)G(t,v|V) ’

<A(U7 Va t))l,r (19)

ot = [dtdv [dV ¢t P(V)G(t,v|V) being the mean collision time.

A. Derivation of the Probability distribution

The first step is clearly to make explicit the expression of GGj and G, needed to compute the
averages. We start by noticing that with the assumption that the gases are always at equilibrium
one has that they are fully described by the joint probability distribution of the gas molecules

positions y and velocities v

(y,v) = pi(y)pi(v) = ~

_m”2> (20)

1 1 mu?
pr(y,v) = pr(y)pr(v) = (L—X) \/WGXP <_2TT> ’

From (20) we can compute the probability density g;,(t|v,V’) that a particle on the left/right

compartment collides in a time ¢ given its velocity v and the macroscopic state of the system
defined by the temperatures, the piston position X and velocity V and the equation of state.

Note that we use X and V, i.e. the instantaneous position and velocity, and not their averages
x and v,. In the treatment we will ignore the fluctuations in position but not those in velocity and
we will try to consistently derive the probability distribution at the first order in ;.

It is easy to realize that such a probability is simply obtained through a change of variables

from (20)

altlo, V) = @(t)@< * —t) ow—v)L =Y z@(t)@(v—V)U_V

g, (to, V) = @(t)@(



Notice that we neglect the second theta function in the above expressions, this is justified by the
assumption that ¢ indicates the time between two consecutive collisions, which for NV > 1 is always
much shorter than the time needed for a particle to travel along a whole chamber.

Given g; ,(t|v, V), the joint probability of having an impact of a particle with v in a time ¢ is :

gl,r(t’ U|V) = gl,r(ﬂvv V)pl,r(v) . (22)

Notice that, if one considers only positive times and given the above approximation, the distribu-
tions g; (¢, v|V') do not depend anymore on t. In order to have a more compact notation, we thus

introduce:

B _v=V O(w-V) _”21;12

fl(U|V) - gl(t7/U|V) - x \/me (23)
B _ V-v 6V -v) _m?

V) =g (t,v]V) = -2 \/me -

Having f »(v|V') we can now compute the probabilities £}, (t,,) that a left/right particle collides

in a time < t,,, i.e.

tm %)
Fir(tm) = / at / v fi,(0|V) = tmHi (2, V. 1) (24)
0 —00

being H; and H, given by

&0 -V _me? ] T, —mv2 V V %4
Hy(z,V,T;)= do——o? T = | ) LT ——+—erf | —— (25)
1% 2rm 1 T)x z |V 2mm 2 2 2m—1T,
\%
V—wv _ mo? 1 T, _mv2 V Vv \%4
H.(z,V,T.)= | dv e 2Tr = e 2Tr +—+4—erf [ ——| (26
ol ") —00 \/27Tm71TT(L—3;‘) L—=zx 2mm 2 92 (,/leTr> (26)

where we used the convention that erf(z) = 2/y/7 [ dzexp(—2?) and (used in the following)
erfe(z) =1 — erf(x).

In the following we use the shorthand notation H;, = H;,(z,V,T;,) and hy, = H;,(x,v,T}),
where the latter is the function H;, evaluated at V' = v,. Considering that we have N particles
on both the left and right, the probability densities that one of them on the left /right impacts the

piston in x with a velocity v are given by

Gitm, o|V) =N [L=Fi(t)]" ™ [L=Fp(t)]™ fi(0]V)

G (tms 0| V) = N[1=Fy ()" L= Fi ()] f1 (0] V) (27)



IV. EXPANSION OF THE THERMODYNAMIC LIMIT OF THE AVERAGES

In this section we expand the function G and consequently the averages (19) around the ther-
modynamic limit. We anticipate that there are two kinds of m/M terms. Those coming from the
1/N expansion are computed in the first subsection, while those coming from the fluctuation of
the piston velocity V' around v, are presented in the second subsection. We then conclude writing

a full explicit expression for the expanded average.

A. Expansion in 1/N

We can perform the limit N — oo and t,, — 0 with Nt,, = 7 fixed. Noticing that Fj,(t,,) —
7H;, /N, expanding [1 — F} ]V = exp[N In(1 — F} )] ~ exp[N(—F},, — F?./2)] and retaining terms
only up to 1/N we find

Hir (HP+H?)7?| -
Gutr,olV)= 1457 = T G oy
B H,r (Hf+H?)T*] -~
Gr(Ty'U’V)—|:1+ N - IN GT(Tv’U|V)7 (28)
where
Gir(,0|V) = e THFHD) £ (4|1 (29)

Finally, since the direction of the impact is determined by the relative velocity (i.e. from the left
v —V > 0 from the right v — V < 0), without ambiguity we can define G(7,v|V) = G,(7,v|V) +
G, (7,v|V) as the probability to have a collision with velocity v in a time 7. For the sake of clarity,

we write here explicitly the expression of the functions G and G:

- _ -V Ow-V) _m? V-—v OV —v) _m?
G(r,0|V) = e+ [ ¥ of o1, 30
(r,v|]V)=e . 27Tm—1Tle r+ (—2) 27rm_1TT6 (30)
and
B 1 _ _ H2 H2 2
G(r,v|V) = G(T,U’V)—}—N [Hﬂ' Gi(1,v|V) + Hy7 Gy (1,0|V) — <l+2r)TG(T,v|V)} (31)

Recalling that R = Nm/M, we can finally rewrite Eqs. (28) as:

~ m (hr (B +h2)7T?\ -
Gutr, o) =Gulryol )+ 57 (M = L) Gt o)

A m (hyr (B2 +h2)7T%\ -
G(roolV) =GitrolV)+ 2 (UL 6 )




where we substituted h in place of H and v, in place of V' in the part which is already at the first
order in ;. In the next section the first term then will be expanded in V, considering the fact

that o ~ O(4%).

B. Expansion in V around v,

1. Awerage collision time

To illustrate the basic strategy we will follow, we start by computing the average collision time.
By using (32), the definition of 6t = [dtdv [dV t P(V)G(t,v|V) and making explicit the integral
in the term O(3;) we find

h? + h? ) (33)

ot = / dr /dVva(V)TG(T vlV) = m<R(hl+h)

The second term is already at the proper order while we need to handle the first one, which
contains both the zeroth order term and a term proportional (as we will see) to 0‘2, which is again

first order in ;. This can be done by expanding
1 . =
G(1,v|V) = G(7,v|vy) + Oy G(T,v|v)(V — vg) + 58‘2/G(T,v|vx)(v — v,)? (34)

and noticing that [dVP(V)(V —v,) = 0 and that [dVP(V)(V —v;)? = of. Finally, we end up

with the expression

— 1 m  h?+ h? h; +h -
t=— |1 — L 7T TQ//dtd to% G . 35
hy + hy M R(h; + hy)? + 5 oV vt Oy G(T,v|vg) (35)

2. Formal expression for averages

We have now all the required elements to explicit the generic average (19) of a generic function

Aof V,u,t:

Ay = (AT + () (36)
<A>1(~(,)l) (hy + hy) ///devdVP ) Ghe(T,0lv,) A (37)

(ALY / / / drdvdV P(V [8VG1T(T vlog) (V vx)+;a%ém(f,mx)(v—vx)?] A+

m (hy + hy)?0% ) ~
[M R+ hr) 5 //dtdvtBVG(T,v\vw)] / dv fi ,(vlvg)A (38)

In obtaining (37) and (38), as for the average collision time, we expanded G with the aid of (34).

Notice that depending on A having or not a linear term in V — v, also the first derivative of G may



appear. An exception to Eq. (36) is the average of (V —wv,)?, whose result is (¢2)(!) and not (o2)©)

due to the convention adopted for the average (remember that we chose to write the superscript
(1) also when the m/M order comes from the averaged quantity and not from the expansion of the

collision distribution).

V. EXPLICIT COMPUTATION OF ALL THE TERMS

In this section we provide the explicit expression of all the derivatives and integrals needed to
compute the averages according to (36). As a first step we derive G with respect to V. Let us

start with the formal way. Denote
G = e (i 4 f,) (39)

and recalling that:

after some algebra one obtains

OvG = eI | (f] 4 £) —7(H] + H))(fi+ £7)| (41)
RG = e U (£ 4 f1) = 27(H] + H)(f; + £,)
— T(H] + H) i+ £) + 7+ A+ £)] (42)

where the primes here denote the derivative with respect to V. Before detailing the various terms
fllr, fl”r’ H l/ - Hl”w let us show how the averages can be computed. Usually one has to cope with

terms of the form:

///de”dVP(V) G (,0|V) A,

where A may be, e.g. A = 7 as in (35). The idea is first to apply the expansion (34) with the
terms that are expressed above and then to perform first the integration over 7, which presents no

difficulties since involves integrals of the form

o0 n!
/0 dr 77 e—OT — T (43)



so that for example:

n ~ n! / ’ (n+1)' ’ ’
/dTT WG = W(ﬁ +fr)*W(Hz +H,)(fi + fr) (44)
n a2 ~0 __ n' " 7" (n—l—l)' ’ ’ ’ ’
/dTT oyG = W(ﬁ +ﬁ~)*W 2(H, + H.)(f, + )
1" " ! / /
D )]+ e L HR e £ @)

A. Derivatives with respect to V

/ 1

o . . !/ 1"
We need now an explicit expression for the terms f; . f; ., H,,, H; :

1.  Derivatives of f’s

Let us rewrite the (23) as

fi = (w=V)Ov-V)P, (46)
fr= (V=00 —0v)P,. (47)
Then we have:
fi ==POW-V) 5 =P —V) (48)
fr=PO(V —v) fr =PV =), (49)

where we used: dé(v —V)/dV = —dj(v — V')/dv and the fact that xd(z) = 0.

2. Derivatives of H’s

By a straightforward derivation of (25) one readily obtains

H = i —%+%erf (\/mvi—lﬂ) (50)
=t [ z:ﬁm} (51)
H;, = Li:c B + %erf <\/2mv_71’1}>] , (52)
H = le[ 277:;@"%2]. (53)

Notice that V' has been replaced by v, since these expressions will appear in the O(§;) terms.
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B. Integrals

Here we finally evaluate all the integrals appearing in the averages. From its definition (25) we

have
/ Jipdv=Hyy (54)
then lengthy but straightforward calculus leads to
/ fdv erfc (V> (55)
2"\ Vet m
/f,idv = 3T 5 <1+erf <\/2¥W>> (56)
/fl”dv S <—mV2> (57)
ovarTm P\
/f,i’dv ity x)\l/mexp (—”;TW> (58)
1. Eapression of [vfi,, [vf,,. [vf],
o = e () )
o = 5 ( st (JL/m)) (60
/vf,’dv = — */;Zm exp <—";¥lz> (61)
/ ofidy = —(L_?Qm exp <—”;¥2> (62)
/ ofldy = — YV exp (_mV2) (63)
ot P\
/vf,’,’dv = x)\‘;mexp <—”;¥2) (64)



/ V2 fidv
/UQdev

11

2. Calculation of [v2fi,

12 (T)\*? mV?2 T 1%
Vi <m> exp (— o7, ) — V72xm erfc 7%21}/7” (65)
1 (2 [T\ my? T, 1

Notice that all terms such as [ dvv? f/ and [ dvv? fN are not needed because not appearing at the

first order.

VI. FINAL REMARK

We conclude these notes by mentioning that the infinite volume limit L — oo is trivially

obtained by introducing the hydrodynamic time ¢ty = t/L and hydrodynamic position zf = x/L.

This rescaling is straightforward since all the terms in the equations are exactly proportional to

1/L. In practice one simply needs to put L = 1 in all the expressions and to consider x as measured

in units of L.



