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Transport in finite size systems: An exit time approach
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In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In
particular, we study models with open streamlines and a finite number of recirculation zones. In the
nontrivial case with a small number of recirculation zones a description by means of asymptotic
quantities ~such as the eddy diffusivity! is not appropriate. The nonasymptotic properties of
dispersion are characterized by means of the exit time statistics, which shows strong sensitivity on
initial conditions. This yields a probability distribution function with long tails, making impossible
a characterization in terms of a unique typical exit time. ©1999 American Institute of Physics.
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In nonideal cases very often it is not possible to charac
terize dispersion in terms of asymptotic quantities such
as, e.g., diffusion coefficients. This may happen in geo
physical problems involving finite domain systems with
no large scale separation between domain size and large
characteristic Eulerian length. In order to characterize
nonasymptotic transport properties in such systems, one
can use tools borrowed from dynamical systems theory
In this perspective, we study here flows with a small num-
ber of recirculation zones by means of exit times and
suitable probabilistic approximations.

I. INTRODUCTION

The problem of transport in velocity fields characteriz
by different flow regimes in different subareas~i.e., a ‘‘spa-
tially disordered set of streamlines’’1! has been considere
by many authors. Particular attention has been devote
steady and time-dependent oceanic and atmospheric fl
with recirculations2–5 and the related problem of the dispe
sion in porous media.6–8 In this paper we will focus our
attention on flows with recirculations of geophysical intere
The study of transport properties in presence of recircu
tions has a crucial relevance, since gyre- or eddy-like re
culating patterns are ubiquitous features in different area
the world ocean and atmosphere. In the ocean these fea
are typically induced by forcing spatial structures at t
boundaries~e.g., bottom topography, wind stress curl, coa
lines! or by intrinsic dynamical reasons~mesoscale eddies!,
one interacting with the other~for a general reference, se
Ref. 9!.

It is worth to note that large-scale meandering je
which are typically associated with the extensions of west
boundary currents, often separate ocean regions chara

a!Present address: Laboratoire de Physique Statistique, Ecole Nor
Supérieure, 24 rue Lhomond, 75231 Paris, France.
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ized by different physical and biogeochemical characte
tics. Consequently, the study of mixing processes in co
spondence of them is important also for multidisciplina
investigations10 ~e.g., the biological effects of longitudina
transport in western boundary current extensions, see
11!.

The systems we consider are characterized by the j
presence of open streamline areas where particle motio
essentially a ballistic flight and closed streamline regio
typically distributed according to a periodic geometry, whe
particles tend to be trapped. The easiest way to study
transport properties in such systems is by averaging o
smaller space or over shorter time scales. Typically, this
sults in the possibility of describing dispersion by an equ
tion for macroscopic quantities of the system such as
average passive scalar concentration in terms of an effec
drift and an effective diffusivity~as classically done by
Taylor;12 see Ref. 1, for a detailed discussion!, at least in the
case of standard diffusion. However, a description in ter
of equations for macroscopic quantities needs to average
the small scale~fast! features of the velocity field and thu
such approach applies only for asymptotic times, when p
ticles have been able to thoroughly sample the different fl
regimes in the system.

As stressed by Young,1 before reaching this asymptoti
regime very interesting transient behaviors, which canno
described within an effective diffusion model, could occu
The transient regime may be very long and, if the system
finite, the asymptotic one may not be reached. This is, ty
cally, the case of finite domain systems with no large sc
separation between the size of the domain and the lar
characteristic Eulerian length. In realistic flows, which a
usually characterized by a fairly limited number of recirc
lations, fluid particles ordinarily sample just a fraction of th
available regimes.

Therefore, it is often not possible to characterize disp
sion simply in terms of asymptotic quantities such as aver
velocity and diffusion coefficients: different approaches a

ale
© 1999 American Institute of Physics
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needed, as done in Refs. 13–15 for the characterizatio
transport in closed domains; such as the symbolic dynam
approach to the subdiffusive behavior in a stochastic la
and to mixing in meandering jets, respectively, described
Refs. 16 and 17; or the study of tracer dynamics in op
flows in terms of chaotic scattering by Te´l and
co-workers;18–20 and the exit time approach of Ref. 5.

The aim of this paper is to describe dispersion in fin
size systems. In particular, we want to characterize flo
with a small number of recirculations using some ideas st
ming from the chaotic scattering theory.21

In Sec. II we briefly review some methods for the stu
of transport in nonasymptotic regimes, namely the finite-s
diffusion coefficients and the exit time statistics originat
from the chaotic scattering phenomenon. Section III conta
a description of the two studied models~traveling wave and
meandering jet! and some numerical results. Section IV
devoted to the comparison between numerical results a
probabilistic model. Conclusions are presented in Sec. V

II. TOOLS FOR THE STUDY OF NONASYMPTOTIC
TRANSPORT PROPERTIES

The investigation of passive tracer diffusion is usua
reduced to the study of an effective equation describing
long-time, large-distance average tracer concentration be
ior. Under rather general hypotheses, given an Eulerian
locity field the long-time transport process is uniquely ch
acterized by the effective diffusion~or diffusivity! tensor
Di j

E .

Di j
E5 lim

t→`

1

2t
^~xi~ t !2^xi&!~xj~ t !2^xj&!&, ~1!

where x(t) is the position of the tracer particle at timet;
i , j 51,...,d, and d is the spatial dimension; the average
taken over the tracer initial conditions or, equivalently, ov
an ensemble of tracer particles. The effective diffusion ten
Di j

E takes into account the molecular diffusivity and the d
tails of the velocity field. Even in presence of simple Eu
rian fields~e.g., laminar and periodic in time! the diffusion
coefficient as a function of the parameters of the veloc
field can display a rather nontrivial behavior.22,23 For a de-
tailed discussion on the nonasymptotic transport proper
see Ref. 24.

It is worth underlining that the diffusivity tensor~1! is
mathematically well defined only in the asymptotic lim
therefore its use in finite size domains yields meaning
results only if the characteristic lengthl u of the velocity field
is much smaller than the size of the domain. If this is not
case~e.g., in many geophysical settings or plasma physics13!,
dispersion can be characterized more satisfactorily us
concepts and techniques borrowed by the dynamical sys
theory which will be discussed in the following.

For instance, when one has to cope with systems w
finite boundaries one can introduce the ‘‘doubling time
T~d! at scaled as follows: define a series of thresholdsd (n)

5r nd (0), whered (0) is the initial size of a cloud of passiv
scalars@e.g.,d (0) could be the rms radius of the cloud#, and
then measure the timeT(d (0)) it takes for the growth from
d (0) to d (1)5rd (0), and so on forT(d (1)), T(d (2)),... up to
of
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the largest considered scale. Though strictly speaking
term ‘‘doubling time’’ refers to the threshold rater 52, any
value can be chosen forr, even if a too large one might no
separate different scale contributions.

PerformingM@1 experiments with different initial con
ditions for the scalars’ cloud, we define an average doub
time T~d! at scaled as

T~d!5^T~d!&M5
1

M (
m51

M
Tm~d!, ~2!

and the finite size Lagrangian Lyapunov exponent14 as

l~d!5
ln r

T~d!
, ~3!

in this way a finite size diffusion coefficient dimensional
turns to be D(d)5d2l(d). It can be shown that the
Lyapunov exponentl can be obtained froml~d! for d→0,
namelyl(d)5l for d! l u , wherel u is the Eulerian charac
teristic length.25

It is worth noting that the average in~2! is different from
the usual time average~see Ref. 25 for a detailed discussio
of this point!.

For a tracers’ cloud of noninfinitesimal sizeT~d ! de-
pends on the details of the nonlinear mechanisms of exp
sion: in the case of standard diffusionD(d) is a constant,
i.e., 1/T(d);d22.14 Thus

l~d!.Hl if d! l u

D/d2 if d@ l u . ~4!

The fixed scale analysis allows us to extract physi
information at different spatial scales avoiding some u
pleasant consequences resulting from working at a fixed
lay time t. For instance, in presence of strong intermitten
R2(t) as a function oft can be rather different from on
realization to another generating an apparently anoma
regime. For a detailed discussion about these possible
fects, see Ref. 14. Let us remark that the above techn
recovers the usual asymptotic description when there
large scales separation and also if a genuine anomalous
fusion occurs,26 in addition, it constitutes a systemat
method to treat situations in which the scales are not w
separated. Moreover, the finite size diffusion coefficie
D(d) enables the understanding of the different spread
mechanisms at different scales. This has been recently sh
in Ref. 15, where this method is applied to analyzing expe
mental trajectories described by surface drifters in the Ad
atic Sea.

Another interesting approach to the study of transp
properties in finite~open! systems is thechaotic scattering
theory used in Refs. 18–20 for passive tracer advection
open flows, see also Ref. 21 for examples, of application
chaotic scattering. In a nutshell, chaotic scattering can
summarized as follows. A particle arriving from, say,x5
2` enters a region~defined as the scattering, or interactin
region! where due to the presence of a potential it scatte
then exits and goes tox5`. Typically, for a rather genera
class of potentials27 the time a particle takes to escape fro
the scattering region can be very sensitive on the imp
parameterb and thus displaying achaotic character~like a
ball in a pinball game!. This justifies the definition in terms
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873Chaos, Vol. 9, No. 4, 1999 Transport in finite size systems
of chaos, even if since chaos is a time-asymptotic conc
from a technical point of view this kind of behavior is n
chaotic: particles after a transient~even if very long! leave
the scattering region and enter a regular motion regime.

A nice example of the application of chaotic scatteri
theory in passive tracer study is given in Refs. 18 and 19
the motion of Lagrangian tracers in blinking vortex-sink sy
tem and in a von Karman vortex street behind a cylinder i
channel. Tracer particles can temporarily be trapped in
tain regions, e.g., the wakes of the von Karman street,
forming very irregular paths. On the other hand, since
non stationarity of the flow is mainly restricted to a fini
mixing region around the obstacles, the asymptotic alm
free particle motion is also recovered.

For the use of the exit time approach for the transp
and mixing in volume preserving maps, see Ref. 28.

The analogy between chaotic scattering, occurring
Hamiltonian systems, and passive scalar motion can
drawn in formal terms for two dimensional incompressib
velocity field.18 In this case the Eulerian field is described
a stream-functionc(x,y,t), and the corresponding equation
for the Lagrangian evolution are

dx

dt
52

]c~x,y,t !

]y
,

dy

dt
5

]c~x,y,t !

]x
. ~5!

Equations~5! are nothing but the canonical equations for
one-dimensional time dependent Hamiltonian system, wh
the stream function plays the role of the Hamiltonian.

Since in chaotic scattering the particle exit time from t
interacting region depends strongly on the initial conditio
it is interesting to look at the time delay function,18 i.e., the
exit time as a function of the initial position,t(x(0),y(0)),
e.g., with x(0)5x0 . In presence of chaotic scatterin
t(x0 ,y(0)), displays a rather irregular shape~see, e.g., Fig.
5.18 in Ref. 27!.

As already remarked, since in chaotic scattering the
regular character is confined both in space and time~i.e., one
has the so-called transient chaos!, the Lyapunov exponent is
trivially zero; however, a sort of high sensitivity on initia
conditions is suggested by the occurrence of very differ
time delays for very close deployment locations.

The presence of large excursions for the exit time has
obvious relevance for transport processes in finite size
tems. The wild variations oft(x0 ,y(0)) pose severe limits
on the possibility to make prediction on the particles beh
ior and force us to use statistical approaches. This lead
introduce the probability distribution function,P(t), of the
exit timest(x0 ,y(0)).

III. TWO SIMPLE FLOWS

In this paper two idealized flow models are studied; b
are reminiscent of oceanographic features, namely finite
plitude Rossby waves in a channel and meandering jets s
by recirculation regions. The approach we use is kinema
i.e., we use ana priori kinematically assigned streamfun
tion whose spatial and temporal characteristics resem
those of the flow field observed in the real ocean in cor
spondence of the features of interest. Such very simpli
t,
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models have been extensively used in the recent past~see,
e.g., Refs. 29, 30, 31!. An obvious drawback, however
might lie in their possible dynamical lack of consisten
since the flow field does not result from the integration of t
equations of motion, leading, e.g., to the lack of conservat
of potential vorticity.

This issue is extensively discussed in Ref. 32, and
Ref. 33. In addition there are some studies in which t
inconsistency is at least partly solved by looking at parti
exchange in flow regions with vanishing potential vortici
gradients as in Ref. 34; or with piecewise constant poten
vorticity, as in Ref. 35. From a phenomenological point
view, this approach can be justified by the fact that, as
derlined in Ref. 32, this is the case in regions characteri
by barotropic or baroclinic instabilities, which typically re
quire a reversal of the cross-stream potential vorticity gra
ent.

The opposite approach with respect to the one adopte
the present paper would be that of fully dynamical mod
~see, e.g., Ref. 36 and references therein37!. Obviously—
even if it seems to be possible to reconcile the approache
terms of the subdivision of the potential vorticity field into
coarse-grained and a fine-grained one, as sugge
by38—investigating particle mixing by a kinematic model
a relatively crude approximation. However, the fully d
namical approach typically results in flow regimes so co
plex that identifying single processes and mechanisms wi
them becomes very hard; on the contrary, the use of the
model of the present paper is motivated by the fact that
spite their somehow artificial character, these simplifi
models enable to focus on individual mechanisms and p
cesses, and by our interest to explore fluid exchange wi
novel methodological approach.

In the reference frame moving with the phase speed
the wave, the flow field shows a central open streaml
region~ballistic motion! sided by trapping recirculations@see
Fig. 1~a!#; this flow pattern is a suitable, even if simplified
prototype for studying the effect of a finite number of tra
ping areas on the longitudinal dispersion of particles.

The two-dimensional incompressible Rossby wa
flow39 here considered is specified by the following strea
function:

C0~x,y!5A0 sin~K0x!sin~L0y!2c0y, ~6!

whereA0 is related to the maximum velocity in they direc-
tion, (K0 ,L0) is the wave vector andc0 is the phase speed o
the primary wave in thex direction. In~6! C0 is expressed in
the reference frame co-moving with the primary wave.

In order to reproduce the instabilities usually present
geophysical flows, we introduce a time-periodic perturb
tion, dC(x,y,t):

dC~x,y,t !5a sin~K1x2Vt !sin~L1y!, ~7!

where a.0 is a ~not necessarily small! parameter which
controls the amplitude of the perturbation and (K1 ,L1) is the
wave vector of the perturbation~secondary wave!. Even
though realistic disturbances cannot be characterized
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874 Chaos, Vol. 9, No. 4, 1999 Castiglione et al.
terms of a single wave alone,40 the perturbation~7! is a first
step towards a description of the complex structure of tra
port mechanisms in these systems.

The second flow we investigate is a meandering
which represents a natural extension of the above Ros
wave system, and it was extensively studied in the literat
with particular reference to the Gulf Stream.10,41 Again, the
flow can be subdivided into different regions roughly cor
sponding to a prograde flow~in reality, the current jet core
in our schematization, the open streamline regime!, recircu-
lation regions and, at a farther distance, an essentially qu
cent ~far! field @see Fig. 1~b!#.

We consider now fluid particle trajectories in the tw
dimensional kinematic model originally proposed
Bower29 and thereafter widely studied.17,30,31,42The large-
scale flow, in a reference frame moving eastward with
velocity coinciding with the meander phase speed and s
ably nondimensionalized, is expressed by the stream fu
tion:

c~x,y!52tanhF y2B coskx

~11k2B2 sin2 kx!1/2G1cy. ~8!

In Fig. 1~b! we show the streamlines in the co-moving fram
As mentioned above, chaotic advection may be int

duced trough a time dependence. Among the differ

FIG. 1. ~a! Streamlines for the time-independent Rossby wave flow w
A05L05K051, c050.5, a50. The labelsT and B refer to the trapping
regions~recirculations! and ballistic ones~the jet channel!. ~b! The same as
figure ~a! for the meandering jet flow with:k54p/15, B051.2, c50.12,
andg50.
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mechanisms discussed in Ref. 30, we chose here a t
periodic oscillation of the meander amplitude:

B~ t !5B01g cos~vt1u!, ~9!

where we setB051.2, g50.3, v50.4, andu5p/2.
The choice of the parameter values was motiva

mainly by the results of the observations by Kontoyian
and Watts43 and of the numerical simulations by Dimas an
Triantafylou.44 Namely, the most unstable waves produc
in the latter work compare very well with the observations
the former, which show wavelengths of 260 Km, periods
;8 days,e-folding space and time scales of 250 Km and
days, respectively. In our case, since the downstream sp
was set to 1 m/s, oure-folding time scale would correspond
in dimensional units, to approximately 3 days.

Let us remark that the dynamical results do not chang
least at a qualitative level, if there is overlapping
resonances.45 This happens wheng.gc . In our choice in-
deedg.gc andgc depend onv; for the results of this test
as well as for a further discussion of the parameter cho
and system sensitivity, the reader is referred to Ref. 17.

It is worth underlining that, even if quite a great deal
efforts has been devoted to study fluid exchange across
jet,29,30,31 very little is known as to tracer behavior in th
along-jet direction~periodic flows with open streamline
have been proposed as model for the meandering jets;
presence of recirculations has been seen to induce nontr
effects on the along-jet dispersion, see Refs. 46–49!.

Tracer particle trajectories have been numerically gen
ated from Eqs.~5! with the streamfunctions corresponding
the traveling wave@~6!–~7!# and the meandering jet@~8!–
~9!#. However, since the results relative to the two flows a
qualitatively the same, we shall present and discuss
those obtained for the meandering jet.

As can be seen from the streamfunctions, the two flo
are periodic in the longitudinal direction. Since we are int
ested in the characterization of longitudinal transport,
number of elementary flow structures~or cells!, Nc , consti-
tuting the system, is a crucial parameter. For very largeNc ,
the dispersion properties of the system can be studied u
asymptotic techniques, e.g., the multiscale method.50,51 On
the contrary, we mainly concentrate on systems with a sm
number of cells, namelyNc.2210.

The first focus of our analysis is the particle exit time~or
time delay function, see Sec. II! as a function of the initial
position, i.e., the timet(x0 ,y(0)) a tracer particle deployed
at (x0 ,y(0)) takes to reach the boundaryxmax5Nc 2p/k. Two
very different scenarios occur for large and smallNc .

Figures 2~a!–2~d! show the behavior oft(x0 ,y(0)) for
Nc53, 10, 100, 1000. Increasing the system size there
clear change in the shape oft(x0 ,y(0)): highly inhomoge-
neous structures~fractal objects! for low Nc @Figs. 2~a! and
2~b!#, with very strong fluctuations of the exit time valu
even for small variations of the initial conditions. AsNc

increases, the shape oft(x0 ,y(0)) becomes more and mor
homogeneous.

The fractal character oft(x0 ,y(0)) is evident from Fig.
2~a! and the enlargements Figs. 3~a! and 3~b!, which suggest
the self-similarity of the structures at different scales. T

:
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FIG. 2. t(x0 ,y(0)) for the meandering jet flow with parameters for the unperturbed streamfunction as Fig. 2~b! andv50.4, g50.3 u5p/2, andx050.1,
y(0)P@23,3# for ~a! Nc53 cells,~b! Nc510, ~c! Nc5100, and~d! ~a! Nc5100.
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can be quantitatively assessed studying the correlation
mension D of the initial condition set$y(0)% such that
t(x0 ,y(0)).Q. Using the Grassberger and Procac
algorithm,52 i.e., computing the percentageC(r ) of pairs
(yi ,yj ) such thatuyi2yj u<r ; for small r we obtainC(r )
;r D ~shown in Fig. 4! with D,1. The value ofD can de-
pend weakly on the thresholdQ, e.g., for Q515 and the
parameters of Fig. 2~a! D results 0.83 andQ530 yieldsD
50.78.

Let us remark that also for very large values ofNc some
fractal structures may be present, in particular, on very sm
scales~detectable only for infinitesimally close particles!.
However, we do not consider this feature because on th
scales in real fluids we expect the presence of smoothing
to molecular diffusion.

In order to characterize the system behavior, we h
also studied the probability density functionPNc

(t/^t&). In
Figs. 5~a!–5~d! the probability density functionsPNc

(t/^t&)
corresponding toNc53, 10, 100, 1000 are shown. For larg
Nc @Figs. 5~c! and 5~d!# PNc

(t/^t&) displays an asymptotic
shape which can be obtained with simple probabilistic ar
ments ~see below, Sec. IV!, whereas in the opposite cas
@Figs. 5~a! and 5~b!# the distributions exhibit sharp peaks
correspondence of the ballistic time and exponential tails
dicating the possibility of very large excursions.~See Tables
I and II.!

The above results show that the dispersion process
finite size system cannot be described in terms of a uni
characteristic time. As shown in Figs. 2~a! and 2~b!, for Nc

53 – 10 the exit timet(x0 ,y(0)) exhibits very strong fluc-
i-

ll

se
ue

e

-

-

a
e

FIG. 3. Two enlargements of~a! for y(0)P@1.15:1.20# and ~b! for y(0)
P@1.1910:1.1925#.
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876 Chaos, Vol. 9, No. 4, 1999 Castiglione et al.
tuations within 2–3 orders of magnitude, which prevents
possibility to extract meaningful information just from th
average oft(x0 ,y(0)). This is reflected in the exit time
probability distribution: for largeNc the shape of the distri
bution suggests that the average exit time is able to catch
relevant features of the mixing. Whereas this is not the c
for small Nc , where close tracers may exit with very diffe
ent times@see Figs. 2~a!, 2~b!, 5~a!, and 5~b!#.

FIG. 4. Correlation integralC(r ) versusr computed from the data of Fig
3~a!, with thresholdQ515. The straight line has slopeD50.83.
e

he
se

IV. A PROBABILISTIC MODEL COMPARED WITH
NUMERICAL RESULTS

In the preceding section we have discussed some st
tical properties of the Lagrangian dynamics generated by
streamfunctions~6!, ~8!; it seems thus natural to look fo
probabilistic models reproducing the above properties.

The Rossby wave flow@Fig. 1~a!# shows two different
regions; the central one characterized by ballistic mot
~open streamlines! and particle trapping recirculation
~closed streamlines! on both sides of the ballistic regime
The meandering jet flow@Fig. 1~b!#, in addition to the recir-
culation and ballistic ones, presents two far field regio
moving retrogradely with respect to the jet core. Howev
with our parameter choice the far field is practically nev
visited by the tracer particles17,30 and thus we shall not con
sider them.

This intrinsic subdivision of the flow fields suggests

TABLE I. Transition matrix elements.

WBB 0.66
WBT 0.34
WTB 0.12
WTT 0.88
FIG. 5. PNc
(t/^t&) versust/^t& for the meandering jet flow with the same parameters as in Fig. 3, computed with 43104 particles starting inx(0)

P@0,p/k#, y(0)P@23,3# for ~a! Nc53 cells ~^t&511.73, expressed in perturbation time!, ~b! Nc510 (^t&532.04), ~c! Nc5100 (̂ t&5281.6), and~d!
Nc51000 (̂ t&52761.02). The prediction~22! is shown as dashed continuous line in all the cases. The parametersv̄ andD have been calculated from~24!
for Nc51000 and evaluated as 0.365 and 1.038, respectively. These values are close to that computed forNc5500. In ~a! and~b! the Markovian prediction
is also shown as continuous lines usingD x̃51.36 and evaluating the probabilitiesPi andWi j as reported in Tables I and II.
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877Chaos, Vol. 9, No. 4, 1999 Transport in finite size systems
build a discrete symbolic picture of the motion: one can la
the trapping and ballistic regions with the symbolsT andB,
respectively, and then construct a probabilistic model. Si
the studied flows are time periodic we express the time
number periods of the perturbation, namely 2p/v.

The simplest conceivable probabilistic model is a B
noulli scheme such that at each time the particle can be in
statesB with probabilityp or T with probability 12p. How-
ever, we do not expect such a model to give a good desc
tion of the system, because once the lengthL of the system
~i.e., the equivalent ofNc! is fixed, the probabilityPL(t) that
at timet>L the particle exits from the domain depends ju
on the parameterp, and just one free parameter is obvious
not enough to characterize the system behavior.

The natural choice for a model which take into accou
memory effects is a Markov chain.53 The process is com
pletely defined by the transition matrixWi j , i.e., by the prob-
ability to go in one step to the statej starting from the state
i ( i , j 5B,T) which has the properties:

Wi j >0 and (
j

Wi j 51. ~10!

The stationary probabilitiesPi to be in statei are given by

Pi5(
j

PjWji . ~11!

Now we consider the following stochastic process
the evolution of a particle

Dx~ t !5H 1 with probability WiB

0 with probability WiT ,
~12!

where i represents the state visited at timet21 andDx(t)
the increment in the position of the particle at timet.

Then we can compute the probabilityPL(t) as follows:

PL~t!5 (
k5L21

t21

PL21~k!FBB~t2k!, ~13!

whereFBB(n) is the probability of first arrival from stateB
to the stateB in n steps.

The probabilityFBB(n) of the first arrival from stateB to
stateB at stepn is nothing but the probability to arrive to
stateB starting fromB in n steps, i.e., (Wn)BB , minus the
probability of first arrival at stepn2k times the probability
of return ink steps, i.e., (Wk)BB , with k51,̄ ,n21, so that
one has the following recursive formula:53

FBB~n!5~Wn!BB2 (
k51

n21

FBB~n2k!~Wk!BB , ~14!

whereWk indicates thekth power of the matrixW.
Applying recursively the~13! yields

TABLE II. Visit probabilities. The probabilities are evaluated for the strea
function ~8! with parametersk54p/15, B051.2, c50.12, v50.4, and
g50.3. Thestatistics have been computed over 23106 periods.

PB 0.26
PT 0.74
l

e
n

-
he

p-

t

t

r

PL~t!5 (
k15L21

t21

FBB~t2k1! (
k25L22

k121

FBB~k12k2!...

(
kL1

51

kL2221

FBB~kL222kL21!P1~kL21! ~15!

being

P1~k!5H PB k51

PT~WTT!k22WTB k>2.
~16!

Even if, in general a one-step Markov process is n
enough for a detailed description of statistical properties
the dynamical system,17,54,55it may result a good description
as long ast is not too small: one indeed expects that for lar
exit times the memory effects are less important. The exp
sion ~15! for PL(t) has been compared with the exit tim
probabilities numerically computed in Sec. III. In order
carry out the comparison between the probabilistic mo
and the numerical results we have first to evaluate the
rameters of the model, i.e.,L, Pi , Wi , j .

In the numerical evaluation of the matrixWi j and the
probabilitiesPi we have proceeded according to the follow
ing scheme. Expressing the time in number of periods of
perturbation, the transition probabilities are computed from
long trajectory x0 ,x1 ,...,xn (n@1) in an infinite system
(Nc5`) as

Wi j 5 lim
n→`

Nn~ i , j !

Nn~ i !
, ~17!

whereNn( i ) is the number of times that, along the trajecto
the particle visits the statei ~i 5T or B! and Nn( i , j ) is the
number of times thatxt is in statei and xt11 is in statej
( i , j 5T,B). The visit probabilitiesPi are simply given by
limn→` Nn( i )/n. The identification of the visited state is pe
formed by controlling the value of the stream function a
the sign of the velocity along thex,y axis.17

In order to evaluateL we have to take into account tha
in the physical system the spatial increment per time s
~i.e., during one period of the perturbation!, Dx may vary
with time. We have then computed the most probable va
D x̃, of xt1(2p/v)2xt , hence we have rescaledL using

@L/D x̃#5L̃, the square brackets@•# here indicate the intege
part of the argument.

In Figs. 5~a!–5~b! the probability density distributions
PL(t/^t&) are compared with those obtained using~15!. The
small shift of the peak at the beginning of the distributio
could depend on the estimate ofD x̃. As can be seen from the
Figs. 5~a!–5~b!, even forL;3210 we obtain a good de
scription of PL(t/^t&) at least fort@1, i.e., for those par-
ticles that experience a large number of transitions betw
different states. IncreasingL, PL(t/^t&) is better and better
approximated by the Markov chain prediction. It is wor
remarking that we are comparing the numerical results w
the prediction of the probabilistic model without performin
any data fitting.

On space/time scales much larger than the typical tim
space scales of the velocity field the evolution of a test p
ticle follows a diffusive scenario. Thus we expect the follow
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ing process to be a good model for our systems at least in
limit L@1 andt@1: consider the diffusive stochastic pro
cess

x~ t !2x~0!5 v̄t1A2Dw~ t !, ~18!

where

v̄5 lim
t→`

K ~x~ t !2x~0!!

t L
and ~19!

D5 lim
t→`

1

2t
^~x~ t !2x~0!2 v̄t !2&

w(t) is a Wiener process, i.e., a Gaussian process w
w(0)50 and

^w~ t !&50, ^w~ t !w~ t8!&5min@ t,t8#. ~20!

Defining t the first exit time, i.e., the maximum time fo
which

x~t!<xmax5 v̄t1A2Dw~t! ~21!

the probability density oft can be calculated56 obtaining

Pxmax
~t!5

uxmaxu

A4pDt3
expF2

~ v̄t2xmax!
2

4Dt G . ~22!

The maximum ofPxmax
(t) is reached fortmax which can be

estimated, ifD/ v̄ is not too large, as

tmax.
xmax

v̄
. ~23!

The quantitiesv̄ andD can be evaluated in terms of th
exit time statistics as follows14

v̄5
L

^t&e
, D5

^~L2 v̄t!2&e

2^t&e
, ~24!

where thê •&e indicates the average over the ensemble ofNp

particles, i.e.,̂ f &e5(1/Np)( i 51
Np f i .

In Figs. 5~a!–5~d! the probability distributions calculate
in Sec. III are compared, at different values ofL5xmax, with
the results given by~22! with ( v̄) andD obtained by~24! for
large Nc . Let us remark that if Eq.~22! holds, the mean
velocity (v̄) and the diffusion coefficient~D! evaluated by
mean of Eq.~24! must be independent ofL. We observed
that this happens only for very largeNc ~larger thanNc

5500!. Therefore, we expect a reasonable agreement
for Nc51000.

The largerL, the better is the fitting with numerical dat
nevertheless the probability density function~22! does not
capture the tail behavior of the physical system probabi
PL(t). This is not very surprising because the process
scribed by Eq.~18! is d-correlated in time and thus it is no
able to describe long-range correlated events17 responsible of
such a tail. Moreover, at variance with the physical syste
in model ~18! the velocity does not have any bound.
he

th

ly

y
e-

,

V. CONCLUSION AND DISCUSSIONS

In this paper we have studied non asymptotic proper
for passive tracer transport. For a finite system~of size L!,
which is a rather common case in real problems~e.g., geo-
physical and plasma flows!, the usual characterization b
means of asymptotic quantities~such as the eddy diffusivity!
is not appropriate ifL is not very large with respect to th
typical length scale of the velocity field.

We have considered two models of geophysical inter
~traveling waves and meandering jet! studying their Lagrang-
ian transport properties at varying the longitudinal sizeL.
Transport has been analyzed in terms of the statistical p
erties of the exit times of particles from the systems. T
analysis has been carried out borrowing concepts from c
otic scattering theory.

In the limit of very largeL the usual asymptotic scenari
is recovered, i.e., the mean velocityv̄ and the diffusion co-
efficient D completely characterize the transport process
this case, one typical time is enough to describe the b
features of the process. On the contrary, in the more in
esting~and realistic! cases with a not very largeL, there is no
unique relevant characteristic time. Indeed for smallL, even
if the average exit time is defined and finite~the distribution
PL(t) is almost exponential!, the exit times show a strong
sensitivity to initial conditions~this is a manifestation of
transient chaos in a non-chaotic system!, limiting the possi-
bility of a detailed forecasting of particle behavior. As
consequence one has that tracers which start very close
have exit times different for order of magnitude, making im
possible a characterization in terms of a unique time~i.e., the
average exit time give a very poor information!.

Suitable processes~e.g., Markov chains! prove to cap-
ture the relevant statistical aspects of transport process.L
is very large the exit times statistics is well described
terms of first exit time problem for a linear Langevin equ
tion involving only v̄ and D. For systems with a moderat
number of recirculation zones one has to introduce a m
detailed probabilistic model.
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