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H I G H L I G H T S

! A suspension of gyrotactic cells is
placed in a flow in uniform rotation.

! Swimming cells are observed to ac-
cumulate around the axis of rotation.

! A stochastic model for gyrotactic
swimmers is introduced and studied.

! Analytical solutions of the model
reproduce the experimental cell dis-
tributions.

! Numerical simulations gives quanti-
tative agreement with the observed
dynamics.
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a b s t r a c t

A suspension of gyrotactic microalgae Chlamydomonas augustae swimming in a cylindrical water vessel
in solid-body rotation is studied. Our experiments show that swimming algae form an aggregate around
the axis of rotation, whose intensity increases with the rotation speed. We explain this phenomenon by
the centripetal orientation of the swimming direction towards the axis of rotation. This centripetal fo-
cusing is contrasted by diffusive fluxes due to stochastic reorientation of the cells. The competition of the
two effects lead to a stationary distribution, which we analytically derive from a refined mathematical
model of gyrotactic swimmers. The temporal evolution of the cell distribution, obtained via numerical
simulations of the stochastic model, is in quantitative agreement with the experimental measurements
in the range of parameters explored.

& 2016 Published by Elsevier Ltd.

1. Introduction

Many phytoplankton species are able to swim and their moti-
lity affects several basic processes in their life and ecology
(Smayda, 1997; Reynolds, 2006; Kiørboe, 2008; Elgeti et al., 2015).
Swimming allows phytoplankton to explore the water column,
moving from the well-lit surface layers during the day to the nu-
trients-rich deeper layers at night (Lieberman et al., 1994; Cullen,
1985) (see also Bollens et al., 2011 and references therein). In order
to perform this vertical migration, many phytoplankton cells are

guided by an orienting mechanism when swimming. One of the
simplest mechanism leading to orientation in the vertical direction
is bottom-heaviness (Wager, 1910). The unbalanced distribution of
mass inside the cell induces a mechanical torque, due to gravity
and buoyancy forces, which orients the cell in the direction op-
posite to gravity. This torque competes with the viscous torque,
due to the hydrodynamic shear, which tends to rotate the cell.
When the swimming direction results from the balance between
this two torques, the organism is said to be gyrotactic (Kessler,
1985; Pedley and Kessler, 1987, 1992).

Gyrotaxis generates remarkable spatial distributions of swim-
ming cells. In laminar conditions, it produces beam-like accumu-
lations in vertical pipe flows (Kessler, 1985) and concentrated thin
layers in horizontal shear flows (Durham et al., 2009). In general,
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it has been shown that the interplay between motility and fluid
motion can generate small scale clustering (Torney and Neufeld,
2007, 2008). In particular, gyrotactic motility has been recently
shown, by theoretical analysis and numerical simulations, to in-
duce intense small-scale fractal clustering in turbulent flows
(Durham et al., 2013; Zhan et al., 2014; Fouxon and Leshansky,
2015; Gustavsson et al.,), providing a mechanisms for the micro-
patchiness observed in motile phytoplankton (Malkiel et al., 1999).
Turbulence is characterized by extreme fluctuations of fluid ac-
celeration, which can locally exceed gravity even at moderate
Reynolds numbers (La Porta et al., 2001). The origin of these
fluctuations has been traced back to small-scale vortices generat-
ing intense centripetal accelerations (Biferale et al., 2005). For
applications in turbulent flow, the gyrotactic model has been re-
cently modified to take into account the effect of fluid acceleration
in the mechanical torque (De Lillo et al., 2013). Remarkably, nu-
merical simulations of turbulent flows have shown that the effect
of fluid acceleration is to enhance the patchiness of gyrotactic
phytoplankton by gathering cells into small-scale vortices (De Lillo
et al., 2014).

In this work, we study experimentally, analytically and nu-
merically the behavior of gyrotactic swimming cells in a controlled
environment of uniform vorticity – i.e. a cylindrical water vessel in
solid-body rotation. We observe that phytoplankton cells, initially
uniformly distributed in the container, aggregate towards the axis
of rotation eventually reaching a stationary, Gaussian-like dis-
tribution. We show analytically and by means of numerical si-
mulations that a stochastic formulation of the refined gyrotactic
model, which takes into account the fluctuations of the swimming
direction (see (De Lillo et al., 2013) and also (De Lillo et al., 2014)
where preliminary qualitative results of the experiment were re-
ported), quantitatively explains the time evolution of cell accu-
mulation toward the rotation axis and the asymptotic accumula-
tion at different rotation frequency.

The remaining of the paper is organized as follows. In Section 2
we introduce the experimental method, the theoretical model, the
different analytical techniques and the numerical method. In
Section 3 we discuss the data analysis and we compare the ex-
perimental results with the theoretical and numerical predictions.
Finally, Section 4 is devoted to conclusions. Technical details on
the analytical computations are presented in the Appendices.

2. Methods

2.1. Laboratory experiments

We performed laboratory experiments using cultures of the
unicellular freshwater flagellate strain of Chlorophyceae, Chlamy-
domonas augustae. C. augustae is inoculated in 250 ml Erlenmeyer
flasks containing 200 ml of liquid Z medium (Andersen, 2005).
Cultures are kept at constant temperature of 25 °C under artificial
illumination provided by fluorescent light producing about
2000 lux with a 16:8 h light:dark cycle. Culture growth is esti-
mated by measuring the dry biomass concentration and the
number of cells. Samples for dry weight (dw) calculation are taken
in triplicate and a gravimetric determination is performed (Chini
Zittelli et al., 2000). Triplicate cell counts are carried out for each
sample by loading 0.01 ml of sample on a Thoma's counting
chamber and the averaged value was determined. Cell counts are
performed by using a hemocytometer. Experiments are realized
about 3 weeks after inoculation of the culture and after dilution
into fresh medium to reach a concentration of ≃ ×5 10 cell/ml4 to
avoid collective phenomena.

The experimental setup is sketched in Fig. 1. A suspension of

gyrotactic cells is placed in a small cylindrical vessel of inner ra-
dius =R 18 mm and height =H 57 mm over a plate that rotates at
angular velocity Ω, digitally controlled. After a short spin-up time
of order νΩ( )R/ 1/2 (ν is the kinematic viscosity of water) the fluid in
the vessel reaches the solid-body rotation regime (Greenspan and
Howard, 1963), at which we defines the reference zero time for the
experiment. We remark that this regime is reached after a series of
physical processes characterized by complex secondary flows.
Nonetheless, this initial transient is negligible since the spin-up
time for our vessel is of the order of few seconds and the dis-
placement of the swimming cells in this transient is very small.

All these preparatory processes are performed in darkness or
with a low power red light at wavelength 655 nm not seen by
algae (Harris, 2009). At time t¼0 and every Δt (typically Δ =t 15 s)
a blue laser sheet (power 100 mW, wavelength λ = 450 nm) from
one side of the vessel is turned on for less than one second and a
picture of the vessel is taken by the camera and acquired by the
computer. Each experiment, for a specific value of Ω, lasts for
15 min after which the plate is stopped and the culture is homo-
genized. Control experiments are performed in similar conditions
by using a suspension of cells killed with a solution of 8% v/v
ethanol. The frequency of rotation Ω π= ( )f / 2 ranges between 4 Hz
and 8 Hz, corresponding to a centripetal acceleration Ω=a Rc

2 at
the border of the vessel between 11 m/s2 and 45 m/s2, in all cases
larger than the gravitational acceleration.

The laser sheet induces fluorescence of the C. augustae cells
whose emission spectrum has a peak around 685 nm (determined
by a spectrophotometer) (Harris, 2009). Fluorescence images are
taken by a digital camera (resolution 3000# 2000 pixels) with a
red filter (BþW 091 Dark Red) which cuts all wavelengths below
600 nm. Samples of the fluorescence images are shown in Fig. 1.
Calibration of the images with the cell density is performed by
taking pictures of homogeneous suspension (not in rotation) with
known concentrations (determined by a hemocytometer). Images
of the vessel filled with distilled water are used to define the
background noise (due to background light and CCD noise) which
is averaged over realizations and space and removed from the
experimental images. An additional source of noise in the images
is due to the presence of non-motile cells and impurities in the
solution. These produce a non-zero background in the images and
therefore a measured cell density which never vanishes (i.e. the
dark regions of the images in Fig. 1 are never really “black”). We
will need to take into account of this background contribution
when comparing our experimental results with the theory. Spatial
calibration is performed by a micrometric pattern inside the vessel
filled with water, which is also used to compensate the optical
deformation induced by the cylindrical surface of the vessel.

Images acquired by the camera at different times are used to
measure the evolution of the radial density ( )n r t,exp of algae, after

Fig. 1. Sketch of the experimental setup. The cylindrical vessel filled with a sus-
pension of C. augustae is placed over a table rotating with angular velocity Ω π= f2 .
A blue laser (power 100 mW , wavelength λ = 450 nm) vertical sheet, generated by
a cylindrical lens, is directed in the central plane of the vessel. Fluorescent images
of cells are acquired by a Nikon CCD camera at resolution 3000 # 2000 pixels with
a low-pass red filter at 600 nm. The rectangular area represents the measurement
region. The pictures on the right are two examples of the images (central part)
taken by the camera at the time =t 600 s for =f 5 Hz (top) and =f 8 Hz (bottom).
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averaging over the vertical direction. In principle, at very long
times, cells can accumulate toward the top of the vessel. However,
on the timescale of the experiment we do not observe significant
dependence of the local density on the vertical coordinate. The
radial density is computed over a portion of the image of height

=h 30 mm and width =R2 24 mmv centered at the cylinder axis.
We limit the acquisition to <R Rv in order to reduce optical de-
formations and possible wall effects.

2.2. Mathematical models

The mathematical model for gyrotactic algae was introduced by
Kessler (1985), Pedley and Kessler (1987, 1990), on the basis of the
observation that bottom-heavy swimming micro-organisms focus
in the center of a pipe when the fluid flows downwards. The
swimming direction results from the competition between grav-
ity-buoyant torque, due to bottom-heaviness, and the shear-in-
duced viscous torque. Recently, the model has been extended to
include the acceleration induced by the fluid flow (De Lillo et al.,
2013, 2014), an effect which can be important in turbulence (La
Porta et al., 2001).

Due to the small size (∼ μ10 m) and the small density mismatch
with the fluid (less than 5%), cells are represented as point-like,
spherical and neutrally buoyant particles (for a recent refined
analysis see Ref. (O'Malley and Bees, 2012)) transported by the
fluid velocity ( )u x t, at cell position x with a superimposed
swimming velocity vs

̇ = + ( )x u v p. 1s

The magnitude of the swimming velocity, vs, is assumed constant,
while the swimming direction p evolves as

ω Γ̇ = − [ − ( · ) ] + × +
( )

A A
v

p p p p1
2

1
2

.
2o

r

The first term describes the orientation towards the direction
opposite to the acceleration A in the cell reference of frame with
characteristic speed ν δ=v 3 /o (δ is the cell center-of-mass dis-
placement relative to the geometrical center and ν the fluid ki-
nematic viscosity). In the original model only gravity is taken into
account and =A g . Here, following (De Lillo et al., 2013, 2014), we
consider the total acceleration, due to gravity and fluid accelera-
tion =a ud dt/ (acceleration due to swimming is neglected), so
that = −A g a. The second term in the rhs of (2) represents cell
rotation due to the local vorticity ω ∇= × u. The last term Γr re-
presents rotational diffusion in the swimming directions, which
phenomenologically models the intrinsic stochasticity in the
swimming behavior (Hill and Häder, 1997).

We emphasize the simplicity of the above model that neglects
many details, including the unsteadiness of swimming due to
flagella beating, deviations from spherical shape, cell–cell inter-
actions and the feedback of cell motion on the surrounding fluid.

2.3. Deterministic motion in solid body rotation

We study analytically and numerically the motion of gyrotactic
swimmers in the velocity field generated by the solid body rota-
tion of the cylinder along its vertical axis: Ω Ω= ( − )u y x, , 0 .
Vorticity is parallel to gravity, ω Ω∇= × = ( )u 0, 0, 2 , and the
(centripetal) acceleration Ω Ω= ( − − )a x y, , 02 2 is orthogonal to
gravity = ( − )g g0, 0, .

We start by considering the dynamics in the absence of sto-
chastic terms (i.e. Γ = 0r in (2)) whose effects will be discussed in
the following section. In this limit it is possible to derive analyti-
cally the motion of swimming cells and show that they accumulate
exponentially in time on the axis of rotation.

By introducing cylindrical coordinates with = ( )zx r, and

= ( )pp p ,r z , such that Ω= ( − )A r g,2 and Ω= ( )⊥u r , 0 (with
= ( − )⊥r y x, ), Eqs. (1) and (2) become

Ω̇ = + ( )⊥ vr r p 3s r

̇ = ( )z v p 4s z

γ γ Ω̇ = − [ + − ( · ) ] + ( )
⊥

B
pp r p r p p p1

2 5r z r r r r

γ̇ = [ − + ( · ) ] ( )p
B

p pr p1
2

1 6z z r z
2

where = ( − )⊥ p pp ,r y x . The two parameters ≡B v g/o and γ Ω≡ g1/ / 2

represents the characteristic time of reorientation under gravity
and the radial distance at which fluid and gravitational accelera-
tion are equal.

A solution of the above equations can be obtained under the
hypothesis of local equilibrium in the swimming direction, i.e. by
assuming ̇ =p 0 locally. Physically this requires that the char-
acteristic orientation time B is faster than the typical displacement
time. Within this approximation one can show (see Appendix A)
that the equilibrium swimming direction peq is simply opposite to
the total acceleration, −A, i.e.

γ
γ γ

= −
|( − )| = −

+ ( ) + ( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

a g
a g

r

r r
p

1
, 1

1
.

7

eq
2 2

When γ ⪡r 1, the distance from the axis evolves as γ̇ = −r v rs im-
plying that cells position moves exponentially towards the rota-
tion axis r¼0:

( ) = ( ) ( )γ−r t r e0 . 8v ts

For general values of γr the time evolution of r(t) is more com-
plicated but asymptotically the above results remain valid (see
Appendix A for details).

2.4. Stationary distribution in presence of rotational diffusivity

The deterministic model predicts that swimming cells should
converge on the rotation axis. In reality, stochastic reorientation of
the swimming direction, due to different biological behaviors,
causes the cells to weakly deviate from the convergent trajectories
predicted by (8), preventing the population from collapsing onto
the rotation axis and eventually producing accumulation in a finite
volume.

Because we are considering stochastic effects, which can be
conveniently modeled as rotational diffusivity (Hill and Häder,
1997; Pedley and Kessler, 1992), in the following we will not dis-
cuss individual trajectories, rather we shall focus on the cell den-
sity ( )xn t, which can be directly compared with the experimental
measurements. We report here the basic ingredients and results of
our approach, which is based on the so-called Generalized Taylor
Dispersion theory (Frankel and Brenner, 1989), applied to gyro-
tactic phytoplankton (Bearon et al., 2011, 2012). The interested
reader can find details of this approach in references Hill and Bees
(2002), Manela and Frankel (2003), and Bearon et al. (2011, 2012)
(see also Appendix B).

We introduce the probability density function ( )7 x tp, , to find
a cell at position x swimming in direction p. The evolution of 7 is
ruled by the Fokker–Planck equation

∇ ∇ ∇∂ + ·( ̇ ) + ·( ̇ − ) = ( )7 7 7 7x dp 0, 9xt p pr
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where ̇x and ṗ are given by (1) and (2) and dr is the rotational
diffusivity coefficient (Pedley and Kessler, 1990, 1992). The quan-
tity we are interested in is the population density,

∫( ) = ( )7x xn t tp p, d , , . Essentially, we seek for an effective evo-
lution equation for the population density in terms of the advec-
tion–diffusion equation (Pedley and Kessler, 1990, 1992; Bees et al.,
1998; Hill and Bees, 2002; Manela and Frankel, 2003; Bearon et al.,
2011, 2012)

∇∂ + ·( − ∇ ) = ( )'Vn n n 0, 10x xt

where V and ' are the effective drift and diffusivity tensor,
respectively.

The main idea for going from (9) and (10) is to assume that the
orientation dynamics is the fastest process. Consequently, we can
treat p as a random unit vector with probability density function

( )f p given by the stationary solution of the Fokker–Planck equa-
tion ∇∂ + ·( ̇ − ∇ ) =f f d fp 0t p pr (Pedley and Kessler, 1990, 1992; Bees
et al., 1998). Within this approximation, on timescales longer than

d1/ r , we have that the effective drift becomes
∫= + 〈 〉 = + ( )V u uv v fp p p pds s . The derivation of the diffusivity

tensor is more complicated (see Appendix B for details) and is
based on the so-called Generalized Taylor dispersion theory, which
has been originally used to derive ' for gyrotactic swimmers in
homogeneous shear flow (Hill and Bees, 2002; Manela and Fran-
kel, 2003). The basic idea of the method (see supplements of
(Bearon et al., 2011) for a clear explanation of the method) is to
exploit again the separation of time scales between orientational
and positional dynamics to compute the second (spatial) moments
of the distribution ( )7 x tp, , averaged over the cell orientation, the
latter defines the diffusion tensor describing the evolution of the
population density ( )xn t, . The method can be extended to in-
homogeneous shears, for which the mean cell orientation can
depend on the position, provided that the relaxation in the
swimming direction is sufficiently fast (Bearon et al., 2011). We are
here in a similar situation: the equilibrium orientation direction
depends on the distance from the axis, according to (7). We
therefore assume that, at each distance r, the distribution of or-
ientations relaxes to a stationary distribution which parametrically
depends on r. Within this adiabatic approximation, exploiting
previous computation done in the case in which only gravity is
acting (Bearon et al., 2011, 2012), we are able to obtain explicit
expressions for the drift coefficient and the diffusivity tensor.

Once ( )rV and ( )' r are known, we can solve (10) at stationarity,
i.e. when centripetal flux, controlled by swimming, is balanced by
the diffusive (centrifugal) flux due to random reorientation. The
main analytical result of our analysis is the explicit expression of
the stationary radial population density which, for γ( )⪡r 1, takes the
Gaussian form (see Appendix B for details)

γ
λ

( ) = −
( ) ( )

⎛
⎝⎜⎜

⎞
⎠⎟⎟5n r r

v BF
exp

2 11
s

s

2

3
2

where λ( )F3 a dimensionless function of the parameter λ = ( )Bd1/ 2 r ,
and the coefficient 5 can be written in terms of the total number
of cells Ns as γ π λ= ( ( ))5 N HvBF/ 2s s 3

2 .
From the distribution (11) we obtain the average distance of the

population from the cylinder axis in stationary conditions which
reads

∫
∫ π γ λ〈 〉 ≡

( )

( )
= ( )

( )

⎛
⎝⎜

⎞
⎠⎟r

rn r dr

n r dr

v B
F2 ,

12
s

R
s

R
s

s0

0

1/2

3

where the subleading contribution from the upper integration
extreme R has been neglected.

2.5. Population evolution: Numerical simulations

The temporal evolution of the cell density cannot in general be
obtained analytically. Therefore, in order to compare the model
with the experimental measurements, we performed a Monte
Carlo simulations of (9) directly simulating stochastic trajectories
from Eqs. (3), (5), (6) using a Runge–Kutta fourth order
scheme (the vertical dynamics (4) is not needed as we are inter-
ested in the radial distribution). The cell's parameters vs, B and dr
are chosen, among the typical values given in literature, in order to
have a good fit of the stationary distribution, as described below.
The parameter γ Ω= g/2 is varied according to the experimental
rotation frequency, with =g 9.8 m/s2.

The simulation is initialized placing =N 10s
5 cells randomly in a

circle of radius =R 18 mm with random swimming orientations
uniformly distributed on the unit sphere. We use a time step of

−10 s3 and store the position and velocities of the cells every 15 s,
as in the experiment. From the stored position we can reconstruct
the cell density and other observable. In particular, we will be
interested in the evolution of the average radial distance

∫ ∫〈 ( )〉 = ( ) ( )r t drn r t r drn r t, / , .

3. Data analysis and results

In this section we compare the predictions of the mathematical
model presented in Methods with the outcome of the experi-
ments. The analytical theory of Section 2.4 provides an explicit
expression for the radial population density ns(r) at equilibrium,
while the time evolution of the density is obtained by stochastic
simulations of (9).

As discussed in Section 2.1, in order to compare experimental
and theoretical data, we have to add to the theoretical population
density ( )n r t, a constant value b, representing the observed
background concentration due to non-motile cells and impurities.
Therefore, the experimental density nexp(r) will be compared with
the total density, given by the superposition of the two popula-
tions, ( ) = ( ) +n r t n r t b, ,tot . The total number of cells Ntot becomes

∫π π= + = ( ) + ( )N N N H rn r t dr H R b2 , . 13tot s b

R

0

2

By using the total population density, the stationary average dis-
tance (12) becomes

Fig. 2. Evolution of the experimental radial population density ( )n r t,exp (in arbi-
trary units) for the experiment at frequency =f 7 Hz a time =t 150 s (red squares),

=t 300 s (green circles) and at time =t 600 s (blue triangles) as a function of the
distance from the cylinder axis r. The black solid line represents the theoretical
prediction for the total density in stationary conditions ( ) = ( ) +n r n r btot s with n(r)
given by (11). The cell's parameters are =v 0.1 mm/ss , =B 7.5 s, =d 0.067 rad/sr
( λ = 1.0). The background parameter is fitted to b¼0.017 which corresponds to
β = ≃N N/ 1.1b s (For interpretation of the references to color in this figurecaption,
the reader is referred to the web version of thispaper.).

M. Cencini et al. / Journal of Theoretical Biology 399 (2016) 62–70 65



β
β

〈 〉 = +
〈 〉 + ( )− −r c
r c R

1
2 14s

2

1 1

where 〈 〉rs is given by (12), β ≡ N N/b s is the ratio of the two po-
pulations and = =c R R/ 2/3v is a numerical correction due to the
fact that the experimental radial distribution is sampled only up to

<R Rv .
Fig. 2 shows the time evolution of the experimental radial

population distribution for the experiment at =f 7 Hz. As one can
see, the population of swimming cells progressively concentrates
around the axis of the cylinder (r¼0). After the last time shown in
the plot ( =t 600 s, which corresponds to the images shown in
Fig. 1) the distribution remains statistically stationary. The theo-
retical asymptotic distribution (11) is used to fit the stationary
distribution. As in (11) the cell's parameters enter only in the
combinations v Bs and λ=Bdr we cannot use the stationary

distribution to fit all the parameters. We have therefore chosen to
fix two of the parameters as given by literature i.e. = μv 100 m/ss
and =d 0.067 rad/sr (Harris, 2009; Williams and Bees, 2011), and
to use the orientation time B as a fitting parameter. The resulting
value, =B 7.5 s, is compatible with estimations for Chlamydomonas
(Yoshimura et al., 2003; Roberts, 2006). We remark however that,
as clear from the above discussion, other combinations of the
parameters are possible. The theoretical asymptotic distribution
(11), with the correction of the background term (b¼0.017), fits
very well the experimental data.

Fig. 3 shows the theoretical and experimental values of the
mean radius 〈 〉r in stationary conditions. The experimental sta-
tionary radius is obtained by computing, for different values of the
rotation frequency f, the time evolution of

∫
∫

〈 ( )〉 =
( )

( ) ( )
r t

rn r t dr

n r t dr

,

, 15
exp

R
exp

R
exp

0

0

v

v

and looking at the plateau that can be observed at long time values
(see Fig. 4). Fig. 3 shows both the theoretical value in the absence
of background (12), which clearly underestimates the asymptotic
radius, and the expression (14) corrected with the background
coefficient β = 1.1. We remark that the theoretical line in Fig. 3 is
obtained without free parameters, as β is fitted from the asymp-
totic distribution ns(r) for a single rotation frequency (Fig. 2).

By using the numerical method discussed in Section 2.5 it is
possible to obtain the time evolution of the radial population
density ( )n r t, and of the mean radius. We remark that the time
evolution of the population density depends on a different com-
bination of the parameters with respect to the stationary dis-
tribution. Therefore, the ability to reproduce the experimental
dynamics from the numerical integration of (3)–(6), without ad-
ditional fitting parameters, is both a test of the validity of the
mathematical model and of the chosen set of parameters. The time
evolution of the mean radius is shown in Fig. 4 for the four dif-
ferent values of rotation and with the contribution of the back-
ground term b¼0.017 as for the theoretical analysis. The presence

Fig. 3. Stationary radius of cell population, 〈 〉r from experimental distribution (15)
(red circles) and theoretical prediction, both in the absence of non-motile back-
ground cells (12) (dotted line) and with background contribution (14) with β = 1.1
(solid line). The error bars on the experimental data are obtained from the temporal
fluctuations of the asymptotic radius for >t 600 s. The blue triangles represent the
asymptotic values obtained from numerical simulations of a population of 105

swimmers as explained in Section 2.5 (For interpretation of the references to color
in this figurecaption, the reader is referred to the web version of thispaper.).

Fig. 4. Cell population radius as a function of time measured in experiments (symbols) and in simulations with background β = 1.1 (red solid line). Model parameters as in
Fig. 2. We introduced in the numerical data a time shift Δt in the range 10–50 s as the initial phase of spin-up is not reproduced by the simulations (For interpretation of the
references to color in this figurecaption, the reader is referred to the web version of thispaper.).
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of an initial plateau of almost constant 〈 〉r (which is more evident
for the experiments at lower frequencies) is a consequence of the
fact that the average in (15) is taken over the inner cylinder of
radius <R Rv (indeed, the analysis of the numerical data up to R
shows that the plateau disappears). The quality of the agreement
between the theoretical prediction and the experimental evolu-
tion of the mean radius is remarkable.

4. Conclusion and discussion

We have studied the centripetal focusing of gyrotactic micro-
algae around the axis of a rotating container. By using a refined
model of gyrotactic motion (which takes into account the effect of
fluid acceleration on cell orientation) we derived an effective
equation for the evolution of the population density inside the
container. The analytical predictions for the stationary distribution
and its characteristic size reproduce accurately the experimental
data obtained from a population of C. augustae in a vessel rotating
with different angular velocities. The time evolution of the dis-
tribution is obtained by stochastic simulations of the Fokker–
Planck equation. Also in this case the results reproduce accurately
the experimental data without additional free parameters.

One of the motivations of our study is to better understand the
behavior of gyrotactic organisms in a turbulent environment
(natural or artificial) characterized by strong region of vorticity.
Indeed, recent numerical simulations have shown that gyrotactic
swimmers are able to concentrate in regions of high vorticity even
if these regions are very localized and ephemeral, as in the case of
homogeneous turbulence (De Lillo et al., 2014). In this perspective,
the vertical solid body rotator has to be considered as a “toy
model” of a turbulent vortex for which analytical prediction are
possible. Similar configurations of uniform vorticity have been
studied recently and proposed for laboratory experiments in the-
oretically controlled conditions (Thorn and Bearon, 2010; Pedley,
2015). On the basis of our results, artificial turbulent flows could
be designed to optimize the trapping of swimming cells in specific
regions.

More in general, understanding the interplay between swim-
ming and fluid transport is crucial to rationalize phytoplankton
ecology (Reynolds, 2006; Kiørboe, 2008) and also for industrial
applications. For example, many (motile) microalgae are cultured
in photobioreactors to be commercially used as nutrients, for
biofuels production or for cosmetic industry (Borowitzka, 1999). As
bioreactors work both in laminar and turbulent fluid motion
(Croze et al., 2013), a better understanding the interaction be-
tween fluid motion and swimming is fundamental to optimize
efficiency.
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Appendix A. Solution of the deterministic model

The radial evolution of the deterministic model (3)–(6) can be

solved using the equilibrium hypothesis (i.e. assuming that ̇ =p 0,
which should be valid for times much larger than B). The sym-
metries of the problem suggest that = ( )r̂rp pr r and = ( )rp pz z , with

( ) + ( ) =r rp p 1r z
2 2 . To find the expressions for pr and pz , it is con-

venient to multiply (5) by pr , using · =⊥p p 0r r , one obtains

γ γ= − ( ) + ( )r rp / 1r
2 and γ= + ( )rp 1/ 1z

2 whose physical inter-
pretation is transparent: p aligns in the direction opposite to the
total acceleration (see Eq. (7)).

Multiplying (3) by r we obtain that the radial distance evolves
according to

γ
γ

̇ = −
+ ( ) ( )

r v r

r1
.

A.1
s 2

When γ ⪡r 1, Eq. (A.1) reduces to γ̇ = −r v rs implying an exponential
decay of the distance from the axis, see Eq. (8). When γ ⪢r 1,
Eq. (A.1) reduces to ̇ ≈ −r vs so that we have ( ) = ( ) −r t r v t0 s , i.e. a
linear decrease of the distance from the axis of rotation. For gen-
eric γr , Eq. (A.1) is solved by

γ
γ

+ + ( )
+ + ( )

=
( )

γ γ γ+( ) − +( ) −r
r

r

r
e e

1 1

1 1 A.2

r r v t

0

0
2

2
1 1 s

2
0

2

with = ( )r r 00 and = ( )r r t . In typical experimental condition we
have γ ≈ −65 250 for = −f 4 8 Hz so that for = ( )r O 10 cm we have
γ( ) ≈ −r 0.6 2.5. Therefore, at least at the beginning, there will be
deviation from the exponential regime, which shows up in the
latest stage of the (deterministic) evolution.

Appendix B. Derivation of stationary population density in the
presence of rotational diffusivity

Here, we derive the effective drift and diffusion tensor of the
advection diffusion Eq. (10). Then we compute the stationary po-
pulation density and use it to derive the average distance from the
cylinder axis. We detail the method in two dimensions (d¼2),
because algebra is straightforward and closed expressions for the
quantities of interest can be found. We then generalize the result
to d¼3, which is the case relevant for the experiment.

B.1. Analytical approximation in d¼2

As clear from Eq. (3), the fluid velocity causes only rotation
around the cylinder axis and does not contribute directly to the
radial evolution, which is controlled by swimming. However, ro-
tation and, in particular, the associated centripetal acceleration
makes the swimming direction to depend on the radial distance,
as clear from Eqs. (5) and (3). We can thus study the problem in
two dimensions by focusing on the vertical (z) and radial (r) di-
rection only and considering the following dynamics:

θ̇ = = ( )r v vp sin B.1s r s

θ̇ = = ( )z v vp cos B.2s z s

Γ̇ = − ( ( ) − ( ( )· ) ) + ( )A A
B

r rp p p1
2

, B.3r

with γ( ) = − ^A r zr . By choosing θ as the angle with the vertical and
by posing γ Ω= g/2 , we will end up with expressions that can be
directly used in the d¼3 case. The stochastic term Γr represents
rotational diffusion used to model stochasticity in the swimming
orientation (Pedley and Kessler, 1987, 1992). In d¼2, Eq. (B.3) can
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be conveniently rewritten as a stochastic differential equation for
the angle

θ θ γ θ η̇ = − ( + ) + ( ) ( )B
r d t1

2
sin cos 2 . B.4r

Rotational diffusion simply becomes diffusion of the angle, where
η is white noise of unit variance. By nondimensionalizing the time
one easily derives that the orientation distribution is a function of
γ and of the non-dimensional parameter λ = ( )Bd1/ 2 r , quantifying
the cell stability with respect to rotational Brownian motion, a
large (small) value of λmeans that cell orientation is dominated by
the bias (rotational diffusion).

For γ = 0, the model describes the evolution of gyrotactic
swimmers in a two dimensional still fluid, a problem for which the
effective advection-diffusion Eq. (10) for the population density
has been derived analytically (Bearon et al., 2011). Here, we
summarize the results and formulas needed in the following (see
Appendix A.1 of Ref. (Bearon et al., 2011) for a detailed derivation).
The stationary distribution of the swimming orientation, i.e. the
PDF of θ, is the von Mises probability density function with zero
mean, meaning that the average swimming direction is along the
vertical,

θ π λ( ) = ( ) ( )
λ θ( )f

I
e1

2
,

B.5
0

0

cos

where λ( )Ik is the modified Bessel function of the first kind and
order k (Mardia and Jupp, 2009). In the above equation and in the
following we shall use the superscript ( )0 to denote the γ = 0 re-
sults. The population density ( )n r z t, , is described by an effective
advection–diffusion equation like (10) with drift given by

∫ θ θ θ θ λ
λ= ( ) ( ) = ( ( )

( ) )
( )

( ) ( )V v d f v
I
I

sin , cos 0, ,
B.6s s

0 0 1

0

and diffusion tensor

λ λ= { ( ) ( )}
( )

( )
⊥
( )

∥
( )'

v
d

D DDiag , ,
B.7

s0
2

r

0 0

where v d/s
2

r gives the dimensional contribution; ⊥ and ∥ label the
direction perpendicular and parallel to the bias, respectively. For
γ = 0 the swimming direction is biased toward ŷ . The perpendi-
cular component of the diffusion tensor can be found exactly
(Bearon et al., 2011)

λ
λ λ

( ) = −
( ( )) ( )⊥

( )
⎛
⎝⎜⎜

⎞
⎠⎟⎟D

I
1 1 1 .

B.8
0

2
0

2

For the parallel one only an approximate expression (not reported
here, as not needed in the following) can be found.

When γ ≠ 0, swimming is biased toward a direction that de-
pends on r. Our approximation consists in taking r fixed in Eq. (B.4)
and finding the stationary PDF of θ which will depend on r para-
metrically. This is a sort of adiabatic approximation, valid when r
does not change much in the time scale over which the PDF of
orientation becomes stationary. In this way the average swimming
direction will depend on r as

γ
γ γ

^ = −
+ ( ) + ( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

r

r r
b

1
, 1

1
,

B.9
2 2

being at an angle Φ− ( )r with Φ γ( ) = ( )r rarctan with respect to ŷ .
Since r is assumed fixed, the PDF of θ will simply be (B.5) with
mean Φ− ( )r , i.e.

θ θ Φ π λ( ) = ( + ( )) = ( ) ( )
γ

λ θ γ θ
γ( ) ( )

( − )
+( )

f r f r e
I

;
2

.
B.10

r

r0

cos sin

1

0

2

Now the drift and diffusion tensor for the γ ≠ 0 case can be
obtained from those computed at γ = 0 simply changing to a new
(position dependent) frame of reference, essentially we need to
rotate the γ = 0 solution at each point matching the vertical with
the local biasing direction. Introducing the rotation matrix

γ
γ

γ
γ

γ γ

=
+ ( )

−
+ ( )

+ ( ) + ( ) ( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
5

r

r

r

r

r r

1

1 1

1

1

1

,

B.11

2 2

2 2

the drift can be expressed as

λ
λ= = ( )

( )
^

( )
γ( ) ( )5V V v

I
I

b
B.12s

0 1

0

with b̂ given in (B.9), and the diffusion tensor by =γ( ) ( )' 5' 5T0 . As
for the latter we are mainly interested in the radial component
which reads

λ γ λ
γ

=
( ) + ( ) ( )

+ ( ) ( )
γ( ) ⊥

( )
∥
( )

D
v
d

D r D

r1
.

B.13rr
s
2

r

0 2 0

2

Now we can approach the advection diffusion Eq. (10). In par-
ticular, because neither the drift nor the diffusion tensor depends
on z, we can integrate over z and derive the equation for the radial
dynamics, which is the one of interest for us,

λ
λ

γ
γ

∂ − ∂ ( )
( ) + ( )

+ ∂ =
( )

γ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟n v

I
I

r n

r
D n

1
0.

B.14
t r s rr r

1

0 2

Imposing stationarity in the above equation, the resulting ordinary
differential equation can be integrated obtaining

( ) = ( − ( )) ( )5n r G rexp B.15s

with 5 a suitable normalizing constant and

γ( ) = ( ( ) − ( ( )))
( )∥

( )
+G r

d
v

I
I D

g r g rarctan
B.16s

r 1

0
0

with = ( − )⊥
( )

∥
( )

∥
( )+ D D D/0 0 0 and γ( ) = + ( ) +g r r1 /2 In the limit

γ( )⪡r 1, G(r) can be expanded in

Fig. B1. Comparison between analytical computation of the average radial distance
at stationarity and the numerical computation, in both two and three dimensions.
Normalized average radial distance at stationarity, γ〈 〉 ( )r v B A/ /s s d

1/2 (with π=A 4/2
and π=A 2/3 ) vs λ compared with the analytical predictions λ( )F2 and λ( )F3 given
in Eqs. (B.18) and (B.25) respectively (lines). For the case d¼3 the convergence of
the recursion relations requires very high accuracy for λ > 3.
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2
0 0

1

1
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Hence the stationary population takes a Gaussian form.
Then we can compute the average radial distance 〈 〉r s at sta-

tionarity as

∫
∫ γ π λ〈 〉 =

( )
( )

= ( )
( )

∞

∞
⎛
⎝⎜

⎞
⎠⎟r

rn r dr

n r dr
v B

F4 ,
B.19

s
s

s

s0

0

1/2

2

in very good agreement with simulations (Fig. B1).

B.2. Analytical approximation in d¼3

The computation in d¼3 can be performed following step by
step the procedure above described for the two-dimensional
model.

For γ = 0 in d¼3, unlike d¼2, we do not have closed expres-
sions. However, there are exact results expressing the quantities of
interest in terms of series in λ = ( )Bd1/ 2 r , which have been ob-
tained in reference Bearon et al. (2012) (using previous results
from references Pedley and Kessler (1987, 1990, 1992)). We briefly
summarize the results in the following.

For γ = 0, the orientation distribution is the von Mises–Fisher
distribution (Mardia and Jupp, 2009)

μ λ μ λ( ) = ( ) = ( ) ( )λ λ θ( ) ·^f e ep , B.20zp0 cos

with ϕ θ ϕ θ θ= ( )p cos sin , sin sin , cos and μ λ λ π λ( ) = ( )/ 4 sinh . The
drift has the following exact expression (Pedley and Kessler, 1987,
1990, 1992):

∫ λ= ( ) = ( ( )) ( )
( ) ( )V v d f v Kpp p 0, 0, B.21s s
0 0

1

with λ λ λ( ) = −K coth 1/1 ; while the diffusion tensor is

λ λ λ= { ( ) ( ) ( )}
( )
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⊥
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⊥
( )

∥
( )'

v
d

D D DDiag , ,
B.22

s0
2

r

0 0 0

with the two entries perpendicular to the direction of gravity
equal. As for the d¼2 we only need the perpendicular component
which takes the form (Bearon et al., 2012):

λ λ λ( ) = ( ) ( )⊥
( ) −D J , B.230

1
2

with the numerator given by the series

∑λ π λμ λ λ( ) = ( )
( )=

∞
+

+J a4
3

.
B.24k

k
k1

0

2 1
2 1,1

The coefficients ak n, can be obtained by the recursion (see refer-
ences Bearon et al., 2012; Pedley and Kessler, 1990 for details):

Γ Γ

Γ Γ Γ
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2
1 2 3
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2
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1 4 3
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if odd

k n
k n k n k n

k n

1,
, 1 , 1 1,

1,

and =+b 0k n1, otherwise.
With the appropriate rotation matrix, and following the steps

described in Appendix B.1, we obtain the very same expressions
found in d¼2 for the radial component of diffusion tensor (see

Eq. (B.13)). In particular, we have that at stationarity in the limit
γ( )⪡r 1 the population density takes the expression (B.15) with

γ
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Hence, at stationarity, we find the average radial distance

∫
∫ γ
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in perfect agreement with simulation results (Fig. B.5).
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