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Transport in finite size systems: An exit time approach
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In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In
particular, we study models with open streamlines and a finite number of recirculation zones. In the
nontrivial case with a small number of recirculation zones a description by means of asymptotic
quantities (such as the eddy diffusivifyis not appropriate. The nonasymptotic properties of
dispersion are characterized by means of the exit time statistics, which shows strong sensitivity on
initial conditions. This yields a probability distribution function with long tails, making impossible

a characterization in terms of a unique typical exit time. 1@99 American Institute of Physics.
[S1054-150(09)00504-2

In nonideal cases very often it is not possible to charac- ized by different physical and biogeochemical characteris-
terize dispersion in terms of asymptotic quantities such tics. Consequently, the study of mixing processes in corre-
as, e.g., diffusion coefficients. This may happen in geo- spondence of them is important also for multidisciplinary
physical problems involving finite domain systems with investigation¥’ (e.g., the biological effects of longitudinal
no large scale separation between domain size and largest transport in western boundary current extensions, see Ref.
characteristic Eulerian length. In order to characterize  11).
nonasymptotic transport properties in such systems, one The systems we consider are characterized by the joint
can use tools borrowed from dynamical systems theory. presence of open streamline areas where particle motion is
In this perspective, we study here flows with a small num- essentially a ballistic flight and closed streamline regions
ber of recirculation zones by means of exit times and typically distributed according to a periodic geometry, where
suitable probabilistic approximations. particles tend to be trapped. The easiest way to study the
transport properties in such systems is by averaging over
smaller space or over shorter time scales. Typically, this re-
I. INTRODUCTION sults in the possibility of describing dispersion by an equa-
tion for macroscopic quantities of the system such as the
The problem of transport in velocity fields characterizedayerage passive scalar concentration in terms of an effective
by different flow regimes in different subare@=., a “spa-  drift and an effective diffusivity(as classically done by
tIaIIy disordered set of Streamline§)’ has been considered Tay|0r;12 see Ref. 1, for a detailed discussjpat least in the
by many authors. Particular attention has been devoted tgase of standard diffusion. However, a description in terms
steady and time-dependent oceanic and atmospheric flowst equations for macroscopic quantities needs to average out
with recirculation$™ and the related problem of the disper- the small scaldfast features of the velocity field and thus
sion in porous medi&® In this paper we will focus our such approach applies only for asymptotic times, when par-
attention on flows with recirculations of geophysical interesticles have been able to thoroughly sample the different flow
The study of transport properties in presence of recircularegimes in the system.
tions has a crucial relevance, since gyre- or eddy-like recir-  As stressed by Yountpefore reaching this asymptotic
culating patterns are ubiquitous features in different areas alegime very interesting transient behaviors, which cannot be
the world ocean and atmosphere. In the ocean these featurg@sscribed within an effective diffusion model, could occur.
are typically induced by forcing spatial structures at theThe transient regime may be very long and, if the system is
boundariege.g., bottom topography, wind stress curl, coast-inite, the asymptotic one may not be reached. This is, typi-
lines) or by intrinsic dynamical reasorisnesoscale eddigs cally, the case of finite domain systems with no large scale
one interacting with the othelfor a general reference, see separation between the size of the domain and the largest
Ref. 9. characteristic Eulerian length. In realistic flows, which are
It is worth to note that large-scale meandering jetsusually characterized by a fairly limited number of recircu-
which are typically associated with the extensions of westerfations, fluid particles ordinarily sample just a fraction of the
boundary currents, often separate ocean regions characteivailable regimes.
Therefore, it is often not possible to characterize disper-
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needed, as done in Refs. 13—-15 for the characterization dhe largest considered scale. Though strictly speaking the
transport in closed domains; such as the symbolic dynamicerm “doubling time” refers to the threshold rate=2, any
approach to the subdiffusive behavior in a stochastic layevalue can be chosen for even if a too large one might not
and to mixing in meandering jets, respectively, described irseparate different scale contributions.

Refs. 16 and 17; or the study of tracer dynamics in open  PerformingM>1 experiments with different initial con-
flows in terms of chaotic scattering by "Teand ditions for the scalars’ cloud, we define an average doubling

co-workerst®2%and the exit time approach of Ref. 5. time 7(4) at scaled as

The aim of this paper is to describe dispersion in finite M
size systems. In particular, we want to characterize flows T =(T(O)y=— 2 Tm(9), 2
with a small number of recirculations using some ideas stem- M=
ming from the chaotic scattering thedty. and the finite size Lagrangian Lyapunov expohéas

In Sec. Il we briefly review some methods for the study Inr
of transport in nonasymptotic regimes, namely the finite-size  \(8)= ——, 3)
diffusion coefficients and the exit time statistics originated e

from the chaotic scattering phenomenon. Section Il containg this way a finite size diffusion coefficient dimensionally
a description of the two studied modétsaveling wave and turns to be D(8)=6°\(8). It can be shown that the
meandering jetand some numerical results. Section IV is Lyapunov exponenk can be obtained from(d) for 6—0,
devoted to the comparison between numerical results and rRamelyA(6) =\ for <1, wherel, is the Eulerian charac-
probabilistic model. Conclusions are presented in Sec. V. teristic lengtt?®

It is worth noting that the average (@) is different from
II. TOOLS FOR THE STUDY OF NONASYMPTOTIC the usual time averagsee Ref. 25 for a detailed discussion
TRANSPORT PROPERTIES of this poin).
For a tracers’ cloud of noninfinitesimal siZ&6) de-

The investigation of passive tracer diffusion is usually . . .
. . . ends on the details of the nonlinear mechanisms of expan-
reduced to the study of an effective equation describing the.” " e .

. : : Sion: in the case of standard diffusi@\($) is a constant,
long-time, large-distance average tracer concentration behav- "5 14
. . . I.e., 1/I(6)~ 6 <" Thus
ior. Under rather general hypotheses, given an Eulerian ve:

locity field the long-time transport process is uniquely char- _nif ey
acterized by the effective diffusiofor diffusivity) tensor D/é° if o>1,.
D.EJ The fixed scale analysis allows us to extract physical
e .1 information at different spatial scales avoiding some un-
Djj :t“m §<(Xi(t)_<xi>)(xj(t)_<Xj>)>' @ pleasant consequences resulting from working at a fixed de-

lay timet. For instance, in presence of strong intermittency,
yv_herex(t) is the position of _the _tracer_particle at tinte ~ R2(t) as a function oft can be rather different from one
I,j=1,..d, andd is the spatial dimension; the average is reglization to another generating an apparently anomalous
taken over the tracer initial conditions or, equivalently, OVelregime. For a detailed discussion about these possible ef-
an ensemble of tracer particles. The effective diffusion tensofects, see Ref. 14. Let us remark that the above technique
D takes into account the molecular diffusivity and the de-recovers the usual asymptotic description when there is a
tails of the velocity field. Even in presence of simple Eule-|5rge scales separation and also if a genuine anomalous dif-
rian fields(e.g., laminar and periodic in timehe diffusion  fysion occur€® in addition, it constitutes a systematic
coefficient as a function of the parameters of the veloCitymethod to treat situations in which the scales are not well
field can display a rather nontrivial behavdr:* For a de- separated. Moreover, the finite size diffusion coefficient
tailed discussion on the nonasymptotic transport propertieg((g) enables the understanding of the different spreading
see Ref. 24. mechanisms at different scales. This has been recently shown
It is worth underlining that the diffusivity tensdfl) is  jy Ref. 15, where this method is applied to analyzing experi-

mathematically well defined only in the asymptotic limit, mental trajectories described by surface drifters in the Adri-
therefore its use in finite size domains yields meaningfulytic Sea.

results only if the characteristic length of the velocity field Another interesting approach to the study of transport
is much smaller than the size of the domain. If this is not theproperties in finite(lopen systems is thehaotic scattering
case(e.g., in many geophysical settings or plasma phy3ics theory used in Refs. 18—20 for passive tracer advection in
dispersion can be characterized more satisfactorily usingpen flows, see also Ref. 21 for examples, of applications of
concepts and techniques borrowed by the dynamical systenehaotic scattering. In a nutshell, chaotic scattering can be
theory which will be discussed in the following. summarized as follows. A particle arriving from, says

For instance, when one has to cope with systems with-oo enters a regioiidefined as the scattering, or interacting,
finite boundaries one can introduce the “doubling time” region where due to the presence of a potential it scatters,
7(6) at scaled as follows: define a series of threshold& then exits and goes to=o0. Typically, for a rather general
=r"5©), wheres® is the initial size of a cloud of passive class of potentiaf€ the time a particle takes to escape from
scalarde.g., 8 could be the rms radius of the clojjéind  the scattering region can be very sensitive on the impact
then measure the timg(5\?) it takes for the growth from parameteb and thus displaying ahaotic character(like a
59 to sM=r50, and so on forl(8V), T(6?),... upto  ball in a pinball gamg This justifies the definition in terms
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of chaos, even if since chaos is a time-asymptotic conceptnodels have been extensively used in the recent (sas,
from a technical point of view this kind of behavior is not e.g., Refs. 29, 30, 31 An obvious drawback, however,
chaotic: particles after a transietgven if very long leave  might lie in their possible dynamical lack of consistency
the scattering region and enter a regular motion regime.  since the flow field does not result from the integration of the
A nice example of the application of chaotic scatteringequations of motion, leading, e.g., to the lack of conservation
theory in passive tracer study is given in Refs. 18 and 19 foof potential vorticity.
the motion of Lagrangian tracers in blinking vortex-sink sys-  This issue is extensively discussed in Ref. 32, and in
tem and in a von Karman vortex street behind a cylinder in &ef. 33. In addition there are some studies in which this
channel. Tracer particles can temporarily be trapped in celinconsistency is at least partly solved by looking at particle
tain regions, e.g., the wakes of the von Karman street, perexchange in flow regions with vanishing potential vorticity
forming very irregular paths. On the other hand, since thegradients as in Ref. 34; or with piecewise constant potential
non stationarity of the flow is mainly restricted to a finite vorticity, as in Ref. 35. From a phenomenological point of
mixing region around the obstacles, the asymptotic almostiew, this approach can be justified by the fact that, as un-

free particle motion is also recovered. derlined in Ref. 32, this is the case in regions characterized
For the use of the exit time approach for the transporby barotropic or baroclinic instabilities, which typically re-
and mixing in volume preserving maps, see Ref. 28. quire a reversal of the cross-stream potential vorticity gradi-

The analogy between chaotic scattering, occurring irent.
Hamiltonian systems, and passive scalar motion can be The opposite approach with respect to the one adopted in
drawn in formal terms for two dimensional incompressiblethe present paper would be that of fully dynamical models
velocity field8 In this case the Eulerian field is described by (see, e.g., Ref. 36 and references théfginObviously—
a stream-function/(x,y,t), and the corresponding equations even if it seems to be possible to reconcile the approaches in
for the Lagrangian evolution are terms of the subdivision of the potential vorticity field into a
coarse-grained and a fine-grained one, as suggested
ax_ M dy _ M (5)  by*—investigating particle mixing by a kinematic model is
dt ay dt X a relatively crude approximation. However, the fully dy-
Equations(5) are nothing but the canonical equations for anamical approach typically results in flow regimes so com-
one-dimensional time dependent Hamiltonian system, wherglex that identifying single processes and mechanisms within
the stream function plays the role of the Hamiltonian. them becomes very hard; on the contrary, the use of the toy
Since in chaotic scattering the particle exit time from themodel of the present paper is motivated by the fact that de-
interacting region depends strongly on the initial conditionsSpite their somehow artificial character, these simplified
it is interesting to look at the time delay functidhi.e., the  models enable to focus on individual mechanisms and pro-
exit time as a function of the initial positiom(x(0),y(0)),  cesses, and by our interest to explore fluid exchange with a
e.g., with x(0)=x,. In presence of chaotic scattering Novel methodological approach.
7(X0,y(0)), displays a rather irregular shagsee, e.g., Fig. In the reference frame moving with the phase speed of
5.18 in Ref. 27. the wave, the flow field shows a central open streamline
As already remarked, since in chaotic scattering the irfegion(ballistic motior) sided by trapping recirculatiorisee
regular character is confined both in space and tireg one ~ Fig. 1(@]; this flow pattern is a suitable, even if simplified,
has the so-called transient chadke Lyapunov exponent is prototype for studying the effect of a finite number of trap-
trivially zero; however, a sort of high sensitivity on initial ping areas on the longitudinal dispersion of particles.
conditions is suggested by the occurrence of very different The two-dimensional incompressible Rossby wave
time delays for very close deployment locations. flow®® here considered is specified by the following stream
The presence of large excursions for the exit time has afinction:
obvious relevance for transport processes in finite size sys-
tems. The wild variations of(xy,y(0)) pose severe limits Wo(X,y)=Ag Sin(Kgx)sin(Lgy) — oy, (6)
on the possibility to make prediction on the particles behav-
ior and force us to use statistical approaches. This leads wwhereA, is related to the maximum velocity in thedirec-
introduce the probability distribution functio®(7), of the tion, (Kq,L;) is the wave vector and, is the phase speed of
exit times 7(Xq,y(0)). the primary wave in the direction. In(6) ¥ is expressed in
the reference frame co-moving with the primary wave.
In order to reproduce the instabilities usually present in
geophysical flows, we introduce a time-periodic perturba-
In this paper two idealized flow models are studied; bothtion, s¥(x,y,t):
are reminiscent of oceanographic features, namely finite am-
plitude Rossby waves in a channel and meandering jets sided W (X,y,t)=a sin(K;x—Qt)sin(L1y), (7)
by recirculation regions. The approach we use is kinematic,
i.e., we use ara priori kinematically assigned streamfunc- where «>0 is a (not necessarily smallparameter which
tion whose spatial and temporal characteristics resembleontrols the amplitude of the perturbation amd, (L) is the
those of the flow field observed in the real ocean in correwave vector of the perturbatioftsecondary wave Even
spondence of the features of interest. Such very simplifiethough realistic disturbances cannot be characterized in

Ill. TWO SIMPLE FLOWS
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mechanisms discussed in Ref. 30, we chose here a time-
periodic oscillation of the meander amplitude:

B(t)=By+ y coq wt+ 6), 9

where we seBy=1.2, y=0.3, o=0.4, andf= =/2.

The choice of the parameter values was motivated
mainly by the results of the observations by Kontoyiannis
and Watt® and of the numerical simulations by Dimas and
Triantafylou?* Namely, the most unstable waves produced
in the latter work compare very well with the observations of
the former, which show wavelengths of 260 Km, periods of

X ~8 days,e-folding space and time scales of 250 Km and 3
(a) days, respectively. In our case, since the downstream speed
was set to 1 m/s, owfolding time scale would correspond,
in dimensional units, to approximately 3 days.

Let us remark that the dynamical results do not change at
least at a qualitative level, if there is overlapping of
resonance® This happens when> v, . In our choice in-
deedy> . andy. depend onw; for the results of this test,
as well as for a further discussion of the parameter choice
and system sensitivity, the reader is referred to Ref. 17.

It is worth underlining that, even if quite a great deal of
efforts has been devoted to study fluid exchange across the

N jet23%3Lyery little is known as to tracer behavior in the
0 1 2 3 4 5 6 7 along-jet direction(periodic flows with open streamlines
x have been proposed as model for the meandering jets; the
(b) presence of recirculations has been seen to induce nontrivial

effects on the along-jet dispersion, see Refs. 46-49
FIG. 1. (a) Streamlines for the time-independent Rossby wave f|0w with: Tracer partide trajectories have been numerica”y gener-
Ao=Lo=Ko=1, Co=0.5, «=0. The labelsT andB refer to the rapping  41a4 from Eqs(5) with the streamfunctions corresponding to
regions(recirculationg and ballistic onegthe jet channgl (b) The same as . . .
figure (a) for the meandering jet flow withk=47/15, By=1.2, ¢=0.12, the traveling WQVG[(6)—(7)] and the _meanderlng jé(8)—
and y=0. (9)]. However, since the results relative to the two flows are
qualitatively the same, we shall present and discuss just

those obtained for the meandering jet.

terms of a single wave alorfé the perturbatior(7) is a first As can be seen from the streamfunctions, the two flows
step towards a description of the complex structure of transzre periodic in the longitudinal direction. Since we are inter-
port mechanisms in these systems. ested in the characterization of longitudinal transport, the

_The second flow we investigate is a meandering jetnmper of elementary flow structurésr cells, N, consti-
which represents a natural extgnsmn of.the' abovg ROSSt{YJting the system, is a crucial parameter. For very la¥ge
wave system, and it was extensively studied in the Ilteratur@he dispersion properties of the system can be studied using
with particular reference to the Gulf Stredftf! Again, the asymptotic techniques, e.g., the multiscale mefifgd.on
flow can be subdivided into different regions roughly corre-y,4 contrary, we mainly concentrate on systems with a small
sponding to a prograde flovin reality, the current jet core;  \mber of cells nameli.=2— 10

’ C .

in our schematization, the open streamline regimecircu- The first focus of our analysis is the particle exit tifoe
lation regions and, aF a farther distance, an essentially quiegme delay function, see Sec) las a function of the initial
cent(fan) field [see Fig. 1b)]. position, i.e., the timer(x,,y(0)) atracer particle deployed

We consider now fluid particle trajectories in the two- 4 (X0,(0)) takes to reach the boundary,,,=N. 27/k. Two
dimensional kinematic model originally proposed by very different scenarios occur for large and snil
BOW€I29 and thereafter W|d6|y Studiéa’.30'31’42The Iarge- FigUreS Za)—Z(d) show the behavior Of'(Xo,y(O)) for
scale flow, in a reference frame moving eastward with aN,=3, 10, 100, 1000. Increasing the system size there is a
velocity coinciding with the meander phase speed and suifz|o, change in the shape ofx,,y(0)): highly inhomoge-
ably nondimensionalized, is expressed by the stream fungseq,s structure§fractal objects for low N, [Figs. 2a) and

tion: 2(b)], with very strong fluctuations of the exit time value
y— B coskx ® even for small variations of the initial conditions. A¢,
P(X,y)=—tan 57 17| TCY- 8 increases, the shape ofxy,y(0)) becomes more and more
(1+K*B i’ kx) homogeneous.

In Fig. 1(b) we show the streamlines in the co-moving frame.  The fractal character of(xq,y(0)) is evident from Fig.
As mentioned above, chaotic advection may be intro-2(a) and the enlargements FiggaBand 3b), which suggest
duced trough a time dependence. Among the differenthe self-similarity of the structures at different scales. This
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FIG. 2. 7(Xq,y(0)) for the meadering jet flow with parameters for the unperturbed streamfunction as figadd w=0.4, y=0.3 = /2, andx,=0.1,
y(0)e[—3,3] for () N.=3 cells,(b) N.=10, (c) N.=100, and(d) (a) N.=100.

can be quantitatively assessed studying the correlation di- 700 _
mension D of the initial condition set{y(0)} such that

7(X0,y(0))>0. Using the Grassberger and Procaccia 600 1

algorithm®? i.e., computing the percentag®(r) of pairs 500 |

(yi.y;) such thatly;—y;|<r; for smallr we obtainC(r) — w0l

~rP (shown in Fig. 4 with D<1. The value ofD can de- E,

pend weakly on the threshol®, e.g., for® =15 and the ¥ 300

parameters of Fig.(3) D results 0.83 and =30 yieldsD 200 |

=0.78.

Let us remark that also for very large valuesNyf some 100 ¢ 1
fractal structures may be present, in particular, on very small 0 M
scales(detectable only for infinitesimally close particles 115 1.6 17 118 1.19 1.2
However, we do not consider this feature because on those y
scales in real fluids we expect the presence of smoothing due (a)
to molecular diffusion. 120 . ' ' ‘ ’ ]

In order to characterize the system behavior, we have
also studied the probability density functi(’émc(rl(T}). In 100 |

Figs. 5a)—5(d) the probability density function@Nc(rKT))

corresponding tdN.= 3, 10, 100, 1000 are shown. For large oy
N [Figs. Hc) and 8d)] Py (7/(7)) displays an asymptotic 3 60}
shape which can be obtained with simple probabilistic argu-

40 |

ments (see below, Sec. I whereas in the opposite case
[Figs. 5a) and Fb)] the distributions exhibit sharp peaks in
correspondence of the ballistic time and exponential tails in-
dicating the possibility of very large excursioriSee Tables
I and I1.)

The above results show that the dispersion process in a
L . . . (b)
finite size system cannot be described in terms of a unique

characteristic time. As shown in Figsta2 and 2b), for N¢ FIG. 3. Two enlargements &) for y(0)e[1.15:1.2Q and (b) for y(0)
=3-10 the exit timer(Xq,y(0)) exhibits very strong fluc- e[1.1910:1.192%
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TABLE |. Transition matrix elements.

Wag 0.66
War 0.34
01 b . Wrg 0.12
N o Wor 0.88
5 a7
,—"D"‘
2
0.01 | T
- IV. A PROBABILISTIC MODEL COMPARED WITH
-0 NUMERICAL RESULTS
0.001

r

0.1

In the preceding section we have discussed some statis-
tical properties of the Lagrangian dynamics generated by the

streamfunctiong6), (8); it seems thus natural to look for
probabilistic models reproducing the above properties.

The Rossby wave floFig. 1(a)] shows two different
regions; the central one characterized by ballistic motion
(open streamlings and particle trapping recirculations
tuations within 2—3 orders of magnitude, which prevents theclosed streamlingson both sides of the ballistic regime.
possibility to extract meaningful information just from the The meandering jet floyFig. 1(b)], in addition to the recir-
average ofr(xq,y(0)). This is reflected in the exit times culation and ballistic ones, presents two far field regions
probability distribution: for largeN, the shape of the distri- moving retrogradely with respect to the jet core. However,
bution suggests that the average exit time is able to catch theith our parameter choice the far field is practically never

FIG. 4. Correlation integraC(r) versusr computed from the data of Fig.
3(a), with threshold® = 15. The straight line has slofe=0.83.

relevant features of the mixing. Whereas this is not the caseisited by the tracer particlés*®and thus we shall not con-
for smallN;, where close tracers may exit with very differ- sider them.
ent times[see Figs. &), 2(b), 5(a), and %b)].

This intrinsic subdivision of the flow fields suggests to

(a) (b)
10 10
1 1k
_ =
g 0.1 [ 01t
e £ z
001 o~ 0.01 |
0.001 0.001 |
0.0001 0.0001 U
0 4 45
(d)
10 10
1 -
—_— el 1 3
A A
v g
E 0.1} e
8 g8 o1l
a o
0.01
0.001 L 0.01
0 0.6

t/<t>

/<>

FIG. 5. PNC(T/<T>) versus 7/(7) for the meandering jet flow with the same parameters as in Fig. 3, computed witl*4particles starting inx(0)
e[0,m/K], y(0)e[—3,3] for (a) N.=3 cells({7)=11.73, expressed in perturbation timé) N.=10 ({7)=32.04), (c) N.=100 ((7)=281.6), and(d)
N.= 1000 ( 7)=2761.02). The predictiof22) is shown as dashed continuous line in all the cases. The parametasD have been calculated frof24)
for N.=1000 and evaluated as 0.365 and 1.038, respectively. These values are close to that compligte8d06r In(a) and (b) the Markovian prediction
is also shown as continuous lines usikg=1.36 and evaluating the probabiliti® andW;; as reported in Tables | and II.
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TABLE Il. Visit probabilities. The probabilities are evaluated for the stream —1 ki—1
fncion(®) withparaneters4v/16.80 12 ¢ 0120 04 et p(r)= 3 Fao(r—ky) 3 Faslki—ko)-..

Ps 0.26 k -p—1

Pr 0.74 kLEzl Fea(kL—2—kL-1)Pai(k 1) (19

1
being

build a discrete symbolic picture of the motion: one can label Pg k=1
the trapping and ballistic regions with the symb®land B, Pi(k)= P Wy )< 2Wog k=2, (16)

respectively, and then construct a probabilistic model. Since
the studied flows are time periodic we express the time in  Even if, in general a one-step Markov process is not
number periods of the perturbation, namety/a. enough for a detailed description of statistical properties of
The simplest conceivable probabilistic model is a Ber-the dynamical systertf,>*>%it may result a good description
noulli scheme such that at each time the particle can be in th@s long as-is not too small: one indeed expects that for large
statesB with probability p or T with probability 1—p. How- exit times the memory effects are less important. The expres-
ever, we do not expect such a model to give a good descrigiion (15) for P, (7) has been compared with the exit time
tion of the system, because once the lerigthf the system probabilities numerically computed in Sec. Ill. In order to
(i.e., the equivalent dfl,) is fixed, the probability, (7) that ~ carry out the comparison between the probabilistic model
at time =L the particle exits from the domain depends justand the numerical results we have first to evaluate the pa-
on the parametep, and just one free parameter is obviously rameters of the model, i.eL, P;, W; ;.
not enough to Characterize the System behavior. In the numerical eVaIUation Of the matI’Wij and the
The natural choice for a model which take into accountProbabilitiesP; we have proceeded according to the follow-
memory effects is a Markov chafi.The process is com- ing scheme. Expressing the time in number of periods of the
pletely defined by the transition mati;; , i.e., by the prob- perturbation, the transition probabilities are computed from a

ij o ) ) o
ability to go in one step to the staestarting from the state 10ng trajectoryxg,Xs,....X, (n>1) in an infinite system

i (i,j=B,T) which has the properties: (Ne=2) as
. Nq(iL))
W|j>0 and E W”:l (10) Wij: lim . N (17)
j n—oo Nn(')

The stationary probabilitieB; to be in state are given by ~ whereN, (i) is the number of times that, along the trajectory,
the particle visits the statie(i=T or B) andN(i,j) is the
Pi=2 P;W;; . (11 number of times thak; is in statei and X, is in statej
! (i,j=T,B). The visit probabilitiesP; are simply given by
Now we consider the following stochastic process forlim,_... Ny(i)/n. The identification of the visited state is per-

the evolution of a particle formed by controlling the value of the stream function and
. . the sign of the velocity along they axis’’
Ax(t) = 1 with probability Wig (12) In order to evaluaté we have to take into account that
0 with probability Wr, in the physical system the spatial increment per time step

(i.e., during one period of the perturbatjpAx may vary
with time. We have then computed the most probable value
AX, of Xy (2m10)— X, hence we have rescaled using

[L/AX]=L, the square brackefs] here indicate the integer
part of the argument.

In Figs. 5a)—5(b) the probability density distributions
P (7/(7)) are compared with those obtained usi§). The
small shift of the peak at the beginning of the distributions
could depend on the estimate&X. As can be seen from the
Figs. 5a)—5(b), even forL~3—10 we obtain a good de-
scription of P (7/(7)) at least forr>1, i.e., for those par-
ticles that experience a large number of transitions between
different states. Increasinlg P (7/(7)) is better and better
approximated by the Markov chain prediction. It is worth
remarking that we are comparing the numerical results with

wherei represents the state visited at time 1l and Ax(t)
the increment in the position of the particle at time
Then we can compute the probabili® (7) as follows:
7—1

Pu(r)= 2 PLa(kFes(7—k), (13

whereFgg(n) is the probability of first arrival from statB
to the stateB in n steps.

The probabilityFgg(n) of the first arrival from stat@& to
stateB at stepn is nothing but the probability to arrive to
stateB starting fromB in n steps, i.e., W")gg, minus the
probability of first arrival at stem—k times the probability
of return ink steps, i.e., W) gg, with k=1, ,n—1, so that
one has the following recursive formuta:

n-1 the prediction of the probabilistic model without performing
Feg(n)=(W"gg— X, Fap(n—K)(Wgs, (14 any data fitting.
k=t On space/time scales much larger than the typical time/
whereW indicates thekth power of the matrixW. space scales of the velocity field the evolution of a test par-

Applying recursively thg13) yields ticle follows a diffusive scenario. Thus we expect the follow-
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ing process to be a good model for our systems at least in thé. CONCLUSION AND DISCUSSIONS
limit L>1 and > 1: consider the diffusive stochastic pro-

cess In this paper we have studied non asymptotic properties

for passive tracer transport. For a finite syst@hsizel),
X(t) —x(0) =Vt + \/ﬁw(t), (18) which is a rather common case in real problef@g., geo-
physical and plasma flowsthe usual characterization by
where means of asymptotic quantiti€ésuch as the eddy diffusivity
is not appropriate iL is not very large with respect to the
V= lim < (x(t)—x(O))> typical length scale of the velocity field.
t We have considered two models of geophysical interest
(traveling waves and meandering)jstudying their Lagrang-
and (19 ian transport properties at varying the longitudinal size
Transport has been analyzed in terms of the statistical prop-
D= lim i((x(t)—x(O)—ﬁF) erties pf the exit times. of particles frpm the systems. This
A analysis has been carried out borrowing concepts from cha-
otic scattering theory.
w(t) is a Wiener process, i.e., a Gaussian process with |n the limit of very largel the usual asymptotic scenario
w(0)=0 and is recovered, i.e., the mean velocityand the diffusion co-
_ A , efficient D completely characterize the transport process. In
(W(1))=0, (w(t)w(t"))=min[t,t"]. (20 this case, one typical time is enough to describe the basic
Defining 7 the first exit time, i.e., the maximum time for features of the process. On the contrary, in the more inter-

t—oo

which esting(and realisti¢ cases with a not very larde there is no
- unigue relevant characteristic time. Indeed for srhakven
X(7)<Xmax=V 7+ 2DW(7) (21)  if the average exit time is defined and finitee distribution

P.(7) is almost exponentigl the exit times show a strong
sensitivity to initial conditions(this is a manifestation of
transient chaos in a non-chaotic sysjefimiting the possi-
(22) bility of a detailed forecasting of particle behavior. As a
consequence one has that tracers which start very close may
have exit times different for order of magnitude, making im-
possible a characterization in terms of a unique tiiree, the
average exit time give a very poor informatjon

Xono Suitable processe®.g., Markov chainsprove to cap-
Tmax™ - - (23)  ture the relevant statistical aspects of transport process. If

is very large the exit times statistics is well described in

The quantitiess andD can be evaluated in terms of the terms of first exit time problem for a linear Langevin equa-

the probability density of- can be calculaté obtaining

|Xmaxl (Vvr— Xmax)2
P, (7= expg — .
vl " aaD abr

The maximum OfPXmax(T) is reached forr,,, Which can be
estimated, ifD/v is not too large, as

exit time statistics as follow$ tion involving only v and D. For systems with a moderate
) number of recirculation zones one has to introduce a more
_ L L—vr detailed probabilistic model.
— ’ D=<( )>e’ (24 iled p ilisti
(T)e 2(7)e
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