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ABSTRACT

Mixing and transport in correspondence of a meandering jet are investigated. The large-scale flow field is a
kinematically assigned streamfunction. Two basic mixing mechanisms are considered separately and in com-
bination: deterministic chaotic advection induced by a time dependence of the flow, and turbulent diffusion
described by means of a stochastic model for particle motion.

Rather than looking at the details of particle trajectories, fluid exchange is studied in terms of Markovian
approximations. The 2D physical space accessible to fluid particles is subdivided into regions characterized by
different Lagrangian behavior. From the observed transitions between regions it is possible to derive a number
of relevant quantities characterizing transport and mixing in the studied flow regime, such as residence times,
meridional mixing, and correlation functions. These estimated quantities are compared to the corresponding ones
resulting from the actual simulations. The outcome of the comparison suggests the possibility of describing in
a satisfactory way at least some of the mixing properties of the system through the very simplified approach
of a first-order Markovian approximation, whereas other properties exhibit memory patterns of higher order.

1. Introduction

Western boundary current extensions typically exhibit
a meandering jetlike flow pattern. The most renowned
example of this is given by the meanders of the Gulf
Stream extension, which have been investigated in their
variability by means of both in situ and remotely sensed
data [see, e.g., Watts (1983) for a survey of earlier stud-
ies, as well as Halliwell and Mooers (1983), Vazquez
and Watts (1985), Cornillon et al. (1986), Tracey and
Watts (1986), Kontoyiannis and Watts (1994), Lee
(1994)].

These strong currents often separate regions of the
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oceans characterized by water masses, which are quite
different in terms of their physical and biogeochemical
characteristics. Consequently, they are associated with
very sharp and localized property gradients; this makes
the study of mixing processes across them particularly
relevant also for interdisciplinary investigations. This is
the case of the Gulf Stream (Bower et al. 1985; Bower
and Lozier 1994), the Kuroshio, and the Brazil–Mal-
vinas Current (Backus 1986).

A major mechanism for cross-frontal exchange in
western boundary current extensions is represented by
warm or cold core ring shedding at either side of the
jet and then migrating into the opposite region across
the jet itself. This has been clearly seen from satellite
infrared imagery, and individual rings have been tracked
by Lagrangian instruments [for a general review, see
Olson (1991)]. However, RAFOS float data collected in
the Gulf Stream (Bower and Rossby 1989) have drawn
attention toward fluid exchange in the absence of rings,
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FIG. 1. Snapshot of the velocity field derived from the streamfunc-
tion (2) with L 5 7.5, B0 5 1.2, c 5 0.12.

due to smaller-scale frontal mixing, which causes de-
trainment or entrainment from or into the surrounding
waters [an excellent example is given by the RAFOS
trajectories shown in Fig. 1 of Bower and Lozier (1994);
see also the discussion therein].

The mixing properties of passive tracers across me-
andering jets have been investigated in the recent past
by a number of authors, following essentially two dif-
ferent approaches. The first one is that of dynamical
models, where the flow is produced by integrating the
equations of motion, time dependence is typically pro-
duced by (barotropic or baroclinic) instability processes,
and dissipation is present (e.g., Yang 1996). These mod-
els account for several mechanisms acting in mixing in
the real ocean, even if sorting out single processes of
interest may be sometimes complicated.

A second and simpler approach, the one followed in
this paper, is that of kinematic models [Bower (1991,
hereafter B91), Samelson (1992, hereafter S92), Dut-
kiewicz et al. (1993, hereafter DGO93), Duan and Wig-
gins (1996), for slightly different kinds of flows see also
Lacorata et al. (1996)]. In such models the large-scale
velocity field is represented by an assigned flow whose
spatial and temporal characteristics mimic those ob-
served in the ocean. However, the flow field may not
be dynamically consistent in the sense of being a so-
lution of the equations of motion, or of conserving, for
example, potential vorticity. Despite their somehow ar-
tificial character, these simplified models enable one to
focus on very basic mixing mechanisms and are partic-
ularly appropriate for investigating individual processes
such as the relatively small-scale frontal mixing dis-
cussed in the present study.

The paper B91 represents a first attempt at under-
standing mixing in a two-dimensional eastward propa-

gating meandering jet, showing that the exchange is due
to the time-dependent propagation of the meanders,
which causes fluid particles to cross streamlines.

The large-scale flow proposed in B91 has been uti-
lized as a background field in further works where mix-
ing is separately enhanced by two different transport
mechanisms. S92 considers a modification of the B91
flow field where fluid exchange is induced by chaotic
advection generated by a flow time dependence. The
basic flow is made time dependent in three different
fashions: the superposition of a time-dependent merid-
ional velocity, that of a propagating plane wave and a
time oscillation of the meander amplitude, which is the
case we further investigate in this paper.

The Melnikov method (Lichtenberg and Lieberman
1992, LL92 hereafter) is used in S92 to explore the
chaotic behavior around the separatrices of the original
B91 flow when time dependence is added. One of the
results of this investigation is that while mixing occurs
between adjacent regions, over a broad range of the
meander oscillation frequencies, it does not easily take
place across the jet, that is, from recirculations south of
the jet to recirculations north of it. This is inherently
due to the oscillation pattern of the large-scale velocity,
and we will discuss this in further detail in this paper.

Particle exchange in the same B91 flow is achieved
by DGO93 by superimposing to the original time-in-
dependent basic flow a stochastic term that describes
mesoscale turbulent diffusion in the upper ocean. The
focus of that paper is on the exchange among recircu-
lations and the jet core and vice versa, and on the ho-
mogenization processes in the recirculation. The nu-
merical experiments presented in DGO93 are carried
out for quite short integration times, which do not allow
for exploring the mixing across the jet.

Since in the real ocean the two above mixing mech-
anisms, that is, chaotic advection and turbulent diffu-
sion, are simultaneously present, in this paper we in-
vestigate how particle exchange varies through the pro-
gression from periodic to stochastic disturbances, re-
visiting and putting together the mixing processes
studied by S92 and DGO93.

This is done by looking at particle statistics obtained
by numerical computation of the trajectories of a large
number of particles (or equivalently, since our system
is ergodic, following one particle for a very long time)
in three different flows: one equivalent to S92, in which
mixing is induced by chaotic advection; one equivalent
to DGO93, where it is due to turbulent diffusion; and
a combination of them.

Dispersion processes in a flow field can be quanti-
tatively characterized, in the Lagrangian description, in
terms of different quantities, such as the Lyapunov ex-
ponent l (Benettin et al. 1980) and the diffusion co-
efficients Dij (LL92).

However the above indicators, even if mathematically
well defined, can be rather irrelevant for many purposes.
The Lyapunov exponent is the inverse of a characteristic
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time tL, related to the exponential growth of the distance
between two trajectories initially very close together;
however, other characteristic timescales may appear and
result just as relevantly in the description of a system,
such as those involved in the correlation functions and
in the mixing phenomena. It is worth stressing that there
is not a clear relationship, if any, among these times
and tL.

Also, the use of the diffusion coefficients can have
severe limitations; sometimes the Dij are not able to take
into account the basic mechanisms of the spreading and
mixing (Artale et al. 1997). Our western boundary cur-
rent extension system has essentially a periodic structure
in the zonal direction. It is thus possible to define and
(numerically) compute the diffusion coefficients. They
are related to the asymptotic behavior of a cloud of
tracer particles. On the other hand, if one is interested
in the meridional mixing, which takes place over finite
timescales, the diffusion coefficients may not be very
useful. In such situations it is then worthwhile to look
for alternative methods of describing mixing processes,
as was done by Artale et al. (1997) looking at dispersion
in closed basins; by Buffoni et al. (1997), who employ
exit times for the characterization of transport in basins
with complicated geometry; or del Castillo-Negrete
(1998), who studies the transport in terms of duration
of flight probability distribution.

Our investigation is carried out with a nonconven-
tional approach and in a geophysical contest as we try
to analyze the system from the standpoint of the ap-
proximation in terms of Markovian processes (Fraedrich
and Müller 1983; Fraedrich 1988; Kluiving et al. 1992;
Cecconi and Vulpiani 1995; Nicolis et al. 1997).

We start from the consideration that the flow field, to
be characterized in terms of fluid transport, can be sub-
divided into regions corresponding to different Lagrang-
ian behavior: ballistic flight in the meandering jet core,
trapping inside recirculations, and retrograde motion in
the far field. As an obvious consequence, we introduce
a partition of the two-dimensional physical space ac-
cessible to fluid particles and divide it into these disjoint
regions selected in a natural way by the dynamics. At
this point, the transition of fluid particles between dif-
ferent regions can be studied as a discrete stochastic
process generated by the dynamics itself.

In this paper we study the statistical properties of this
stochastic process and compare it with an approximation
in terms of Markov chains. For some fluid exchange
properties—such as the probability distribution of the
particle exit times from the jet or from the neighboring
recirculation regions—the effects of the two different
mixing mechanisms and the results of the Markovian
approximation are very similar. Other properties, such
as the meridional mixing across the jet, do not show
such an obvious possibility to be described in terms of
Markovian simple processes. However, for those prop-
erties the Markovian description is seen to be relatively
more accurate in the case when chaotic advection and

turbulent diffusion are simultaneously present. The
comparison between the results of the numerical sim-
ulations and those computed in the Markovian approx-
imation allows for a deeper understanding of the trans-
port and mixing mechanisms.

In section 2 we introduce the kinematic model for the
field correspondent to the Gulf Stream flow and both
models for chaotic advection and turbulent diffusion.
Section 3 is devoted to the description of the Markovian
approximation. In section 4 we discuss the numerical
results and the comparison of the dynamics shown by
the simulations with the Markovian approximation. Sec-
tion 5 contains some discussion and conclusions. The
appendix summarizes some basic properties of Markov
chains.

2. The flow field

The large-scale flow in its basic form, representing
the velocity field in correspondence of a meandering jet,
is the same introduced in B91 and further discussed in
S92; in a fixed reference frame the streamfunction is
given by

y9 2 A cosk(x9 2 c t)xc(x9, y9, t) 5 c 1 2 tanh ,0 2 2 2 1/2[ ]l(1 1 k A sin k(x9 2 c t))x

(1)

where c0 represents half of the total transport and A, k,
and cx are the amplitude, wavenumber, and phase speed
of the pattern, respectively. A change of coordinates into
a reference frame moving eastward with a velocity co-
inciding with the phase speed cx, and a successive non-
dimensionalization, yield a streamfunction as follows:

y 2 B coskx
f 5 2tanh 1 cy. (2)

2 2 2 1/2[ ](1 1 k B sin kx)

The relationship between variables in (1) and (2) is
given by (see S92)

x9 2 c txx [ , y [ y9/l, B [ A /l
l

c c Lxf [ 1 cy, c [ , k [ kl.
c c0 0

The natural distance unit for our system is given by
the jet width l, here set to 40 km (B91, S92). The basic
flow configuration is very similar to case (b) of B91: B
was chosen as 1.2, c as 0.12. The only major difference
is the value assigned to L, that is, the meander wave-
length, which was set as 7.5, as will be discussed below.

The evolution of the tracer particles is given by

dx ]f dy ]f
5 2 , 5 . (3)

dt ]y dt ]x

In Fig. 1 we show the stationary velocity vector field
in the moving frame: the field is evidently divided into



OCTOBER 1999 2581C E N C I N I E T A L .

three very different flow regions (see also B91, S92,
DGO93): the central, eastward moving, jet stream; re-
circulation regions north and south of it; and a far field.
The far field, given our choice of parameters, appears
to be moving westward at a phase speed of cx [ 20.12.
This intrinsic self-subdivision of the flow field is crucial
for building a partition of the possible states available
to fluid particles, which will be investigated in Mar-
kovian terms.

Chaotic advection may be induced in a two-dimen-
sional flow field by introducing a time dependence (e.g.,
Crisanti et al. 1991). This is simply achieved by adding
to the basic steady flow some typically small pertur-
bation that varies in time. Among three basic mecha-
nisms discussed by S92, we chose here a time-dependent
oscillation of the meander amplitude:

B(t) 5 B0 1 e cos(vt 1 u). (4)

In (4) we set B0 5 1.2, e 5 0.3, v 5 0.4, and u 5 p/2.
These choices, as well as that for L, are motivated main-
ly by the results of observations by Kontoyiannis and
Watts (1994) and of numerical simulations by Dimas
and Triantafylou (1995). Namely, the most unstable
waves produced in the latter work compare very well
with the observations of the former, which show wave-
lengths of 260 km, periods of ;8 days, and e-folding
time and space scales of 3 days and 250 km. In our
case, since the downstream speed was set to 1 m s21,
our e-folding timescale would correspond, in dimen-
sional units, to approximately 3 days. The flow field
resulting from the time-dependent version of (2) is
shown in Fig. 2 for three subsequent time snapshots t
5 T/4 (Fig. 2a), t 5 T/2 (Fig. 2b), and t 5 3T/4 (Fig.
2c), where T 5 2p/v is the period of the perturbation.
Our system shows two different separatrices with a spa-
tial periodic structure (see Fig. 2) north and south of
the jet. At small e one has chaotic motion around them
but without meridional mixing. In order to have a
‘‘large-scale chaos,’’ that is, the possibility that a par-
ticle passes from north to south (and vice versa) crossing
the jet, one needs the overlapping of the resonances
(Chirikov 1979) e . ec. In our case, indeed e . ec and
ec depends on v (in Fig. 3 we show ec vs v for our
system).

The physical reason to have a ‘‘strong exchange’’
regime is that, for small values of the perturbation am-
plitude, the system would have stability isles inside the
domain, for example, the cores of the gyres, from which
particles would never escape unless in the presence of
additional diffusive mechanisms. Since the mechanism
we want to mimic, that is, the exchange in absence of
ring detachment, has on the opposite a quite pervasive
effect over the recirculation regions, in the framework
of deterministic chaotic mixing this can be at least qual-
itatively reproduced just in a strong exchange regime.

The Lagrangian motion of a fluid particle is formally
a Hamiltonian system whose Hamiltonian is the stream-
function f. If f 5 f 0(x, y) 1 df (x, y, t), where

df (x, y, t) 5 O(e) is a periodic function of t, there exists
a well-known technique, due to Poincaré and Melnikov,
which allows one to prove whether the motion is chaotic
(LL92). Basically if the steady part f 0(x, y) of the
streamfunction admits homoclinic (or heteroclinic) or-
bits, that is, bounding streamlines on which one has a
periodic motion with infinite period (the separatrices),
then the motion is usually chaotic in a small region
around the separatrices for small values of e.

In S92 the Melnikov method has been explicitly used
for the f 0 and df that we have used in this paper, and
thus proved, in a rigorous way, the existence of La-
grangian chaos. However, even if the Melnikov method
can determine if the Lagrangian motion is chaotic, it
may not be suitable for the study of other interesting
properties, which will be the focus of section 4a.

Alternatively (or jointly), mixing in the flow field (2)
can be created by adding a turbulent diffusion term.
This was done using a stochastic model for particle
motion belonging to the category of the so-called ran-
dom flight models (e.g., Thomson 1987), which can be
seen as simple examples of a more general class of
stochastic models that can be nonlinear and have ar-
bitrary dimensions, described by the generalized Lan-
gevin equations (Risken 1989; for a review, see Pope
1994):

dsi 5 hi(s, t) dt 1 gi,j(s, t) dmj, i 5 1, · · · , N, (5)

where s 5 (s1, . . . , sN) are N stochastic variables, which,
in our context, are the turbulent velocity fluctuations,
mi is a random process with independent increments,
and hi and gi,j are continuous functions. A general, re-
markable characteristic of these models is their Mar-
kovian nature, which obviously has a particular interest
for this investigation. The theoretical motivation for the
choice of Markovian models to describe mesoscale
ocean turbulence has been thoroughly discussed in Zam-
bianchi and Griffa (1994a), Griffa (1996), and Lacorata
et al. (1996); it is worth adding that this particular model
has proved to accurately represent upper-ocean turbu-
lence in regions characterized by homogeneity and sta-
tionarity [see Colin de Verdière (1983), Zambianchi and
Griffa (1994b), Griffa et al. (1995), Bauer et al. (1998),
but also the results of numerical simulations by Verron
and Nguyen (1989), Yeung and Pope (1989), Davis
(1991)], and is easily extended to more complex situ-
ations (van Dop et al. 1985; Thomson 1986).

In our simulations, a turbulent velocity du (T )(x, t) is
added to the large-scale velocity field u (M )(x, t) resulting
from the streamfunction (2). The resulting equation for
the particle trajectory is

dx
5 u(x, t), (6)

dt

where u(x, t) is given by

u(x, t) 5 u (M )(x, t) 1 du (T )(x, t). (7)
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FIG. 2. Streamlines of the time-dependent streamfunction (2), with B given by Eq. (4), B0 5 1.2, v 5 0.4, and e 5 0.3 (T 5 2p/v), at
three different times: (a) t 5 T/4, (b) t 5 T/2, and (c) t 5 3T/4. In (d) the partition is shown.

Our model assumes du (T )(x, t) 5 du (T )(t) as a Gauss-
ian process with zero mean and correlation:

^ (t) (t9)& 5 2s 2dije2|t2t9|/t .(T) (T)du dui j (8)

With this choice, du (T )(t) is a Markovian process linear
in time. The turbulent field is entirely described in terms
of two parameters: the variance of the small-scale ve-
locity s 2 and the e-folding timescale of the velocity
autocorrelation function, that is, its typical correlation
timescale t . In absence of the large-scale velocity the
diffusion coefficient is s 2t . The interdependence among
smaller and larger timescales of the Lagrangian motion
will be investigated in the following chapters.

3. The Markovian approximation

a. Generalities

The idea of using stochastic processes to investigate
chaotic behavior is fairly old (Chirikov 1979; Benettin
1984). One of the most relevant and successful ap-
proaches is symbolic dynamics, which allow one to give
a detailed description of the statistical properties of a
chaotic system in terms of a suitable discrete stochastic
process (Beck and Schlögl 1993).

Given a discrete dynamical system:

xt 5 Stx0, (9)
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FIG. 3. Critical values of the periodic perturbation amplitude for
the overlap of the resonances, ec/B0 vs v/v0, for the streamfunction
(2) with L 5 7.5, B0 5 1.2, c 5 0.12, and v0 5 0.25, which is the
typical frequency for the rotation of a tracer particle along the bound-
ary of the recirculating gyres. The critical values have been estimated
following a cloud of 100 particles initially located between the states
1 and 2 for 500 periods.

a partition A can be introduced, dividing the phase space
in A1, A2, . . . , AN disjoint sets, or cells (with Ai ù Aj

5 0 if i ± j). Given a trajectory

x0, x1, . . . , xn, . . . . (10)

The point x0 ∈ is put in correspondence with theAi0

integer i0, the next one x1 ∈ the integer i1 and soAi1

on. Therefore any initial condition x0 determines a cer-
tain symbol sequence:

x0 → (i0, i1, . . . , in, . . . ). (11)

Now the study of the coarse grained properties of
the chaotic trajectories is reduced to the statistical fea-
tures of the discrete stochastic process (i0, i1, . . . , in,
. . . ). A useful and important characterization of the
properties of symbolic sequences is the Kolmogorov–
Sinai entropy, which measures the time rate of loss of
information as a trajectory evolves (Eckmann and Ruel-
le 1985; Badii and Politi 1997), defined by

h 5 lim (H 2 H ), (12)KS n11 n
n→`

with

H 5 sup 2 P(C ) lnP(C ) (13)On n n[ ]{A} Cn

and

Cn 5 (i0, i1, . . . , in21), (14)

where P(Cn) is the probability of the sequence Cn and
{A} is the set of all possible partitions. The quantity
Hn11 2 Hn represents the additional averaged infor-
mation needed to specify the symbol in11 given the pre-
vious in (Badii and Politi 1997).

Notice that, from a theoretical point of view, the sup
in (13) hides a very subtle point: there sometimes exists

a particular partition, called generating partition, from
which the sup is directly obtained. A partition is gen-
erating if the infinite symbol sequence i0, i1, . . . , in,
. . . uniquely determines the initial value x0.

However, assessing the possible existence of a gen-
erating partition for a given system may be nontrivial;
furthermore, from a practical point of view, even if a
system is known to admit a generating partition, deter-
mining it may be a very hard task (see Beck and Schlögl
1993, for more details).

The stochastic process given by the symbol dynamics
with a given partition can have rather nontrivial features.
Of course the optimal case is when the symbolic sto-
chastic process is a Markov chain; that is, the probability
to be in the cell Ai at time t depends only on the cell
at time t 2 1. In this case it is possible to derive all the
statistical properties (e.g., entropy and correlation func-
tions) from the transition matrix Wij whose elements are
the probabilities to find the system in the cell Aj at time
t if at time t 2 1 the system is in the cell Ai. See the
appendix for a summary of the properties of Markov
chains.

An accurate description of a chaotic system typically
requires a higher-order Markovian process, that is, one
in which the probability for the system to be in the cell
Aj at time t depends on more previous steps (we have
a k-order process, e.g., when the probability to be in
the cell Aj at time t depends only on the preceding k
steps t 2 1, t 2 2, . . . , t 2 k). In particular it is possible
to estimate the order of the Markov process necessary
to reproduce the statistics of the process (i0, i1, . . . , in,
. . . ) generated by the dynamics by means of the quan-
tities defined in Eqs. (12) and (13) and on the basis of
considerations drawn from information theory (see
Khinchin 1957). It can be shown (Khinchin 1957) that,
defining

hn 5 Hn 2 Hn21 (15)

with Hn21 given by (13), if the process is a Markov
process of order k then hn 5 hKS for n $ k 1 1. In the
next section we will apply this method to give an es-
timate of the order k for our system.

Typically, using a Markovian approximation of order
k # 5, it is relatively easy to find a reasonable agreement
with the observed K–S entropy (12), or the Lyapunov
exponent. On the other hand, correlation functions and
other observables can be just roughly caught by even
quite higher order Markov processes (k . 10).

Mimicking a low-dimensional dynamical system in
terms of higher-order Markov processes represents an
interesting issue in the field of chaotic dynamics but
has, in our opinion, just a weak relevance for many
practical purposes in geophysics since very large sta-
tistics are needed for the computation of the transition
probabilities. Therefore we shall restrict our analysis to
the simplest case of the approximation in terms of a
Markov chain, that is, of a first-order process. This prac-
tical approach has been successfully used in the study
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of the dynamical properties of small astronomical bodies
such as comets (see Rickmann and Froeschlé 1979; Lev-
inson 1991) and for the interpretation of atmospheric
phenomena (Fraedrich 1988; Fraedrich and Müller
1983).

b. The present application

In this section we explain how we expressed the be-
havior of our Gulf Stream–like system in terms of sym-
bolic dynamics. First we reduced the ordinary differ-
ential equation (3) obtained by the streamfunction (2)
to a dynamical system discrete in time. This was ac-
complished building the Poincaré map associated with
(3). The aim of this method is to write a stroboscopic
map connecting the value of x at time t 5 nT with those
at t 5 (n 1 1)T, that is, to write xn11 in terms of xn

[where xn 5 x(t 5 nT)]:

xn11 5 F[xn]; (16)

it is worth underlining the importance of the existence
of such a relationship, even if in general writing down
an explicit expression for F[xn] may be nontrivial.

As discussed above, a crucial point is represented by
the suitable choice of a phase space partition. Consid-
ering the streamline pattern of our flow field (Fig. 2),
the structure of the physical space accessible to fluid
particles suggests an obvious, natural choice for the par-
tition: a particle will find itself in state 1 when it is
inside the jet core (open trajectories); states 2 and 3
correspond to trapping in the northern and southern re-
circulations, respectively (closed trajectories), and states
4 and 5 to the far field (backward open trajectories).

This partition, see Fig. 2d, turns out to be particularly
appropriate to describe some important mixing prop-
erties of our system, such as

(a) the residence time of particles in the trapping re-
circulations or inside the jet, which in the language
of Markov chain (see appendix) correspond to the
first exit time from state i (i 5 1, . . . , 5);

(b) the meridional mixing time (MMT), that is, the time
it takes a particle to enter the northern (southern)
recirculation starting from the southern (northern)
one, that is, the time of first passage from cell 2
(3) to cell 3 (2);

(c) the correlation function for a variable xi(n), which
indicates if a determined state i is visited at time n
[see below, Eqs. (23) and (24), and appendix].

Let us now describe how to compute statistics for the
quantities (a, b, c). First of all, from a long trajectory
x0, x1, . . . , xn (n k 1) we can compute the transition
probabilities:

N (i, j )nW 5 lim , (17)i j N (i)n→` n

where Nn(i) is the number of times that, along the tra-

jectory, xt (t , n) visits the cell Ai and Nn(i, j) is the
number of times that xt ∈ Ai and xt11 ∈ Aj.

Notice that, for each i

W 5 1 (18)O i j
j

and because of the system symmetries, states 2 and 3
possess the same statistical properties and so do states
4 and 5; in particular, the following equalities hold:

W 5 W , W 5 W ,12 13 23 32

W 5 W , W 5 W , and so on. (19)21 31 22 33

We can express the visit probabilities {Pi} (i.e., the
probability to be in the state i) in terms of the matrix
{Wij} as follows:

P 5 P W . (20)Oi j j i
j

Let us stress that Eqs. (18) and (20) hold even if the
process is not a Markov chain.

Under the assumption (approximation) that the sym-
bolic stochastic process generated by our deterministic
chaotic model is a Markov chain, one can derive (see
appendix) the probability [Pi(n)] of the first exit times
from state i in n steps:

(1 2 W )i i nP (n) 5 (W ) , (21)i i i[ ]Wii

which is the statistics of residence times in state i. A
slightly more complicated computation gives the prob-
abilities f ij(n) of first passage from state i to state j in
n steps:

n21

n kf (n) 5 (W ) 2 f (n 2 k)(W ) , (22)Oi j i j i j j j
k51

where Wk indicates the kth power of the matrix W. For
the normalized correlation function Ci(n) of the variable
xi(n), defined as

1, if x ∈ An ix (n) 5 (23)i 50, otherwise,

we have

Ci(n) 5 [(Wn)ii 2 Pi]/(1 2 Pi). (24)

The Kolmogorov–Sinai entropy for the Markov chain
is nothing but the Shannon entropy for a Markov chain
(Khinchin 1957):

h 5 h 5 2 P W lnW . (25)OKS S i ij i j
i , j

Notice that for a Markov process hn 5 Hn 2 Hn21 5
hKS for n 5 2 (see above). Since the discrete time system
is obtained observing it at times 0, T, 2T, . . . , the Lya-
punov exponent l of the original system has to be com-
pared with
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hSl 5 . (26)M T

This last equation is easily understood by noticing that
hKS gives the degree of information per step produced
by the process, which, apart from a time rescaling, for
a chaotic system in two dimensions corresponds to the
Lyapunov exponent.

Meiss and Ott (1986) and Mackay et al. (1987) pro-
posed a Markov model for transport in two-dimensional
area preserving maps (corresponding to Lagrangian mo-
tion in a two-dimensional time-periodic incompressible
velocity field). This approach, very interesting from a
dynamical systems point of view, involves a fairly com-
plex subdivision of the phase space, which makes its
adoption quite hard for the study of realistic flows and
analysis of data. In particular, it implies the necessity
of having a complete partition of the phase space into
stochastic subregions where all orbits have an infinite
Lyapunov exponent [these aspects are thoroughly dis-
cussed in chapter 5 of Wiggins (1992)]. In practical
terms, this translates into building a partition made up
by a very large number of cells, which goes in the
opposite direction of the simplified but practical method
proposed in this paper, which uses a partition defined
by relatively large-scale properties of the flow dynam-
ics.

4. Numerical results

We now discuss the numerical results for the models
introduced in section 2 and their comparison with the
Markovian approximation illustrated in section 3.

a. Mixing induced by chaotic advection

We first consider the deterministic model with the
parameter B of the streamfunction Eq. (2) varying pe-
riodically in time according to Eq. (4) with the param-
eters B0 5 1.2, e 5 0.3, v 5 0.4, f 5 p/2, and c 5
0.12 (see section 2). With this choice the system is cha-
otic and exhibits mixing at large scale, that is, north–
south mixing occurs.

We show in Fig. 4 the spreading at different times of
a cloud of tracer particles. The domain is naturally de-
fined from the basic cell that repeats itself creating a
zonal periodic structure of wavelength L; x thus varies
in [0, L], while y in [24, 4]. We fixed a posteriori these
bounds for y since for our choice of parameters no par-
ticles reach the far field, and no trajectory attains values
in |y| larger than 4 (even though, in general, we expect
low but nonzero frequencies for these states, see also
S92).

In general, whether a north–south mixing happens or
not depends sensibly on the values of e and v. Typically
the system reveals a strong preference to have long res-
idence times in the northern or the southern half of the
domain with respect to the jet core. This peculiar feature

will play an important role in the comparison with the
Markovian approximation.

The transition matrix elements Wij and the visit prob-
abilities {Pi} were computed by means of Eq. (17),
looking at x every period, that is, for t 5 T, 2T, . . . ,
where T 5 2p/v, and the estimated values are reported
in Tables 1 and 2. At a first glance, we can see that the
requested symmetry properties are respected [Eq. (19)].

In order to test whether the system is well approxi-
mated by a first-order Markov process we computed exit
times, correlation functions, meridional mixing times,
and Lyapunov exponent from the simulations and com-
pared them with the Markovian predictions.

In Fig. 5 we show the first exit time probability dis-
tributions for the states 1 and 2 (3) and the correspond-
ing Markovian predictions. After underlining that the
straight lines of Fig. 5 are not to be confused with best-
fit curves, we see that the agreement is good over a
certain range both for states 1 and 2 (3). The agreement
between the Markovian predictions and the simulation
results is rather poor for small and very large exit times.
This behavior shows that the Markovian approximation
cannot hold at small times since the details of the dy-
namics are strongly relevant. In the same way nontrivial
long time correlations cannot be accounted for in terms
of a first-order Markovian process.

In Fig. 6 we can see how the correlation functions of
xi [see Eqs. (23)–(24)] for states 1 and 2 (3) are just in
vague agreement with the corresponding correlations
obtained for the Markovian process. The trajectories in
the recirculations (i.e., states 2 and 3) appear to be much
more autocorrelated than those in the jet. Therefore we
deduce that the system, although chaotic, has a strong
memory as to which half (northern or southern) of the
spatial domain it is visiting. The typical evolution is a
‘‘rebound game’’ between state 2 and the southern half
of the jet during a certain time interval; then it crosses
the jet core and performs again the same pattern between
state 3 and the northern half of the jet, until it jumps
back, and so on. This is strikingly evident if we look
at the distribution probabilities of the meridional mixing
times, where the Markovian approximation completely
fails (Fig. 7).

This can be explained as follows: the simulations
show that, when a tracer particle leaves a recirculation
region, say in the southern half, and enters the jet, most
of the time it returns back to some other close orbit in
the southern half of the basin rather than crossing the
jet barrier, showing a long memory effect, which is not
featured in the first-order Markov approximation. This
is a clear indication that higher-order Markov processes
are necessary to describe this portion of the statistics
produced by the dynamics. This is shown in Fig. 8,
where transitions between states 1 and 2, and 1 and 3,
are compared: whereas in the first-order Markovian ap-
proximation (Fig. 8b) a particle jumps very often from
north to south, the results of our numerical experiments
show a stronger tendency for particles to keep being
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FIG. 4. Spreading of a cloud of 5000 particles at different times for the deterministic model (see Fig. 2) at
(a) t 5 0: the particles are initially located inside a 0.05 by 0.05 square centered in (0.1, 2.7), (b) t 5 T, (c) t
5 5T, (d) t 5 10T, (e) t 5 20T, and (f ) t 5 100T.

TABLE 2. Visit probabilities for case A: deterministic chaotic model
defined by Eq. (3) related to the streamfunction (2) with parameters
L 5 7.5, B0 5 1.2, c 5 0.12, v 5 0.4, and e 5 0.3; case B: turbulent
diffusion model defined by Eqs. (27) and (28) with parameters s 5
0.05 and t 5 T/4; and case C: model with chaotic advection plus
turbulent diffusion with the same parameters of case A and B. The
statistics have been computed over 2 3 106 periods.

Pi Case A Case B Case C

P1

P2

P3

0.26
0.37
0.37

0.25
0.375
0.375

0.25
0.375
0.375

TABLE 1. Transition matrix elements.

Wij Case A Case B Case C

W11

W12

W13

W21

0.66
0.17
0.17
0.12

0.74
0.13
0.13
0.09

0.58
0.21
0.21
0.14

W22

W23

W31

W32

W33

0.88
0.00
0.12
0.00
0.88

0.91
0.00
0.09
0.00
0.91

0.86
0.00
0.14
0.00
0.86

confined either between states 1 and 2 or between 1 and
3 (Fig. 8a).

To quantify the relevance of the memory effects we
computed the block entropies hn, defined in section 3
[Eq. (15)] at varying n. In Fig. 9 we can see that to
obtain the convergence of the entropies we need at least
a Markov approximation of order 6 or 7.

The Lyapunov exponent computed with a standard
algorithm (see Benettin et al. 1980) is l 5 0.05, the
first-order Markov approximation gives lM 5 0.03,
while the extrapolation with the asymptotic value h 5
limn→`hn gives 5 0.03. That , l is probablyl̃ l̃M M

due to the fact that the partition used here is not a
generating one (see section 3); however, there exists a
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FIG. 5. Probability distribution of the first exit times from states 1
(diamonds), 2 (squares), and 3 (crosses) for the deterministic model
(see Fig. 2). The straight lines are the Markovian predictions given
by Eq. (A5) with Wii of Table 1 (case A). The time unit is the period
T of the perturbation. The statistics is computed over 2 3 106 periods.

FIG. 6. Correlation functions of states 1 (diamonds) and 2 (crosses)
compared with the Markovian predictions [continuous lines, Eq.
(A11)] for the deterministic model (see Fig. 2).

FIG. 7. Probability distribution of the meridonal mixing times
(MMT) compared with the Markovian predictions [continuous lines,
Eq. (A5)] for the deterministic model (see Fig. 2).

fair agreement between and l. It is worth noticingl̃M

that the above features are fairly robust and do not vary
in a relevant way after weak changes of parameters.

b. Mixing induced by turbulent diffusion

The same investigation discussed in the previous sub-
section was carried out setting e 5 0 and turning on
turbulent diffusion, which is described in terms of a
stochastic model for particle motion:

dx dy
5 u 1 h , 5 y 1 h , (27)1 2dt dt

where u, y are given by the streamfunction (2) and hi

are zero-mean Gaussian stochastic processes with
^hi(t)h j(t9)& 5 s 2dij exp(2|t 2 t9|/t). The Gaussian var-
iable h i is generated by a Langevin equation (Chandra-
sekhar 1943):

2dh h 2si i5 2 1 z , i 5 1, 2, (28)i!dt t t

where the variables zi are zero-mean Gaussian noises
with ^z i(t)zj(t9)& 5 dijd(t 2 t9). The numerical integra-
tion of the equations has been performed by means of
a stochastic fourth-order Runge–Kutta algorithm (Man-
nella and Palleschi 1989).

Now the motion is unbounded for the presence of the
isotropic diffusive terms; therefore, in order to get a
transition matrix comparable with the matrix obtained
in the chaotic deterministic case and to be able to com-
pare the two models, we need to limit the dispersion
along y inside a domain as similar as possible to the
previous one.

Since the chaotic model does not fill states 4 and 5,
we impose that, if a tracer enters a backward motion
region, it is reflected back by changing the sign of the

meridional turbulent velocity. We emphasize that this
boundary condition practically does not affect the mix-
ing process between the jet and the recirculation regions.

In the diffusive case we set the values s 5 0.05 and
t 5 T/4 as representative of an observable situation (see
Okubo 1971) and compute again the transition matrix
and stationary frequencies of the five states (see Tables
1 and 2). The elements of the transition matrix are close
to those of the chaotic case. The transition probabilities
were computed over a time period T as was done for
the chaotic case so that the two cases can be compared.

In Fig. 10 we show the spreading of a cloud of par-
ticles. Figure 11 shows the probabilities of the first exit
times of the states 1, 2, and 3 and the relative Markovian
predictions. The distributions derived from the simu-
lations are very well approximated by the first-order
Markov process.

The correlation functions are shown in Fig. 12. The
difference between the actual and the Markovian curves
is now smaller than in the chaotic case because of the
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FIG. 8. Comparison between (a) the symbolic sequence of the states as function of time (for t 5
T, 2T, . . . ) obtained by the integration of the deterministic model [Eqs. (1) and (2)] and (b) the
symbolic sequence generated from the Markov chain defined by the transition matrix computed as
described in Eq. (17) and reported in Table 1 (case A).

presence of diffusion that decreases sensibly the degree
of memory. This is much more evident looking at the
distributions of the meridional mixing times (see Fig.
13).

Thus we can conclude that in the diffusive model the
one-step Markovian approximation is much more ap-
propriate than in the chaotic one. Looking at the block
entropies hn (15), we have a clear indication that the

process is of a lower order with respect to the chaotic
case (cf. Fig. 14 with Fig. 9).

Just like in the previous case we have investigated
the behavior of the system, varying the parameters s
and t . We have observed that, if we keep the quantity
s 2t constant, the system displays a qualitatively con-
stant behavior, even though the extent of the agreement
between simulation results and Markovian approxima-
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FIG. 9. Block entropies hn vs n (15) for the deterministic model
(see Fig. 2), computed from a sequence of 106 symbols.

FIG. 10. Same as Fig. 4 but for the stochastic model given by Eqs. (27) and (28), with parameters s 5 0.05
and t 5 T/4. The time unit T is set equal to the period of the deterministic perturbation (see Fig. 2). The
particles are initially located inside a 0.05 by 0.05 square centered in (0.1, 2.7).

tion slightly differs for different values of the turbulence
parameters; this can be understood if we recognize that
s 2t corresponds to the diffusion coefficient (see, e.g.,
Zambianchi and Griffa 1994a). It has been shown that
varying s and t even though keeping the diffusion co-
efficient constant can indeed affect the quantitative es-
timates of dispersion in cases characterized by inho-
mogeneity and/or nonstationarity (see, again, Zambian-
chi and Griffa 1994a). On the other hand, the qualitative
functional behavior of the dispersion processes has been
seen to be affected very little by such changes in the
parameters of turbulence (Lacorata et al. 1996).

c. Mixing jointly induced by chaotic advection and
turbulent diffusion

A detailed analysis of Lagrangian data from the ocean
aimed at determining contemporary presence and rel-
ative importance of chaotic and turbulent mixing is at
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FIG. 11. Probability distribution of the first exit times from states
1, 2, and 3 for the stochastic model (see Fig. 10). The straight lines
are the Markovian predictions given by Eq. (A5) with Wii of Table
1 (case B).

FIG. 13. Probability distribution of the MMTs compared with the
Markovian predictions [Eq. (A7)] for the stochastic model (see Fig.
10).

FIG. 14. Block entropies hn vs n for the stochastic model, comput-
ed from a sequence of 106 symbols.

FIG. 12. Correlation functions compared with the Markovian pre-
dictions [continuous lines, from Eq. (A11)] for the stochastic model
(see Fig. 10).

present still lacking, as it would imply the evaluation
of both one- and two-particle statistics parameters,
which has been done only in the context of purely dif-
fusive particle exchange investigations (see, e.g., Pou-
lain and Niiler 1989). However, in the real ocean we
expect both the above mixing mechanisms, discussed
in section 2, to be present at the same time.

One of the interesting results of the previous sections
is not only that we can look at particle exchange in
terms of Markovian processes, but also that the sampling
time suitable for the description of chaotic and turbulent
exchange are of the same order of magnitude for fairly
realistic simulations. This suggests the feasibility of a
numerical experiment in which a stochastic term is add-
ed to a time-dependent large-scale velocity field.

In addition, in the introduction we mentioned the is-
sue of a possible inconsistency of kinematic models as
to the lack of Lagrangian conservation of quantities such

as potential vorticity. This difficulty, which has been
recently discussed at length for two-dimensional chaotic
flows (see, above all, Brown and Samelson 1994), is
overcome in the combination of the two mixing pro-
cesses, as turbulent diffusion can be seen as a sort of
dissipation, which therefore acts so as to ‘‘smear’’ po-
tential vorticity gradients.

In this numerical experiment we use the model equa-
tions (6) and (7) with u (M )(x, t) given by the stream-
function (2) with the time-dependent perturbation (4),
and for the turbulent velocity du (T )(x, t) we use the
stochastic process defined in Eqs. (27)–(28); the param-
eters are B0 5 1.2, e 5 0.3, v 5 0.4, u 5 p/2, s 5
0.05, and t 5 T/4 where T 5 2p/v. As can be seen,
this choice for the parameters is simply a superposition
of the two previous cases.

Also in this case the matrix elements (i.e., the tran-
sition probabilities) are comparable with the other ones
(see Table 1). As shown in Figs. 15 and 16, the distri-
butions of the residence times and of the meridional
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FIG. 15. Probability distributions of the first exit times from states
1, 2, and 3 in the model with chaotic advection combined with tur-
bulent diffusion with parameters: B0 5 1.2, v 5 0.4, e 5 0.3, and
s 5 0.05, t 5 T/4 where T 5 2p/v. The straight lines are the
Markovian predictions given by Eq. (A5) with Wii of Table 1 (case
C).

FIG. 16. Probability distributions of the MMT compared with the
Markovian predictions [Eq. (A7)] for the model and the parameters
of Fig. 15.

FIG. 17. Correlation functions compared with the Markovian pre-
dictions [Eq. (A11)] model and the parameters of Fig. 15.

mixing times display the same qualitative behavior as
the pure diffusive case (cf. Figs. 11 and 13), from which
we can deduce that for these features the most relevant
effect is due to the diffusive term.

As to the correlation function (Fig. 17), there is a
remarkable improvement in catching the correlation
functions and the meridional mixing time distribution
by means of the Markovian approximation with respect
to either the purely chaotic or the purely diffusive case.
In general, the presence of diffusion tends to decrease
the memory effects so that the Lagrangian dynamics
becomes closer to a Markov chain than a purely deter-
ministic case in which nontrivial long-term correlations
may render a first-order Markovian approximation in-
appropriate.

5. Discussion and conclusions

In this paper particle exchange in a meandering jet
has been investigated by means of a kinematic model
in which mixing is obtained by two different mecha-
nisms: chaotic advection and turbulent diffusion. The
large-scale structure of the jetlike flow is assigned in
terms of a stationary streamfunction. This has been
modified in two ways in order to provide the requested
fluid exchange: chaotic advection is induced by adding
a time-dependent, relatively small perturbation to the
steady portion of the streamfunction. Alternatively, tur-
bulent diffusion has been introduced by superimposing
a stochastic field to the latter. The turbulent field has
been selected so as to resemble as closely as possible
the typical effect of upper ocean turbulence in the ab-
sence of coherent structures. Numerical simulations
have been carried out for a case in which the two above
effects have been jointly present, trying to take into
account the richness and complexity of situations ob-

served in the ocean, where the two different mixing
mechanisms are thought to be present simultaneously,
even if possibly acting at different time and space scales.

The intrinsically different nature of the two investi-
gated mixing mechanisms has resulted in the past in
disjointed descriptions of their respective effects: cha-
otic advection in correspondence of meandering jets has
been studied, for example, by means of methods derived
from the dynamical systems theory (Pierrehumbert
1991; S92; Wiggins 1992; Duan and Wiggins 1996),
whereas the action of turbulent diffusion was addressed
by phenomenological Lagrangian motion analysis (B91;
DGO93).

In this paper mixing is studied in terms of particle
transitions among areas of the physical two-dimensional
space characterized by qualitatively different flow re-
gimes, observed as realizations of a Markovian process.
Given the structure of the velocity field, the partition of
the space accessible to particles is self-evident and phys-
ically consistent. A delicate point is obviously the choice
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of the appropriate timescale for sampling the process.
However, in our cases an inherent timescale is present
in the velocity field, and this is set by, in turn, either
the space–time structure of the deterministic portion of
the flow (chaotic case) or by the intrinsic memory time-
scale present in the stochastic velocity field. The Mar-
kovian approach is, in this sense, a quite natural one to
undertake when looking at the overall mixing from a
unified perspective, embedding elements of dynamical
systems, and of stochastic process theory. Also, it is an
alternative way to look at diffusion avoiding the usual
diffusion coefficients, whose general relevance in geo-
physics has been recently subject to debate (see Artale
et al. 1997).

For some fluid exchange properties, the effects of the
two above mixing mechanisms are comparable with the
results of the Markovian approximation: this is the case,
for instance, of the exit times of particles from the jet
and the recirculating regions north and south of it. On
the other hand, chaotic advection and turbulent diffusion
act quite differently, under that perspective, when it
comes to meridional mixing and correlation functions.
The failure of the Markovian approximation for the
characterization of the meridional particle exchange in
the chaotic case is due to nontrivial long-term memory
effects. Since turbulent diffusion is modeled by a non-
white noise process in the stochastic velocity field, we
would expect for the turbulent case a closer behavior
to that predicted by the Markovian approximation. For
the same reason, given the results for the purely chaotic
simulations, the combined effect of chaos and diffusion
was expected to be well described in Markovian terms.
This is indeed the case, and the results for the joint fluid
exchange situations agree quite closely with the Mar-
kovian predictions.

This qualitative difference between chaotic and dif-
fusive frontal mixing in our process model may con-
tribute to the understanding of previous results: kine-
matic models typically show relatively strong exchange
between jet and recirculating regions and little cross-jet
mixing (as mentioned in the introduction: see, e.g., S92
and DGO93). The weakening of long-term memory ef-
fects induced by the joint presence of chaotic and tur-
bulent mixing, which is seen in our simulations, makes
our results closer to reality with respect to the cases in
which only one of the mechanisms is present. In other
words, it makes the comparison with transport proper-
ties derived from a first-order Markov process even
more satisfactory. With increased availability of La-
grangian data in the Gulf Stream, a natural further step
will be to apply the technique proposed in this paper to
experimental drifter data; this will constitute the subject
of future investigation.

It is worth stressing that the possibility of looking in
terms of a Markovian approximation at mixing in re-
gions characterized by a quite complex flow structure,
even in the presence of different transport mechanisms,
can have quite interesting applicative consequences.

When the small-scale details of mixing are beyond our
interest, and if and when our flow system shows fairly
well-defined timescales, it is apparently possible to look
at particle exchange in a relatively simple manner, over
timescales that allow for a reduction of the sampling
rate. This aspect often turns out to be a critical constraint
for the undertaking, for example, of Lagrangian inves-
tigations of the real ocean, where reducing the required
sampling rate can result in reducing the amount of data
to be collected and transmitted.
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APPENDIX

Some Properties of Markov Chains

An excellent introduction to Markov chains can be
found in Feller (1968). In this appendix we only sum
up some formulas that are useful in describing some
relevant properties of our system.

A Markov chain is a stochastic process such that the
random variables describing state of the system (in our
case the cell occupied by the tracer particle) and time
are discrete and the probability to be in a given state at
time n depends only on the state at time n 2 1.

All the properties of a Markov chain can be derived
from the transition matrix, {Wij}, whose elements are
the probabilities to be in state j at some time n being
at time n 2 1 in state i. For example, the probability
to go to state j starting from i in n steps is simply

Prob(i → j; n) 5 (Wn)ij. (A1)

First of all we have

W 5 1. (A2)O i j
j

In addition to matrix {Wij} one can compute the station-
ary probabilities Pi to visit the cells Ai as elements of
the (left) eigenvector corresponding to the eigenvalue 1:

P 5 P W . (A3)Oj i i j
i

Notice that Eqs. (A2) and (A3) are rather general results
that hold for a generic discrete stochastic process. Equa-
tion (A2) describes the conservation of probability and
Eq. (A3) is nothing but the Bayes theorem. In order to
have ergodicity and mixing properties, the Markov
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chain must have a nonzero probability to pass through
any state in a finite number of steps; that is, there exists
a value of n such that (Wn) ij . 0 (Feller 1968). Defining
ri(t) as the probabilities to visit state i at time t, for a
Markov chain, we have

r (t 1 1) 5 r (t)W . (A4)Oj i i j
i

In this way one obtains the evolution of the probability
vector ri (see Rickman and Froeschlè 1979). Equation
(A3) corresponds to t → ` in Eq. (A4); that is, the
equilibrium distribution ri(`) 5 Pi.

The probability of the first exit times from state i can
be simply defined as the probability to stay for n 2 1
steps in state i times the probability to exit at step n;
that is,

Pi(n) 5 (1 2 Wii)(Wii)n21, (A5)

which can be rewritten as

(1 2 W )i iP (n) 5 exp(2na), with a 5 |lnW |.i i i[ ]Wii

(A6)

In a similar way we can define the probability f ij(n)
of the first arrival from state i to state j at step n. This
is nothing but the probability to arrive at state j starting
from i in n steps, that is, (Wn) ij, minus the probability
of first arrival at step n 2 k times the probability of
return in k steps, that is, (Wk) jj, with k 5 1, . . . , n 2 1:

n21

n kf (n) 5 (W ) 2 f (n 2 k)(W ) . (A7)Oi j i j i j j j
k51

For each state of a Markov process a correlation func-
tion can be defined for the variable xi(n), which is equal
to 1 if at time n state i is visited and to zero otherwise
[see Eqs. (23)–(24)]. The normalized correlation func-
tion

2^x (0)x (n)& 2 ^x (0)&i i iC (n) 5 (A8)i 2 2^x (0) & 2 ^x (0)&i i

is strictly related to the diagonal element (Wn) ii and to
the stationary frequency Pi. Notice that

^xi(0)& 5 Pi, ^xi(0)2& 5 Pi. (A9)

Furthermore, being Pi the probability that the initial
state at n 5 0 be i and (Wn)ii the probability to be in i
again after n iterations, one has

^xi(0)xi(n)& 5 Pi · (Wn)ii (A10)

and therefore

Ci(n) 5 [(Wn)ii 2 Pi]/(1 2 Pi). (A11)
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