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Abstract. The statistical properties of active and passive scalar fields transported
by the same turbulent flow are investigated. Four examples of active scalar
have been considered: temperature in thermal convection, magnetic potential in
two-dimensional (2D) magnetohydrodynamics (MHD), vorticity in 2D Ekman
turbulence and potential temperature in surface flows. In the cases of temperature
and vorticity, it is found that the active scalar behaviour is akin to that of its co-
evolving passive counterpart. The two other cases indicate that this similarity is in
fact not generic and differences between passive and active fields can be striking:
in 2D MHD, the magnetic potential performs an inverse cascade, whereas the
passive scalar cascades towards the small scales; in surface flows, although both
perform a direct cascade, the potential temperature and the passive scalar have
different scaling laws already at the level of low-order statistical objects. These
significant differences are rooted in the correlations between the active scalar
input and the particle trajectories. The role of such correlations in the issue of
universality in active scalar transport and the behaviour of dissipative anomalies
is addressed.
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1. Introduction

Scalar fields transported by turbulent flows are encountered in many natural phenomena and in
engineering problems ranging from atmospheric physics [1] and combustion [2] to the transport
and amplification of magnetic fields in astrophysical fluids [3]. In this paper, we consider the
case of advected scalar fields such as temperature, pollutant density and chemical or biological
species concentration.

In many cases, there is a two-way coupling between the scalar and the flow: the transported
field can influence the velocity field—this is dubbed active transport. This is the case, for example,
of the temperature field that acts on velocity through buoyancy forces. Conversely, situations
where the feedback of the scalar field is negligible and the velocity determines the properties of
the scalar, but not vice versa, are termed passive. This ideal case is well approximated by the use
of fluorescent dye in laboratory experiments to mark fluid parcels.

Although active and passive scalars are governed by the same advection–diffusion equation,
their nature is radically different. Passive scalars belong to the realm of linear problems, despite
being highly nontrivial. Indeed, as a consequence of the statistical independence of the forcing
and the advecting velocity, the transported field depends linearly on the forcing. This property
allows a full-fledged theoretical treatment of the problem, and has the major consequence that
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the passive scalar scaling laws are universal with respect to the injection mechanism. On the
contrary, for active fields, the presence of the feedback couples the velocity with the transported
scalar and makes the problem fully nonlinear. In this case, the theoretical tools developed for
studying the passive problem may fall short of explaining the behaviour of active scalars, and the
current understanding of active turbulent transport lags far behind the knowledge accumulated
on the passive counterpart. This state of the art motivated us to pursue a ‘case study’ on turbulent
transport of active and passive scalars using the scaling properties of fields evolving in the same
turbulent flow as the basic diagnostics for comparison.

We consider four different systems belonging to the following general classes of problems:
(i) active scalars that influence the flow through local forces; and (ii) active fields functionally
related to the velocity.

The evolution of a scalar belonging to the first class is described in terms of the following
set of equations:

∂ta + v · ∇a = κ�a + fa, (1)

∂tc + v · ∇c = κ� c + fc, (2)

∂tv + v · ∇v = −∇p + ν�v + F [a,∇a, . . . ], (3)

where a and c are the active and passive scalar fields, respectively, and obey the advection–
diffusion equations (1) and (2). The scalar inputs fa and fc have a characteristic lengthscale �f ,
and represent two different realizations of the same stochastic process. Were they coincident,
no difference between active and passive fields would persist. For the sake of simplicity, we
use the same molecular diffusivity κ for both scalars. The active character of a is embodied
by the term F [a,∇a, . . . ], which acts as a forcing for the velocity field in the Navier–Stokes
equations. The specific form of the term F depends on the physical system under investigation.
In the following, we shall consider two examples from this class: thermal convection [4, 5],
where a is the temperature field and F = −βag the buoyancy force, and two-dimensional
(2D) magnetohydrodynamics (MHD) [6], where a the magnetic potential and F = −�a∇a
the Lorentz force.

The second class of active scalars is relevant to geophysical flows [7, 8]. In this case, the
dynamics is described in terms of a scalar field obeying the advection–diffusion equation (1),
supplemented by a functional relation that gives v in terms of a:

vi(x, t) =
∫
�i(x − y)a(y, t) dy. (4)

Here, the vector-valued kernel � is divergence-free. A well-known instance from such a class is
the 2D Navier–Stokes equation, where the active scalar is the vorticity ∇ × v. Another problem
which we shall discuss is the turbulent flow on the flat surface of an infinitely high fluid, described
by the surface-quasi-geostrophic equation [9, 10]. Here, the active scalar is the fluid density, which
is related (e.g. for ideal gases) to the so-called potential temperature.

Some of the results presented in this paper were discussed previously in [11]–[13]. Related
investigations on active and passive transports may be found in [14]–[17].

This paper is organized as follows. In section 2, we briefly review some results about passive
scalar transport in turbulent flows. Particular emphasis is put on the Lagrangian description of
scalar transport, pointing out the results which hold for active scalars as well. In section 3, the
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statistics of the (active) temperature and a passive scalar field in 2d convection is discussed.
Section 4 is devoted to the analysis of 2D MHD, with a thorough discussion of the problem of
dissipative anomaly in scalar transport. In section 5, the evolution of passive and active fields in
Ekman–Navier–Stokes turbulence is discussed. In section 6, we study the properties of turbulence
on fluid surfaces under the quasi-geostrophic approximation. In the last section, we summarize
the main findings and delineate the perspectives for active scalar transport.

2. Passive scalar turbulence

2.1. Eulerian approach

The dynamics of passive scalars is governed by the advection–diffusion equation (2). To describe
the general properties of passive scalar evolution in turbulent incompressible velocity fields,
we assume that the velocity field v is scale-invariant and rough. In other words, the spatial
increments δrv = (v(x + r, t)− v(x, t)) · r/r depend on the separation r as a fractional power,
i.e. δrv ∼ rh with h < 1 (e.g. h = 1/3 in Kolmogorov’s 1941 turbulence [18]). Being interested
in the statistically steady properties of the field, we introduce a source of scalar fluctuations fc.
In the following, we take for convenience a random, Gaussian, statistically homogeneous and
isotropic forcing with zero mean and correlation function

〈fc(x1, t)fc(x2, t
′)〉 = δ(t − t′)F(|x1 − x2|/�f ). (5)

The correlation function of the forcing F(r/�f ) is roughly constant at scales smaller than �f ,
which is assumed to be within the scaling range of v, and decreases rapidly to zero for r > �f .

The phenomenology of passive scalar turbulence may be summarized as follows. Scalar
fluctuations injected at the scale �f are transferred towards the small scales with a constant
flux down to the dissipative scale �d . There, the molecular diffusion absorbs the incoming flux
and ensures the equilibrium between the input and the dissipation. The fluctuations are thus
maintained in a statistically steady state, which is characterized by two major properties. First,
the scalar dissipation is asymptotically independent of the molecular diffusivity κ, attaining
a finite non-zero limiting value for κ → 0. This singular behaviour of the dissipation is also
known as dissipative anomaly. Second, in the scaling range �d � r � �f , the scalar statistics
is intermittent. This amounts to saying that the small-scale statistics is characterized alternation
between strong, rare events, where scalar increments δrc = c(x + r, t)− c(x, t) are much larger
than their typical value, crms , and long quiescent phases, where δrc � crms. Intermittency is
reflected by the scaling behaviour of the structure functions, i.e. the moments of the scalar
increments

ScN(r) = 〈(δrc)N〉 ∝ rζ
dim
N

(
�f

r

)ζdimN −ζcN
. (6)

The scaling exponents ζcN are said to be anomalous when they deviate from the dimensional
expectation ζdimN = N(1 − h)/2. The equality ζcN = ζdimN holds probably only for N = 2 [4],
whereas for N > 2, the deviations become increasingly severe. The asymptotic behaviour at
large orders N corresponds to the saturation ζcN → ζc∞ [19]. The saturation is related to the
presence of sharp ‘fronts’ in the scalar field. The exponents ζcN are universal with respect to
the details of the energy injection statistics. The forcing only affects the numerical prefactors
appearing in the structure functions.
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The anomalous scaling ζdimN 	= ζcN signals the breakdown of scale invariance, as confirmed
by the explicit appearance of �f in (6), even at scales r � �f . Indeed, anomalous scaling of the
moments of scalar increments is equivalent to state that the probability density functions (pdfs)
of δrc at different values of r cannot be collapsed by rescaling them with a unique power law in r.
Even though the specific values of the exponents ζcN depend on the details of the flow (statistics,
time correlation and roughness exponent h), intermittency and the breaking of scale invariance
in the scalar statistics are generic features of passive scalar turbulence.

The physical mechanism leading to anomalous scaling has been recently understood in the
framework of the Kraichnan model of scalar advection [20, 21] (see [22]–[25] for exhaustive
reviews on the subject). In this model, the advecting flow v is random, Gaussian, self-similar and
δ-correlated in time. Under these special conditions, there exists a closed set of linear equations
for multi-point correlation functions. The anomalous exponents are the scaling exponents of
the homogeneous solutions (the so-called zero modes) of those equations. Since homogeneous
solutions do not depend, by definition, on the scalar input, their scaling exponents are universal
and cannot be inferred from dimensional arguments. The concept of zero mode can be extended
to passive scalar turbulence in generic velocity fields [26].

The properties of passive scalars described above are in the language of fields—the Eulerian
description. It is of interest to adopt now a different, but equivalent viewpoint in terms of particle
trajectories, namely the Lagrangian description.

2.2. Lagrangian description

The basic idea of the Lagrangian approach is to solve equation (2) by the method of characteristics.
Let us denote ρ(s; x, t) as the trajectory of a fluid particle landing at point x at time t (henceforth,
whenever there is no ambiguity, we indicate this as ρ(s)). The path ρ(s) is the solution of the
stochastic differential equation

dρ(s)

ds
= v(ρ(s), s) +

√
2κẇ(s), ρ(t) = x, (7)

where i, j = 1, . . . , d (d being the space dimensionality) and ẇ(s) is a Wiener process (the
derivative of a Brownian motion), i.e. ẇi are Gaussian variables of zero mean and correlation
〈ẇi(s)ẇj(s′)〉 = δijδ(s− s′). Along the path ρ(s), equation (2) reduces to

dφw(s)

ds
= fc(ρ(s), s), (8)

which is easily solved as φw(t) = ∫ t
0 ds fc(ρ(s), s). For the sake of simplicity, we assumed

φw(0) = 0. We indicated, with φw, the solution obtained along the path ρ obtained for a specific
realization of the process w. The passive scalar field c(x, t) is recovered by averaging over all
the realizations of w, i.e. along all the Lagrangian paths ending in x at time t [27]:

c(x, t) = 〈φw(t)〉w =
〈∫ t

0
ds fc(ρ(s), s)

〉
w

. (9)

The statistic of the trajectories is summarized in the particle propagator P(y, s|x, t) =
〈δ(y − ρ(s; x, t)〉w, which is the probability of finding a particle at point y and time s � t,
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provided it is in x at time t. According to the theory of stochastic processes [28], P(y, s|x, t)
obeys the Kolmogorov equations

− ∂sP(y, s|x, t)− ∇y · [v(y, s)P(y, s|x, t)] = κ�yP(y, s|x, t), (10)

∂tP(y, s|x, t) + ∇x · [v(x, t)P(y, s|x, t)] = κ�xP(y, s|x, t) (11)

with the initial condition P(y, t|x, t) = δ(x − y). The unusual minus signs on the l.h.s. of (10)
are due to the fact that particles move backward in time. The solution of (2) can be written in
terms of the propagator as

c(x, t) =
∫ t

0
ds

∫
dy fc(y, s)P(y, s|x, t), (12)

as it can be directly checked by inserting (12) into (2) and using (11).
At variance with smooth velocities (i.e. Lipschitz continuous, δrv ∼ r), where the particle

trajectories are unique for κ → 0, the particle propagator does not collapse onto a single trajectory
in the limit κ → 0 for velocity fields rough and incompressible. Lagrangian paths are not unique
and initially coincident particles separate in a finite time. This property is at the root of the
dissipative anomaly.

For active and passive scalars evolving in the same flow, the Lagrangian paths ρ(s) as well
as the propagator P(y, s|x, t) are the same. The difference between a and c is that, since the
active scalar enters the dynamics of v (equations (3) and (4)), the Lagrangian trajectories are
functionally related to the active scalar forcing fa, but are independent of the passive source term
fc. This is the Lagrangian counterpart of the linearity of the passive scalar problem, which does
not hold for the more complicated case of active scalars.

One of the advantages of the Lagrangian description is that it makes the physics of transport
processes transparent. For instance, let us consider the two-point correlation function for passive
scalars, Cc(x1, x2; t) = 〈c(x1, t)c(x2, t)〉. This offers the possibility of an intuitive interpretation
of the energy cascade phenomenology and gives insights into measurable statistical objects such
as the scalar spectrum Ec(k), which is the Fourier transform of Cc2. From (9) and averaging over
fc and v, we obtain

Cc2(x1, x2; t) =
〈∫ t

0
ds1

∫ t

0
ds2〈fc(ρ(s1; x1, t))fc(ρ(s2; x2, t))〉f

〉
wv

. (13)

Introducing the velocity-averaged two-particle propagator 〈P2(y1, y2, s|x1, x2, t)〉v, which
evolves according to the straightforward generalization of (10, 11) to two particles, and using
(5), equation (13) reduces to

Cc2(x1, x2; t) =
∫ t

0
ds

∫∫
〈P2(y1, y2, s|x1, x2, t)〉vF(|y1 − y2|/�f ) dy1 dy2, (14)

which has a clear physical interpretation. Since F(x) is vanishingly small for x � 1, the
correlation Cc2 is essentially the average time spent by a particle pair with a separation r =
|x1 − x2| below the forcing scale �f . Owing to the explosive separation of particles, this time has
a finite limit for r → 0, which yields the leading contribution to Cc2. The subleading behaviour
is uncovered by the second-order structure function

Sc2(r) = 〈(c(x1, t)− c(x2, t))
2〉 = 2(Cc2(0)− Cc2(r)), (15)
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which is approximately the average time T�f (r) taken by two coinciding particles to reach a
separation r. For a Kolmogorov’s 1941 turbulent flow (h = 1/3), one has Sc2(r) ∼ r2/3, i.e.
Ec(k) ∼ k−5/3, which is the Oboukov–Corrsin dimensional expectation [4].

The Lagrangian description can be extended also to higher-order statistics as multipoint
correlation functions CcN(x1, . . . , xN) = 〈c(x1, t) . . . c(xN, t)〉. However, when many points come
into play, their geometrical arrangement becomes crucial. Dimensional arguments, which are
based on the size of the configuration but forcibly neglect the ‘angular’ information, fall short
of capturing the observed behaviour for multipoint observables. A detailed discussion of their
properties is beyond the scope of this brief review. In the following, we just summarize the main
concepts, referring to [25, 29] for further reading.

Expanding the power in the definition of the structure functions ScN(r), it is necessary to
express them as a linear combination of N-point correlation functions (see e.g. (15) for Sc2(r)).
Therefore, the latter must contain a contribution, denoted as Zc

N(x1, . . . , xN), which carries
the anomalous scale dependence: Zc

N(λx1, . . . , λxN) = λζ
c
NZc

N(x1, . . . , xN) [22]–[24]. From a
Lagrangian viewpoint, the function Zc

N has a special property that distinguishes it from a generic
scaling function. A remarkable finding is that [26, 29]

d

dt
〈Zc

N〉L = 0, (16)

where the derivative d/dt is taken along the trajectories of N particles advected by the flow and
the average is over the ensemble of all trajectories. In other terms, Zc

N is statistically preserved by
the flow [26, 30]. The universality of scaling exponents is then just a by-product of the definition
of statistically preserved structures: since fc does not appear in equation (16), the properties of
zero modes are insensitive to the choice of the forcing.

2.3. Dissipative anomaly

In spite of the continuous injection of scalar through the pumping fc, the second-order moment
〈c2(x, t)〉 does not grow indefinitely even in the limit κ → 0. This is due to the existence of a
finite non-zero limit of the scalar dissipation εc = κ|∇c|2, which is the dissipative anomaly.

To understand how 〈c2(x, t)〉 achieves a finite value independent of the diffusivity coefficient,
we adopt the Lagrangian viewpoint. From equation (13), we have

〈c2(x, t)〉 =
〈∫ t

0

∫ t

0
ds1 ds2fc(ρ(s1; x, t))fc(ρ(s2; x, t))

〉
=

〈 (∫ t

0
dsfc(ρ(s; x, t))

)2 〉
, (17)

where the brackets indicate the average over the scalar forcing, the velocity field and the noise.
Looking naively at equation (17), one might expect that for a large class of random forcing

of zero mean, the r.h.s. of the above expression would grow linearly with t. For instance, when the
forcing is Gaussian and δ-correlated in time, one could argue that equation (17) is essentially the
sum of independent variables and, by central limit theorem arguments, conclude that 〈c2〉 ∝ t.
This conclusion would be correct if, in the limit κ → 0, all trajectories collapse onto a unique
Lagrangian path. This turns out to be the case for strongly compressible flows, but not in general.
For compressible flows, energy indeed grows linearly in time and the advected scalar performs
an inverse cascade process [31, 32]. On the contrary, in rough incompressible flows, coinciding
particles typically separate in a finite time, giving rise to multiple paths. As a consequence, a
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self-averaging process takes place in (17) and this prevents the indefinite growth of the energy.
This is evident when (17) is rewritten as

〈c2(x, t)〉 =
∫ t

0
ds

∫∫
〈P2(y1, y2, s|x, x, t)〉vF(|y1 − y2|/�f ) dy1 dy2. (18)

The time integral is cut off at |t − s| � T�f , which is four times larger than the (finite) time needed
by two coinciding particles to separate by a distance larger than the forcing correlation length �f .
This is the mechanism leading to finite dissipation of energy. To summarize, the incompressibility
and roughness of the flow result in the dissipative anomaly by explosive separation of the particle
paths. Further discussion on the role of dissipative anomaly in passive scalar turbulence can be
found in [21, 31, 33].

3. 2D turbulent convection

An interesting problem in the context of turbulent transport is the advection of inhomogeneous
temperature fields in a gravitational field. Temperature fluctuations induce density fluctuations,
which in turn, via buoyancy forces, affect the velocity field: hence, the temperature field is an
active scalar [4, 5]. In this paper, we consider 2D convection, which is also of experimental
interest in Hele–Shaw flows [34]. As an additional asset, the 2D problem is better suited for the
study of scaling properties, since it allows us to achieve higher resolution and larger statistics.

2D convection is described by the following equations:

∂ta + v · ∇a = κ�a + fa, (19)

∂tv + v · ∇v = −∇p + ν�v − βag − αv, (20)

where a is the field of temperature fluctuations. The second equation is the 2D Navier–Stokes
equation, where v is forced by the buoyancy term −βga in the Boussinesq approximation [4];
g = gŷ is acceleration due to gravity and β the thermal expansion coefficient. Kinetic energy is
removed at the large scales by the friction term −αv. The friction is physically due to the drag
experienced by a thin (quasi-2d) layer of fluid with the walls or air [7, 35]; α is related to the
thickness of the fluid layer. A passive scalar c, evolving according to equation (2) in the same
flow, has been considered as well for comparison.

Before looking at the active/passive scalar issue, let us briefly recall the phenomenology
of 2D turbulent convection (for the 3D case, see e.g. [4, 5]). The balance of buoyancy and
inertial terms in equation (20) introduces the Bolgiano length scale �B [4]. At small scales
r � �B, the inertial term is larger than buoyancy forces and the temperature is basically a passive
scalar. At large scales r � �B, buoyancy dominates and affects the velocity, which performs an
inverse energy cascade in two dimensions. However, at variance with the usual 2D Navier–Stokes
turbulence, the kinetic energy input rate ε depends here on the scale. Dimensional arguments yield
ε(r) = βg · 〈v(x + r, t)a(x, t)〉 ∼ r4/5, the Bolgiano scaling for the velocity structure functions

SvN(r) ∼ (ε(r)r)N/3 ∼ rζ
v
N , ζvN = 3N/5, (21)

and for temperature

SaN(r) ∼ rζ
a
N , ζaN = N/5. (22)
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Figure 1. Scaling exponents of temperature, ζaN , and velocity, ζvN . The straight
lines are the dimensional predictions:N/5 for temperature and 3N/5 for velocity.
Details of the numerics may be found in [11]. Notice that at orders larger than
N = 8, the temperature exponents saturate to a constant value, ζa∞ � 0.8.

No intermittency corrections are reported for the velocity, whereas the temperature field is
strongly intermittent (see figure 1 and [11, 36]).

Summarizing, the temperature fluctuations are injected at scales ∼�f , pump kinetic energy
through the buoyancy term and a non-intermittent velocity inverse cascade is established with
δrv ∼ r3/5. The presence of friction stabilizes the system, inducing a statistically steady state.
The active and passive scalars are, therefore, transported by a self-similar, incompressible and
rough flow. An intermittent cascade of fluctuations with anomalous, universal scaling exponents
ζcN is observed for the passive scalar.

Our aim is to compare the statistical properties of the temperature field and the passive
scalar field. For this purpose, in [11], equations (19) and (20) were integrated with fa and fc,
chosen as two independent realizations of a stochastic, isotropic, homogeneous and Gaussian
process of zero mean and correlation

〈fi(x, t)fj(x′, t′)〉 = δijδ(t − t′)F(|x − x′|/�f ), (23)

where F(r/�f ) = exp(−r2/(2�2
f )) decreases rapidly as r � �f . The labels are i, j = a, c. Results

of this numerical study clearly confirm that scaling exponents of temperature are anomalous
(figure 1), and coincide with those of the passive field ζcN = ζaN (figure 2, left panel).

In this system, there is saturation of intermittency, i.e. for large N, the scaling exponents
saturate to a constant ζa,c∞ ≈ 0.8 (see figure 1). This phenomenon, well known for passive scalars
[19], is physically related to the presence of abrupt changes in the spatial structure of the scalar
field (‘fronts’). In the temperature field, these quasi-discontinuities correspond to the boundaries
between hot rising and cold descending patches of fluid [36]. It is worth mentioning that saturation
has been experimentally observed both for passive scalars [37, 38] and temperature fields [39].

New Journal of Physics 6 (2004) 00 (http://www.njp.org/)

http://www.njp.org/


10 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0

0.2

0.4

0.6

0.8

1

0.1

ζa,
c

N
  (

r)

r

N=2

N=4

1

10

100

1000

0.1 1

S
a N

(r
)

r

N=2

N=4

 N=6

Figure 2. Left: local scaling exponents of temperature (×) and concentration
(�) fluctuations, ζa,cN (r) = d ln Sa,cN (r)/d ln r. Temperature and concentration are
driven by independent Gaussian random forcing with correlation function as
equation (23). Right: temperature structure functions SaN(r) for N = 2, 4, 6 as
a function of the separation r. The two sets of curves were generated by using the
random (×) and mean gradient (+) forcings. Notice that the curves are parallel
within the inertial range. The curves have been enlarged for clarity.

Clear evidences of saturation have recently been obtained also in the convective atmospheric
boundary layer exploiting the large-eddy simulation technique [40].

These findings point to the conclusion that the temperature and the passive scalar have the
same scaling laws. It remains to be ascertained whether the temperature scaling exponents are
universal with respect to the forcing. To this end, a set of simulations were performed in [11,
36], with a forcing that mimics the effect of a superimposed mean gradient on the transported
temperature field

fa(x, t) = γg · v(x, t). (24)

Remarkably, the results show that the scaling exponents of the temperature field do not depend
on the injection mechanism (figure 2, right panel), suggesting universality [11, 36]. Another
outcome of this investigation is that the velocity field statistics itself is universal with respect to
the injection mechanism of the temperature field. Indeed, v displays a close-to-Gaussian and non-
intermittent statistics with both forcings (23) and (24) [11]. This is most probably a consequence
of the observed universal Gaussian behaviour of the inverse energy cascade in 2D Navier–Stokes
turbulence [41, 42]. Indeed, velocity fluctuations in 2D convection also arise from an inverse
cascade process driven by buoyancy forces.

So far, all the numerical evidences converge to the following global picture of scaling and
universality in 2D turbulent convection. Velocity statistics is strongly universal with respect to
the temperature-external driving fa. Temperature statistics shows anomalous scaling exponents
that are universal and coincide with those of a passive scalar evolving in the same flow. It is
noteworthy that similar findings have been obtained in the context of simplified shell models for
turbulent convection [14, 15].

The observed universality of the temperature-scaling exponents suggests that a mechanism
similar to that of passive scalars may be at work, i.e. that statistically preserved structures may
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also exist for the (active) temperature. Pursuing this line of thought, one may be tempted to
define them through the property (d/dt)〈Za

N〉L = 0 as for passive scalars (see equation (16)).
However, statistically preserved structures are determined by the statistics of particle trajectories,
which, through the feedback of a on v, depend on fa. Therefore, the above definition does not
automatically imply the universality of Za

N , because Lagrangian paths depend onfa. Nonetheless,
the observed universality of the statistics of v is sufficient to guarantee universality of the
trajectories statistics, leading to the conclusion that if Za

N exists, it might be universal. Since
Zc
N are also defined by the Lagrangian statistics, which is the same for a and c, we may further

conjecture that Za
N = Zc

N . This would explain the equality of scaling exponents, ζaN = ζcN .
It has to be remarked that this picture is probably not generic. Two crucial points are needed

to have the equality between active and passive scalar exponents: (i) the velocity statistics should
be universal; and (ii) the correlation between fa and the particle paths should be negligible. As
we shall see in the following, those two requirements are not generally met.

4. 2D MHD

4.1. Direct and inverse cascades

MHD models are extensively used in the study of magnetic fusion devices, industrial processing
plasmas and ionospheric/astrophysical plasmas [3]. MHD is the extension of hydrodynamics to
conductive fluids, including the effects of electromagnetic fields. When the magnetic field b has
a strong large-scale component in one direction, the dynamics is adequately described by the 2D
MHD equations [6]. Since the magnetic field b(x, t) is solenoidal, in 2d, it can be represented
in terms of the magnetic scalar potential a(x, t), i.e. b = −∇⊥a = (−∂2a, ∂1a). The magnetic
potential evolves according to the advection–diffusion equation

∂ta + v · ∇a = κ�a + fa, (25)

and will be our active scalar throughout this section. The advecting velocity field is driven by
the Lorentz force (∇ × b)× b = −�a∇a, so that the Navier–Stokes equation becomes

∂tv + v · ∇v = −∇p + ν�v −�a∇a. (26)

The question is whether the picture drawn for the temperature field in 2d convection applies to
the magnetic potential as well.

Equations (25) and (26) have two quadratic invariants in the inviscid and unforced limit,
namely the total energy 1

2

∫
(v2 + b2) dx and the mean square magnetic potential 1

2

∫
a2 dx.

Using standard quasi-equilibrium arguments [6], an inverse cascade of the magnetic potential is
expected to take place in the forced and dissipated case [43]. This expectation has been confirmed
in numerical experiments [44]. Let us now compare the magnetic potential with a passive scalar
evolving in the same flow.

We performed a high-resolution (40962 collocation points) direct numerical simulation of
equations (25) and (26) along with a passive scalar (2). The scalar forcing terms fa and fc are
homogeneous, independent Gaussian processes with zero mean and correlation

〈f̂ i(k, t)f̂ j(k′, t′)〉 = F0

(2πkf )
δijδ(k + k′)δ(k − kf )δ(t − t′), (27)
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Figure 3. Power spectra of the active (red) and passive (blue) scalar variances,
Ea(k) = πk|â(k, t)|2 and Ec(k) = πk|ĉ(k, t)|2. Inset (below): the fluxes of scalar
variance�a,c out of wavenumber k. Negative values indicate an inverse cascade.
Inset (above): the total scalar variance ea,c(t) = ∫

Ea,c(k, t)dk. The active variance
ea(t) grows linearly in time, whereas ec(t) fluctuates around a finite value (see
text). The rate of active to passive scalar dissipation is εa/εc � 0.005. All fields
are set to zero at t = 0, and time, is defined in units of eddy-turnover time
T = lf /vrms, where lf = 2π/kf . At k < kf , we observe power-law behaviours
Ea(k) ∼ k−2.0±0.1 and Ec(k) ∼ k0.7±0.1, whereas at k > kf , we find Ea(k) ∼
k−3.6±0.1 and Ec(k) ∼ k−1.4±0.1.

where i, j = a, c. The injection length scale lf ∼ 2π/kf has been chosen roughly in the middle
of the available range of scales. F0 is the rate of scalar variance input.

In figure 3, we summarize the spectral properties of the two scalars. The emerging picture
is as follows. While a undergoes an inverse cascade process, c cascades down-scale. This
striking difference is reflected in the behaviour of the dissipation. The active scalar dissipation
εa = κ|∇a|2 vanishes in the limit κ → 0, being not a dissipative anomaly for the field a.
Consequently, the squared magnetic potential grows linearly in time ea(t) = 1

2

∫
a2 dx ≈ 1

2F0t.
On the contrary, for the passive scalar, a dissipative anomaly is present and εc = κ|∇c|2 equals
the input 1

2F0 holding c in a statistically stationary state (see inset to figure 3).
The velocity field is rough (as confirmed by its spectrum, see figure 4) and incompressible;

therefore particle paths are not unique and explosively separate. This entails the dissipative
anomaly for passive scalars. On the contrary, the dissipative anomaly is absent from the magnetic
potential despite the fact that the trajectories are the same—the advecting velocity is the same.
How can these two seemingly contradictory statements be reconciled?

4.2. Dissipative anomaly and particle paths

The solution of the riddle resides in the relationship between the Lagrangian trajectories and
the active scalar input fa. These two quantities are bridged by the Lorentz force appearing
in (26). To study the correlations between forcing and particle paths, we need to compute
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Figure 4. Velocity power spectrum Ev(k) = πk|v̂(k, t)|2. For k < kf , in
agreement with previous simulations [44], we observeEv(k) ∼ k1/3 (· · · ·), which
deviates from the dimensional prediction k−1/3. In the range k > kf , a scaling
close to k−5/3 is observed, indicating that v is rough both in the inverse and direct
cascade ranges.

the evolution of the particle propagator. The relevant observables are the time sequences of
φa,c(s) = ∫

dy fa,c(y, s)P(y, s|x, t). Indeed, the equivalent of equation (12) can be written for
the active scalar as

a(x, t) =
∫ t

0
ds

∫
dyfa(y, s)P(y, s|x, t). (28)

The main difficulty encountered here is that P evolves backward in time according to (10)
and the conditionP(y, t|x, t) = δ(y − x) is set at the final time t. Conversely, the initial conditions
on velocity and scalar fields are set at the initial time. The solution of this mixed initial/final value
problem is a nontrivial numerical task. To this end, we devised a fast and low-memory demanding
algorithm to integrate equations (25), (26) and (10) with the appropriate initial/final conditions.
Details are given in [45].

The typical evolution of the propagator is shown in the middle column of figure 5. From its
evolution, we reconstructed the time sequences of the forcing contributions φa,c(s), which, when,
integrated over s, yield the amplitude of the scalar fields according to equations (12) and (28). The
time series of φa(s) and φc(s) are markedly different (figure 6), the former being strongly skewed
towards positive values at all times. This signals that trajectories preferentially select regions
where fa has a positive sign, summing up forcing contributions to generate a typical variance
of a of the order F0t. On the contrary, the passive scalar sequence displays the usual features:
fc is independent of P and their product can be positive or negative with equal probability on
distant trajectories. This ensures that the time integral in equation (12) averages out to zero for
|s− t| > T�f (see section 2.2) and yields c2 ∼ F0T�f .

As shown in figure 6 (lower panel), the effect of correlations between the forcing and
propagator is even more striking comparing

∫ s
0 ds′φa(s′) with

∫ s
0 ds′φc(s′). The conspicuous
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Figure 5. Time runs from bottom to top. First column: time evolution of the
active scalar field resulting from the numerical integration of equations (25) and
(26). Second column: backward evolution of the particle propagator according
to equation (10). Third column: time evolution of the passive scalar field in the
same flow.

difference is related to a strong spatial correlation between P and a, as can be inferred from

∫ s

0
φa(s

′) ds′ =
∫

dy a(y, s)P(y, s|x, t), (29)

which can be derived from (25) and (11).An equivalent relation holds for c as well. Comparison of
the first and second columns of figure 5 highlights the role of spatial correlations: the distribution

New Journal of Physics 6 (2004) 00 (http://www.njp.org/)

http://www.njp.org/


15 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

-0.2

-0.1

0.0

0.1

0.2

0 10 20 30
s

φa(s)

0 10 20 30
s

φc(s)

0.0

1.0

2.0

0 10 20 30

0.00

0.05

0.10

s

∫ 0 
φ a

(s
’) 

ds
’

s ∫ 0 
φ c

(s
’) 

ds
’

s

Figure 6. Top panel: φa,c(s) = ∫
dy fa,c(y, s)P(y, s|x, t). The two graphs have

the same scale on the vertical axis. Here, t = 32. Bottom panel: time integrals∫ s
0 φa(s

′) ds′ (upper curve) and
∫ s

0 φc(s
′)ds′ (lower curve). Note the different scale

on the vertical axis. Recall that
∫ t

0 φa(s
′) ds′ = a(x, t) (and similarly for c).

of particles follows the distribution of the active scalar. This amounts to saying that large-scale
scalar structures are built out of smaller ones that coalesce together [44]. This has to be contrasted
with the absence of large-scale correlations between the propagator and the passive scalar field
(figure 5, columns 2 and 3).

Let us now clarify the mechanism for the absence of dissipative anomaly. Consider the
squared active field a2. It can be expressed in two equivalent ways. On the one hand, it can
be written as the square of (28). On the other, by multiplying equation (25) by 2a, one obtains
the equation

∂ta
2 + v · ∇a2 = κ�a2 + 2afa − 2εa. (30)

Exploiting the absence of dissipative anomaly εa = 0, equation (30) reduces to a transport
equation that can be solved in terms of particle trajectories. Comparison of the two expressions
yields6

∫ t

0
ds

∫ t

0
ds′

∫∫
fa(y, s)fa(y

′, s′)P(y, s|x, t)P(y′, s′|x, t)

=
∫ t

0
ds

∫ t

0
ds′

∫∫
fa(y, s)fa(y

′, s′)P(y′, s′; y, s|x, t), (31)

6 To obtain the r.h.s. of (31), consider the expression a2(x, t) = 2
∫ t

0 ds
∫

dy fa(y, s)a(y, s), insert a(y, s) =∫ s
0 ds′

∫
dy′ fa(y′, s′), i.e. equation (4) evaluated at time s, and exploit the symmetry under exchange of s and

s′ to switch from a time-ordered form to a time-symmetric one to get rid of the factor 2.
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉
w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈∫ t0 fa(ρ(s), s) ds〉Nw = 〈[ ∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by �(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t� + v · ∇� = κ�� + f�. (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)

dt
= f�(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. �(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x, ϑ, t|x0, ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = �(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f�∇ϑP = κ�P, (36)

with initial condition P(x, ϑ, t|x0, ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = �(x, 0).
Integrating over the initial conditions, we define now the probability density P(x, ϑ, t) =∫

P(x, ϑ, t|x0,�(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x, ϑ, 0) = δ(ϑ −
�(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) = ∫ t

0 f�(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

�(x, t) = ∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
�(x, t) + v · ∇xσ

2
�(x, t) = κ�σ2

�(x, t) + 2ε�(x, t), (37)

where ε�(x, t) = κ|∇x

∫
ϑP(x, ϑ, t) dϑ|2. In the Eulerian frame, note that ε�(x, t) =

κ|∇�(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d

dt

∫
σ2
�(x, t) dx = 2

∫
ε�(x, t) dx = 2ε�, (38)

where ε� = 〈κ|∇�(x, t)|2〉 is the average dissipation rate of 〈�2〉/2. Therefore, if �2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε�, the variance of the
distribution of values of ϑ(t) = ∫ t

0 ds f�(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of �2 in the absence of dissipative anomaly,

∫
dx σ2

�(x, t) = 0, corresponding
to a singular distribution P(x, ϑ, t) = δ(ϑ −�(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x, ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = �(x, t)

(see figure 8a). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. On the contrary, for a direct cascade of scalar, such correlations
do not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8b).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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Figure 7. Plot of
∫

dx σ2
a(x, t) and

∫
dx σ2

c (x, t) (�� and ◦ respectively) versus
time. We have integrated equations (25) and (2) for two different values of
diffusivity, κ = 0.003 ( •) at resolution 5122 and κ = 0.001 (◦ ��) at resolution
10242. The straight lines indicate the growth laws 2εat and 2εct for the two
values of κ. Note that εc does not depend on κ consistently in the presence
of dissipative anomaly, whereas εa decreases as κ decreases. The variance has
been evaluated averaging over 106 Lagrangian paths evolving according to (34).
The Lagrangian scalar values ϑa and ϑc (where a(x, t) = ∫

ϑaP(x, ϑa, t) dϑa, the
equivalent relation holds between c and ϑc) have been computed integrating (35)
both for the active fa and passive fc forcings along each path. The forcings are
chosen as in (27). The initial Eulerian a(x, 0), c(x, 0) and Lagrangianϑa(0),ϑc(0)
fields have been set to zero. Time is measured in eddy turnover times.

The Gaussianity of the pdf of a is a straightforward consequence of the vanishing of
active scalar dissipation. This is simply derived by multiplying equation (25) for 2na2n−1 and
averaging over the forcing statistics. The active scalar moments obey the equation ∂t〈a2n〉 =
n(2n− 1)F0〈a2n−2〉 (odd moments vanish by symmetry), whose solutions are the Gaussian
moments: 〈a2n〉 = (2n− 1)!!(F0t)

n. An equivalent derivation can be obtained in Lagrangian
terms. Following the same steps that lead from equation (30) to (31), it is easy to derive the
following expression:

a2n(x, t) = 2n
∫ t

0
ds1

∫
dy1P(y1, s1|x, t)a2n−1(y2, s2), (39)

which, after integrating over x and averaging over the forcing statistics, reduces to

〈a2n〉(t) = n(2n− 1)F0

∫ t

0
ds〈a2n−2〉(s), (40)

which, unravelling the hierarchy, yields the Gaussian moments written above. In passing from
equation (39) to (40), we used the property that

∫
dxP(y, s|x, t) = 1 (which is ensured by

equation (10)) and Gaussian integration by parts.
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Figure 8. (a) The surface is the instantaneous Eulerian magnetic potential field
a(x, t). The dots represent the positions of particles in the (x, ϑa) space at time t.
(b) The same for the passive scalar c. The time t corresponds to the largest time
in figure 7. For visualization purposes, only the portion [0, π/4] × [0, π/4] is
displayed. In (a), the cloud of dots closely follows the magnetic potential surface;
however, in (b), they are considerably more dispersed (notice the difference in
values of the ϑ-axis).
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Figure 9. Pdfs of the active (��) and passive ( ) scalar fields normalized by
their standard deviation. The active scalar pdf is indistinguishable from a
Gaussian (———).

4.4.2. Multipoint statistics and the absence of anomalous scaling in the inverse cascade. Results
about two-point statistics of the magnetic potential and passive scalar fields are summarized
in figure 10. In the inverse cascade scaling range r > �f , the rescaled pdf of δra at different
values of the separation r collapse onto the same curve, indicating the absence of anomalous
scaling (figure 10a). In contrast, in the scaling range r < �f , the rescaled pdfs of passive scalar
increments at different r values do not collapse (figure 10b), i.e. we have anomalous scaling,
as expected.
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Figure 10. (a) Rescaled pdf of the normalized active scalar increments
δra/〈(δra)2〉1/2 for three separations in the r > �f range: r = 2�f (×), 3�f (◦)
and 4�f (��). Pdf of the normalized passive scalar increments at the same scales
(– – –) and the Gaussian (———) are shown for comparison . In the inset, the
rescaled pdf of δra for r = 3�f (———) is shown in the interval [−2.5 : 2.5] in
the linear scale to emphasize the deviation from a Gaussian (– – –). The flatness
is ∼2.76, significantly lower than the Gaussian value 3. (b) Rescaled pdf of the
passive scalar increments δrc/〈(δrc)2〉1/2 for two separations in the r < �f range:
r = 0.3�f (�) and r = 0.6�f (��). The rescaled pdfs of active scalar increments
at the same scales (———) and a Gaussian (– – –) are reported for comparison.

Let us now consider in quantitative terms the scaling behaviours. In our simulations, the
scaling range r < �f (k > kf ) was poorly resolved; therefore we do not enter the much debated
issue of scaling of the magnetic and velocity fields over this range of scales (see e.g. [43, 44,
46]–[49]). Instead, we just mention that current opinions are divided between the Kolmogorov
scaling δrv ∼ r1/3 and the Iroshnikov–Kraichnan scaling δrv ∼ r1/4, corresponding to spectral
behaviours such as Ev(k) ∼ k−5/3 and Ev(k) ∼ k−3/2, respectively. Both theories agree on the
smooth scaling behaviour for the magnetic potential δra ∼ r that is observed numerically
(see figure 3). In the range of scales r > �f (k < kf ), standard dimensional arguments predict
Ea(k) ∼ k−7/3 [6, 43, 44], which is different from our finding that Ea(k) ∼ k−2 (figure 11). In
real space, this means that δra ∼ r1/2, which is dimensionally compatible with scaling behaviour
δrv = [v(x + r, t)− v(x, t)] · r̂ ∼ r0 for r > �f (as suggested by the velocity spectrum, see figure
4), and the Yaglom relation 〈δrv(δra)2〉 � F0r [4]. As a side remark, note that the argument
for Ea(k) ∼ k−7/3 rests on the assumption of locality for velocity increments, a hypothesis
incompatible with the observed velocity spectrum at k < kf (see figure 4).

It is worth remarking that the increments of active scalar δra = a(x + r, t)− a(x, t)

eventually reach a stationary state in spite of the growth of a2. The distribution of δra is sub-
Gaussian (figure 10). This behaviour can be explained by recalling that δra is the difference of two
Gaussian variables, which are, however, strongly correlated (indeed the main contributions will
come from x + r and x inside the same island; see figure 5). This correlation leads to cancellations
that result in the observed sub-Gaussian pdf.

Let us now focus on the most interesting aspect, namely the absence of anomalous scaling
in the inverse cascade range. The absence of intermittency seems to be a common feature of
inverse cascading systems as passive scalars in compressible flows [31, 32] and the velocity field
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Figure 11. Compensated power spectra of active scalar variancesEa(k)k2 at three
different times of the evolution. Note that an increasingly clear plateau at k < kf
appears.

in 2D Navier–Stokes turbulence [42]. This leads to the conjecture that an universal mechanism
may be responsible for the self-similarity of inverse cascading systems. Whereas 2d Navier–
Stokes turbulence is not fully understood, the absence of anomalous scaling from passive scalars
evolving in compressible flows has been recently understood in terms of the collapse of the
Lagrangian trajectories onto a unique path [31, 32]. Briefly, the collapse of trajectories allows us
to express the 2N-order structure function in terms of two-particle propagators 〈P2〉v, instead of
the 2N-particle propagator 〈P2N〉v. Whereas the latter may be dominated by a zero mode with a
non-trivial anomalous scaling, the former are not anomalous and lead to dimensional scaling.

The above argument cannot be simply exported to the magnetic potential inverse cascade:
first, the Lagrangian paths do not collapse onto a unique one; secondly, the correlation between
fa and v does not allow us to split the averages. However, the former difficulty can be overcome.
Indeed, the property that all paths landing in the same point contribute the same value has
important consequences in the multipoints statistics as well. Proceeding as for the derivation
of equation (31), it is possible to show that m trajectories are enough to calculate the product
of arbitrary powers of a at m different points 〈an1(x1, t) . . . a

nm(xm, t)〉. In particular, structure
functions SaN(r) = 〈(δra)N〉 for any order N involve only two trajectories. This should be
contrasted with the passive scalar, where the number of trajectories increases with N and this is
at the core of anomalous scaling of passive fields [25].

5. 2D Ekman turbulence

Let us now consider the case of scalars that act on the velocity field through a functional
dependence. Among them, probably the best-known case is vorticity in two dimensions a =
∇ × v. It obeys the Ekman–Navier–Stokes equation

∂ta + v · ∇a = κ�a− αa + fa. (41)
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Figure 12. Left: the vorticity spectrumEa(k) ∼ k−1−ξ steepens by increasing the
Ekman coefficient α. Here, α = 0.15 (+), α = 0.23 (×) and α = 0.30 (�). The
inset presents the exponent ξ as a function of α. Right panel: power spectra of
passive scalar (×) and vorticity (+). Here, α = 0.15. In the inset, we show the
same spectra compensated by k1+ζc2 (see [12] for details on the DNS).

The term −α a models the Ekman drag experienced by a thin fluid layer with the walls or the
surrounding air [7, 35].

In the absence of friction (α = 0), dimensional arguments [50, 51], confirmed by
experiments [41, 52] and numerical simulations [42], give the following scenario. At large
scales, an inverse (non-intermittent) cascade of kinetic energy takes place withEv(k) ∼ k−5/3 and
Ea(k) ∼ k1/3. At small scales, the enstrophy 〈a2〉 performs a forward cascade with Ea(k) ∼ k−1

and Ev(k) ∼ k−3, meaning that the velocity field is smooth over this range of scales.
In the presence of friction (α > 0), kinetic energy is removed at large scales holding the

system in a statistically steady state, and small-scale statistics is modified by the competition
of the inertial (v · ∇a) and friction (−α a). Since these two terms have the same dimension due
to smoothness of the velocity field, this results in nontrivial scaling laws for a. This effect is
evident in DNS with α > 0 [12, 17], where the vorticity spectrum displays a power law steeper
than in the frictionless case:Ea(k) ∼ k−1−ξ with ξ dependent on α (see figure 12, left panel). For
0 < ξ < 2, the exponent ξ coincides with the scaling exponent ζa2 of the second-order structure
function Sa2(r). Additionally, high-order structure functions at fixed α show anomalous scaling,
ζaN 	= Nξ/2 [12]. Spectral steepening and the presence of intermittency are observed [12, 16]
also in passive scalars evolving in smooth flows according to

∂tc + v · ∇c = κ�c − αc + fc. (42)

Physically, equation (42) describes the evolution of a decaying passive substance (e.g. a
radioactive marker) [4, 53]. Forα = 0, the dimensional expectationEc(k) ∼ k−1 has been verified
in experiments [54]. For positive α, passive scalar spectra become steeper than k−1 and, at high
wavenumbers, have the same slope of the vorticity spectrum (figure 12, right panel).Additionally,
the pdfs of passive and vorticity increments for separations inside the inertial range collapse one
onto the others (figure 13), signalling that the scaling exponents coincide: ζcN = ζaN . In summary,
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Figure 13. Pdfs of vorticity differences (+) and passive scalar ones (×),
normalized by their respective standard deviation at different scales r within the
scaling range.

the vorticity field and the passive scalar share the same statistical scaling properties [12, 16, 17],
similar to the 2D convection case. However, differences may appear for odd-order moments [55].

It is now interesting to understand how the equivalence of active and passive statistics is
realized: we shall see that, in this case, the smoothness of the flow is a crucial ingredient.

Let us start with the decaying passive scalar (42). First of all, it should be noted that the
presence of non-zero friction (α > 0) regularizes the field, and there is absence of dissipative
anomaly [53], even if the mechanism is different from the MHD one. As a consequence,
in equation (42), we can substitute κ = 0 and solve it by the method of characteristics (see
section 2.2), i.e. c(x, t) = ∫ t

−∞ dsfc(ρ(s; x, t), s) exp(−α(t − s)), where now the path ρ(s; x, t), s

is unique due to the smoothness of the velocity field (note that Ev(k) ∼ k−3−ξ is always steeper
than k−3; see also figure 12(left panel). The integral extends up to −∞, where the initial
conditions are set.

Passive scalar increments δrc = c(x1, t)− c(x2, t)(r = |x1 − x2|), which are the objects we
are interested in, are associated with particles pairs by the relation

δrc =
∫ t

−∞
ds e−α(t−s)[fc(ρ(s; x1, t), s)− fc(ρ(s; x2, t), s)]. (43)

It should be mentioned here that the integrand fc(ρ(s; x1, t), s)− fc(ρ(s; x2, t), s) stays small
as long as the separation between the two paths remains below the forcing correlation scale �f ,
whereas for separations larger than �f , it is approximately equal to a Gaussian random variable
X. In the latter statement, we used the independence between fc and the particle trajectories,
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Figure 14. The scaling exponents of the passive scalar ζcp (+), which have been
computed also for noninteger moments, indeed equation (46), holds in general.
We also show the exponents obtained from the separation times statistics (�)
according to 〈exp[−αpT�f (r)]〉 ∼ rζ

c
p with average over ∼2 × 105 couple of

Lagrangian particles. The error bars were estimated by the rms fluctuation of
the local slope. In the inset, we plot the Cramer function S(γ), computed from
finite-time Lyapunov exponents (symbols) and exit time statistics (line).

ensured by the passive nature of c. Therefore, equation (43) can be approximated as

δrc ≈ X

∫ t−T�f (r)

−∞
ds e−α(t−s) ∼ Xe−αT�f (r), (44)

where T�f (r) is the time necessary for the particles pair to go from r to �f backward in time. It is
now clear that large fluctuations are associated with fast separating couples, T�f (r) � 〈T�f (r)〉,
and small fluctuations with slow ones. Moreover, since v is smooth, 2D and incompressible, pairs
separation is exponential and its statistics is described by a single finite-time Lyapunov exponent
[56], γ . It is related to the separation time through the relation

�f = reγT�f (r). (45)

Large deviations theory states that, for large times, the random variable γ is distributed as
P(γ, t) ∼ t1/2 exp [ − S(γ)t]. S(γ), the so-called Cramer function [57], is positive, concave and
has a quadratic minimum, S(λ) = 0 in the maximum Lyapunov exponent λ. From (44) and (45),
along with the expression for P(γ, t), structure functions can be computed as

ScN(r) ∼ 〈XN〉
∫

dγ

(
r

�f

)(Nα+S(γ))/γ

≈
(
r

�f

)ζcN

, (46)

where ζcN = minγ{N, [Nα + S(γ)]/γ}. Figure 14 shows that this prediction is verified by
numerical simulations. The anomalous exponents, ζcN , can therefore be evaluated in terms of
the flow properties through the Cramér funtion S(γ).

Since ζcN = ζaN , one may be tempted to apply straightforwardly the same argument to
vorticity as that used for the passive scalar. However, the crucial assumption used in the derivation
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of equation (46) is the statistical independence of particle trajectories and the forcing. That allows
us to consider T�f (r) andX as independent random variables.Although this is obviously true for c,
it is clear that the vorticity forcing fa may influence the velocity statistics and, as a consequence,
the particle paths. In other terms, for the vorticity field, we cannot a priori considerX and T�f (r)
as independent.

Nevertheless, it is possible to support the validity of equation (43) for vorticity too.
Indeed, the random variable T�f (r) is essentially determined by the evolution of the strain
along the Lagrangian paths for times t − T�f (r) < s < t, whereas X results from the scalar
input accumulated at times s < t − T�f (r). Since the strain correlation time is basically α−1 for
T�f (r) � α−1, it is reasonable to assume that T�f (r) andX are statistically independent. Equation
(45) allows us to translate the condition T�f (r) � α−1 into r � �f exp(−γ/α) and to conclude
that, at small scales, we can safely assume that the vorticity behaves as a passive field.

We conclude this section with two remarks. First, a difference between the present scenario
and the one emerging from 2D convection should be pointed out. Here, the scaling exponents
depend on the statistics of the finite-time Lyapunov exponents, which in turn depends on the way
the vorticity is forced. As a consequence, universality may be lost. Secondly, the smoothness
of the velocity field plays a central role in the argument used to justify the equivalence of the
statistics of a and c in this system. For rough velocity fields, T�f (r) is basically independent of
r for r � �f and the argument given in this section would not apply.

6. Turbulence on fluid surfaces

6.1. Surface quasi-geostrophic (SQG) turbulence

The study of geophysical fluids is of obvious importance for the understanding of weather
dynamics and global circulation. Taking advantage of stratification and rotation, controlled
approximations on the Navier–Stokes equations are usually performed to obtain more tractable
models. For example, the motion of large portions of the atmosphere and ocean have a stable
density stratification, i.e. lighter fluid sits above heavier one. This stable stratification, combined
with the planetary rotation and the consequent Coriolis force, causes the most energetic motion to
occur approximately in horizontal planes and leads to a balance of pressure gradients and inertial
forces. This situation is mathematically described by the quasi-geostrophic equations [7, 8]. On
the lower boundary, the surface of the earth or the bottom of the ocean, the vertical velocity
has to be zero and this further simplifies the equations. Assuming that the fluid is infinitely high
and the free surface is flat, the dynamics is then described by the SQG equation [9, 58]. It governs
the temporal variations of the density field, our active scalar a throughout this section. For an
ideal fluid, the density variation will be proportional to the temperature variation and one can
use the potential temperature as the fundamental field.

The density fluctuations evolve according to the transport equation

∂ta + v · ∇a = κ�a + fa, (47)

and the velocity field is functionally related to a. In terms of the stream function ψ, the density
a is obtained as a(x, t) = (−�)1/2ψ(x, t) and v = (∂y,−∂x)ψ. In Fourier space, the link is
particularly simple

v̂(k, t) = −i

(
ky

k
,−kx

k

)
â(k, t). (48)
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In the early days of computer simulations, equations (47) and (48) had been used for weather
forecasting. Recently, they have attracted renewed interest in view of their formal analogy with
the 3d Navier–Stokes equations [59, 60], and as a model of active scalar [9, 10].

It is instructive to generalize (48) as

v̂(k, t) = −i

(
ky

kz
,−kx
kz

)
â(k, t). (49)

For z = 1, one recovers (48), whereas z = 2 corresponds to the 2d Navier–Stokes equation
and a is the vorticity (see the previous section). The value of z tunes the degree of locality.
The case of interest here is z = 1, corresponding to the same degree of locality as in 3d
turbulence [9].

Equations (47) and (49) have two inviscid unforced quadratic invariants, E = − ∫
dx aψ

and � = ∫
dx a2, which, for z = 2, correspond to the energy and the enstrophy, respectively.

Notice that, for z = 1, the fields v and a have the same dimension and Ea(k) ≡ Ev(k). Quasi-
equilibrium arguments predict an inverse cascade of E and a direct cascade of�. If kf identifies
the injection wave number, dimensional arguments give the expected spectral behaviour [9]:

Ea(k) ∝
{
k−7/3+(4z/3), k � kf ,

k−7/3+(2z/3), k � kf .
(50)

For z = 2, one recovers the 2d Navier–Stokes expectation [50, 51]. Here, we are interested in
the range k > kf and z = 1, so that Ea(k) ≡ Ev(k) ∼ k−5/3 as in 3d turbulence. Assuming the
absence of intermittency, the spectrum Ev(k) ∼ k−5/3 would imply δrv ∼ r1/3. Therefore, for
a passive scalar, one expects the standard phenomenology: an intermittent direct cascade with
Ec(k) ∼ k−5/3 to the Oboukov–Corrsin–Kolmogorov type of arguments [4].

6.1.1. Direct numerical simulations settings. We performed a set of high-resolution direct
numerical simulations of equations (47) and (48) along with the passive scalar equation (2).
Integration has been performed by means of a 2

3-de-aliased pseudo-spectral method on a
2π × 2π doubly periodic square domain with N 2 collocation points. Time integration has been
performed with a second-order Adam–Bashforth or Runge–Kutta algorithm, appropriately
modified to integrate exactly the dissipative terms. The latter ones, as customary, have been
replaced by a hyperdiffusive term, which, in Fourier space, reads −k2pâ(k, t). Since the
system is not stationary owing to the inverse cascade of E, we added an energy sink at
large scales of the form −k−qâ(k, t). To evaluate its possible effect on inertial quantities,
a very-high-resolution (40962) DNS has been performed without any energy sink at large
scales.

A summary of the numerical settings can be found in table 1. We considered different scalar
inputs: (G) a δ-correlated forcing as defined in equation (23) with Gaussian correlation function;
(B) same as above, but with forcing restricted to a few wavenumbers shells as in equation (27);
(NG) a non-Gaussian finite-time correlated forcing to produce non-zero three-point correlations
for the scalar fields (see section 6.3 for a detailed discussion).

6.2. Active and passive scalar statistics in SQG turbulence

Let us first study the measured scalar spectra to check the dimensional predictions. In figure 15,
we summarize the spectral behaviour for a and c in two different simulations (i.e. runs 1 and 3).
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Table 1. Summary of the settings in DNS.

Run N 2 p q F kf

1 40962 2 B 44–48
2 20482 2 1/2 B 2–6
3 20482 2 0 G 5
4 20482 2 1/2 G 5
5 20482 2 0 NG 5

Note: Runs 1 and 2 are forced according to equation (23), and
run 1 is without any friction term. Runs 3 and 4 are forced
according to equation (27). Run 5 is forced with the non-Gaussian
forcing discussed in section 6.3. Lower (5122) resolution runs under
several settings both for the dissipative and friction terms were also
performed.
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Figure 15. (a) Power spectra of the active (red) and passive (blue) scalar
variances, Ea(k) = πk|â(k, t)|2 and Ec(k) = πk|ĉ(k, t)|2, for run 1; the inset
shows the active and passive energy fluxes�a,c(k). The dashed lines indicates the
best-fitted spectral slopes Ea(k) ∼ k−1.8±0.1 and Ec(k) ∼ k−1.15±0.05. Note that
the fitted slope for Ea(k) is better recovered at higher wavenumbers; close to
the energy peak a steeper spectrum (∼k−2±0.1) is observed. (b) Same as (a)
but for run 3. The inset shows the scalar fluxes. The dashed lines indicates
the spectral slopes Ea(k) ∼ k−1.8±0.1 and Ec(k) ∼ k−1.17±0.05. Here, the scaling
range is wider than that in run 1. For both runs, active and passive spectra have
been shifted for visualization purposes. In the other runs, we observe the same
qualitative and quantitative features within the error bars. In particular, runs 1
and 2 give almost indistinguishable spectral slopes, meaning that the large-scale
energy sink does not enter too much into the inertial range, which is as expected
since the velocity field is rough at small scales. Run 5 produced spectral slopes
indistinguishable from those of runs 3 and 4. However, it should be noted that runs
1 and 2 display a steeper spectra close to the forcing wavenumbers; this feature is
absent from the other runs and may be due to finite-size effects (see text and also
figure 17).
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Figure 16. Snapshots of the active (left) and passive (right) scalars (at 5122

resolution). Note the presence of coherent structures in the active field, which are
slow-evolving. The passive field displays filament-like features, indicating that it
is more rough compared with the active one.

Two observations are in order:

• The scalar spectra Ea(k) is steeper than the dimensionally expected k−5/3. The slope does not
seem to depend on the injection mechanism.

• The active and passive scalars, both performing a direct cascade, are different already at the
level of the spectral slopes. In particular, c is much rougher than a.

The differences between a and c are evident also from figure 16, where two simultaneous
snapshots of the fields are displayed. A direct inspection of the fields confirms that c is more
rough compared with a, and resembles a passive scalar in a smooth flow. Moreover, in a, we
observe the presence of large coherent structures at the scale of the forcing. These are actually
long-lived, slow-evolving structures that strongly impair the convergence of the statistics for
high-order structure functions. Hence, in the following, we limit ourselves to a comparison of
the low-order statistics of a and c, but this is sufficient to appreciate the differences beween active
and passive scalar statistics.

The deviation from the dimensional expectation for the spectral slope of the active field
was already observed in previous numerical studies [9], and it is possibly due to intermittency
in the active scalar and velocity statistics. Indeed, the rescaled pdfs of the increments do not
collapse (not shown). Concerning the universality of anomalous exponents with respect to the
forcing statistics, we observe that the spectral slopes do not depend sensitively on the forcing
statistics. However, the forcing (B) (see table 1) induces a steeper spectrum close to the forcing
scale, whereas a universal slope is apparently recovered at large wavenumbers (figure 15a). The
scaling of Sa2(r) seems to be more sensitive to the forcing (see figure 17). These discrepancies
may be due to finite-size effects; these are more severe for the forcing (B), which is indeed
characterized by a slower decay of the spatial correlations. Unfortunately, it is difficult to extract
reliable information on the high-order statistics. Indeed, the presence of slowly evolving coherent
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Figure 17. (a) Second-order structure function for the active (��) and the passive
(•) scalars in run 2. The straight line shows the scaling ∼r1 for the Sa2(r) (the same
exponent is observed in run 1). The passive scalar does not display a neat scaling
behaviour. In the inset, we show the correlation function for the passive scalar
Cc2(r) in log-lin scale (see text). (b) Same as (a) but for run 3. Here, the straight
dashed line indicates the slope r0.8. Sa2(r) in run 5 has a slope ∼r0.84, compatible
with the ones observed in runs 3 and 4 within statistical errors.

structures induces a poorly converging statistics for high-order structure functions. Therefore, we
cannot rule out the possibility of dependence of the active scalar exponents on forcing statistics.

A result that emerges beyond any doubt is that active and passive scalars behave differently,
as shown in figures 15–17. This is confirmed by the differences in the pdfs of δra and δrc at
various scales within the inertial range (figure 18). The single-point pdfs of a and c are different
as well (not shown).

It is worth noting that the behaviour of the passive scalar deviates from naive expectations.
We observe Ec(k) ∼ k−1.15, whereas a dimensional argument based on the observed velocity
spectrum (Ev(k) ≡ Ea(k) ∼ k−1.8) and on the Yaglom relation [4] (〈δrv (δrc)2〉 ∼ r) would yield
Ea(k) ∼ k−1.6. The violation of the dimensional prediction is even more striking looking at Sc2(r)
in figure 17. This feature is reminiscent of some experimental investigations of passive scalars
in turbulent flows (see e.g. [61, 62] and references therein), where shallow scalar spectra are
observed for the scalar even at those scales where the velocity field displays a K41 spectrum. It is
probable that the presence of coherent structures (see figure 16) leads to persistent regions where
the velocity field has a smooth (shear-like) behaviour. This suggests a two-fluid picture: a slowly
evolving shear-like flow, with superimposed faster turbulent fluctuations. Under those conditions,
one may expect that the particle pairs separate faster than expected, leading to shallower passive
scalar spectra [63].

In conclusion, even though both passive and active scalars perform a direct cascade, their
statistical properties are definitely different.

6.3. Scaling and geometry

Let us now compare the two scalar fields by investigating the three-point correlation functions of
the active field Ca3(x1, x2, x3) = 〈a(x1, t)a(x2, t)a(x3, t)〉 and of the passive field Cc3(x1, x2, x3) =
〈c(x1, t)c(x3, t)c(x3, t)〉. This will allow us to assess the scaling properties of the correlation
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Figure 18. Pdfs of active (red) and passive (blue) scalar differences normalized
by their respective standard deviations for four different scales within the inertial
range. The dotted lines are Gaussian pdfs drawn for comparison. Data refer to
run 3 and the other runs showed similar results.

function by measuring the dependence, on the global size, of the triangle identified by the
three points, R2 = ∑

i<j x
2
ij (where xij = |xi − xj|). We will also investigate the geometrical

dependence of C3.
It has to be noted that for δ-correlated Gaussian forcings such as (23) and (27), Ca3 and Cc3

are both zero. Therefore, we need a different forcing statistics to study three-point correlations.
One possibility is to break the rotational symmetry of the system by an anisotropic forcing, e.g.
a mean gradient (24) as in [26]. However, that choice leads inevitably to a = c: the equations
are identical for a and c so that the difference field a− c will decay out. We then choose to force
the system as follows. The two inputs fa and fc are

fa,c(x, t) = g2
a,c(x, t)−

∫
dy g2

a,c(y, t), (51)

where ga,c is a homogeneous, isotropic and Gaussian random field with correlation

〈gi(x, t)gj(x′, t′)〉 = δi,jG(|x − x′|/�f )e−|t−t′|/τf , (52)

where i, j = a, c; �f is the forcing scale, τf the forcing correlation time and G(r) ∝
G0 exp(−r2/2). The time correlation is imposed by performing an independent Ornstein–
Uhlenbeck process at each Fourier mode, i.e. integrating the stochastic differential equation
dĝi(k, t) = −1/τf ĝi(k, t) dt +

√
2G0 dt/τf dwi(k, t), where dwi are zero mean Gaussian

variables with 〈dwi(k, t) dwj(k
′, t′)〉 = δi,jδ(t − t′)δ(k − k′). If τf � T�f by the central limit

theorem, a Gaussian statistics is recovered. Therefore, we fixed τf ∼ O(T�f ) in our DNS. The
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Figure 19. Contour plots in the χ–w plane of the three-point shape function, �,
for passive (left) and active (right) scalar.

advantages of this choice are that it preserves the isotropy and gives analytical control on the
forcing correlation functions.

Let us now see how the triangle identified by the three points, x = (x1, x2, x3), can be
parameterized. In two dimensions, we need 3d = 6 variables to define a triangle. Since the
correlation functions should possess all the statistical symmetries of the system, the number of
degrees of freedom is reduced. In particular, translational invariance ensures no dependence on
the position of the centre of mass of the triangle, (x1 + x2 + x3)/3. The correlation function is
thus a function of the separation vectors among the three points, i.e. Ca,c3 (x) = Ca,c3 (x12, x23, x31).
Additionally, isotropy implies that a rigid rotation of the triangle has no effect on the value ofC3,
so that three variables suffice: the global size of the triangle R and two parameters that define its
shape. In terms of the Euler parameterization [64]–[66], upon defining ρ1 = (x1 − x2)/

√
2 and

ρ2 = (x1 + x2 − 2x3)/
√

6, the shape of the triangle is given in terms of these two variables:

w = 2ρ1 × ρ2

R2
χ = 1

2
tan−1

[
2ρ1 · ρ2

ρ2
1 − ρ2

2

]
, (53)

where |w| is the ratio of the area of the triangle to the area of the equilateral triangle having the
same size,R2 = ρ2

1 + ρ2
2. χ has no simple geometrical interpretation. Some shapes corresponding

to a few (w, χ) are shown in figure 19.
The three-point correlation function can be decomposed as [25, 29]

Ca,c3 (x) = R{Ca,c3 (x)} + I{Ca,c3 (x)}, (54)

where R, I are the reducible and irreducible components, respectively. This means that C3 can be
expressed as the sum of one part that depends on three points (hereafter denoted asC3) and another
part that depends on two points (hereafter denoted C2), i.e. C3(x1, x2, x3) = C3(x1, x2, x3) +
C2(x1, x2) + C2(x2, x3) + C2(x3, x1). The reducible part, R{C3} = C2(x1, x2) + C2(x2, x3) +
C2(x3, x1), and the irreducible part, I{C3} = C3(x1, x2, x3), are generally characterized by
different scaling properties as a function of the triangle size R and different geometrical (shape)
dependencies [26, 67].

In terms of the variables R,w and χ, the reducible and irreducible components take the
following form:

R{Ca,c3 (x)} = hR
a,c(R)�

R
a,c(χ,w),

I{Ca,c3 (x)} = hI
a,c(R)�

I
a,c(χ,w), (55)
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where the function h(R) is expected to have a scaling dependence over the inertial
range.

For the passive scalar, the scaling behaviour of the reducible part hR
c (R) is dominated by

the dimensional scaling imposed by the balance with the forcing, whereas the scaling of the
irreducible part hR

c (R) is given by the zero modes [29]. With a finite-correlated pumping, the
forcing statistics may, in principle, contribute to the irreducible part [25]; however, in our study,
these hypothetical contributions appear to be small, if not absent. For the active scalar, it is not
possible to make any a priori argument to predict the scaling behaviour of the reducible and
irreducible parts. As far as the geometrical dependence is concerned, i.e. �R,I

c and �R,I
a , it is

very difficult to separate the two contributions. In our case, in agreement with the results obtained
for the Kraichanan model [67], the reducible part turns out to be the leading contribution, so that
we only present the shape dependence of the full correlation functions, which basically coincides
with the reducible one. Hereafter, we will use�a,c, dropping the indices that distinguish the two
contributions.

Let us start by studying the shape dependence of the correlation function for the active,
�a(χ,w), and passive scalars,�c(χ,w). Exploiting the invariance under arbitrary permutations
of the three vertices of the triangle, we can reduce the configuration space to χ ∈ [ − π/6 : π/6],
and tow ∈ [0 : 1], going from degenerate (collinear points) to equilateral triangles. The function
�(χ,w) is anti-periodic in χ with period π/3 [64]–[66]. The functions �c and �c are shown in
figure 19. They have been measured for a fixed sizeRwithin the inertial range. The two functions
display similar qualitative features: the intensity increases going from equilateral to collinear
triangles, and the maximum is realized for almost degenerate triangles (χ,w) = (0, 0). �c is
invariant for χ → −χ, which corresponds to reflection with respect to an axis. This symmetry is
owing to the equation of motion and the fact that fc → fc under this symmetry transformation.
The active scalar displays a weak breaking of this symmetry, because it is a pseudoscalar, whereas
fa is not.

Let us now turn our attention to the scaling behaviour. Since the reducible scaling behaviour
is the leading one, it is simply obtained by fixing a certain shape for the triangle (we did for
several choices of (χ,w)) and varying its size. The results are shown in figure 20(a). We observed
that hR

a (R) and hR
c (R) are different. Moreover, whereas hR

c (R) is practically parallel with Sc2(R),
we observe for the active scalar that hR

a (R) is not scaling as Sa2(R).
The measure of the subleading, irreducible part is more involved, and we proceed as

follows. We fix a reference triangle shape (χ,w) and set the origin at the centre of mass of
the triangle. Now xi indicates the position of vertex i of the triangle. We define d̂1 = d̂1(λ)

(where λ � 1) as the dilation operator that transforms the triangle (x1, x2, x3) in (λx1, x2, x3).
Analogous definitions hold for the other vertices. Obviously, d̂i(1) ≡ Î is the identity. We then
consider the composite operator D̂(λ) = d̂1d̂2d̂3 − d̂1d̂2 − d̂2d̂3 − d̂3d̂1 + d̂1 + d̂2 + d̂3 − Î. By
direct substitution, it is easily seen that, in D̂(λ)C3(x1, x2, x3), all the reducible terms are
cancelled, and only a linear superposition of terms involving the irreducible parts survives.
Therefore, the average of D̂(λ)c(x1)c(x2)c(x3) for triangles of different sizes R, but of fixed
shape (χ,w), will give the scaling of the irreducible part of the three-point function (55).A similar
procedure has been used for a. We used as the reference configuration a collinear triangle with
two degenerate vertices, i.e. (χ,w) = (0, 0). This choice decreases the number of cancellations.
Additionally, this configuration corresponds to the region of stronger gradients in the function
� (see figure 19), yielding a higher signal-to-noise ratio. By varying λ, we tested the robustness
of the measured scaling.
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Figure 20. (a)hR(R)versusR for the active (◦) and passive (��) scalar. The dashed
lines are the second-order structure functions, Sa,c2 , multiplied by a factor to allow
for a comparison. The solid line gives the fitted slope, R1.23±0.05, for hR

a (R). The
slope of Sa2 is ≈r.84±0.05 and is compatible with those obtained with the forcing
(G), see figure 17. The passive curves have been shifted for visualization purposes.
(b) hI

a,c(R) versus R for the active (◦) and passive (��) scalar. For c the scaling
R1.7±0.2 (solid line) is measured. The signal for the active scalar is very low and
no scaling behaviour can be detected. The statistics has been computed averaging
over about 65 frames separated by half eddy turnover time.

In figure 20, we present our results on the scale dependence of hI
c (R) and hI

a(R). Clearly,
hI
a(R) has too low a signal to identify any scaling behaviour, whereas the passive scalar scales

fairly well, and we measured hI
c (R) ∼ R1.7, confirming that the irreducible part is subleading.

A couple of final remarks are in order. First, the fact that hR
a (R) does not scale as Sa2(R)

is the signature of the correlations between fa and the particle propagator. Indeed, for the
passive scalar, hR

c (R) ∝ Sc2(R) is a straightforward consequence of the independence of v and fc.
Secondly,hR

a (R) scales differently fromhI
c (R): this rules out the possibility of establishing simple

relationships between active and passive scalar statistics (see [15] for a related discussion).

7. Conclusions and perspectives

In summary, we have investigated the statistics of active and passive scalars transported by the
same turbulent flow. We put the focus on the issue of universality and scaling. In this respect, the
passive scalar problem is essentially understood. Conversely, the active case is, by far and away, a
challenging open problem. The basic property that make passive scalar turbulence substantially
simpler is the absence of statistical correlations between scalar forcing and carrier flow. On
the contrary, the hallmark of active scalars is the functional dependence of velocity on the
scalar field and, thus, on active scalar pumping. Yet, when correlations are sufficiently weak,
the active scalar behaves in a similar manner as the passive one: this is the case of 2D thermal
convection and Ekman turbulence. However, this appears to be a nongeneric situation, and the
equivalence between passive and active scalars is rooted in special properties of those systems.
Indeed, different systems such as 2D MHD and SQG turbulence are characterized by a marked
difference between passive and active scalar statistics. This poses the problem of universality
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in active scalar turbulence: if the forcing is capable of influencing the velocity dynamics, how
can scaling exponents be universal with respect to the details of the injection mechanism? So
far, a satisfactory answer is missing. As of today, numerical experiments favour the hypothesis
that universality is not lost in a number of active scalars, but further investigation is needed to
elucidate this fundamental issue.
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