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One century after Einstein’s work, Brownian motion still remains both a fundamental open issue
and a continuous source of inspiration for many areas of natural sciences. We first present a
discussion about stochastic and deterministic approaches proposed in the literature to model the
Brownian motion and more general diffusive behaviors. Then, we focus on the problems concern-
ing the determination of the microscopic nature of diffusion by means of data analysis. Finally, we
discuss the general conditions required for the onset of large scale diffusive motion. ©2005
American Institute of Physics. fDOI: 10.1063/1.1832773g

Brownian motion (BM) played a fundamental role in the
development of molecular theory of matter, statistical
mechanics and stochastic processes. Remarkably, one
century after Einstein’s work, BM is still at the origin of
scientific discussions as testified by a recent experiment
performed to detect a trace of deterministic chaotic
sources on macroscopic diffusion. Several authors, which
discussed the results of such an experiment, argued that
the possibility to discern experimentally between a deter-
ministic chaotic and noisy dynamics, at the microscopic
level, is severely limited by subtle technical and concep-
tual points. However, the remarks raised by the scientific
community have gone over the criticism and have led to a
deeper understanding of the role of chaos in the diffusion.
After a short historical introduction to BM, we focus on
the dynamical conditions to observe macroscopic diffu-
sion. In particular, we discuss the technical and concep-
tual limits in distinguishing, by means of data analysis,
the deterministic or stochastic nature of diffusion. A main
tool for that is the e-entropy. Part of the discussion is
devoted to the problem of macroscopic diffusion in deter-
ministic nonchaotic dynamics.

I. INTRODUCTION

At the beginning of the twentieth century, the atomistic
theory of matter was not yet fully accepted by the scientific
community. While searching for phenomena that would
prove, beyond any doubt, the existence of atoms, Einstein
realized that “… according to the molecular-kinetic theory of
heat, bodies of microscopically-visible size suspended in a
liquid will perform movements of such magnitude that they
can be easily observed in a microscope…,” as he wrote in
his celebrated paper in 1905.1 In this work, devoted to ex-
plain the irregular motion of Brownian particles on theoreti-
cal grounds, Einstein argued that the motion of these small
bodies has a diffusive character. Moreover, he discovered an
important relation involving the diffusion coefficientD, the
fluid viscosity h, the particles radiusa shaving assumed

spherical particlesd, Avogadro’s numberNA, the temperature
T and the gas constantR:

D =
1

NA

RT

6pha
. s1d

This relation can be employed, and actually had been, to
determine experimentally the Avogadro’s number.2 Indeed,
the diffusion coefficient can be measured by monitoring the
growth, with time t, of the particle displacementDx=xstd
−xs0d, which is expected to behave as

ksDxd2l . 2Dt. s2d

Einstein relations1d, that may be seen as the first example of
the fluctuation–dissipation theorem,3 allowed for the deter-
mination of Avogadro’s number and gave one of the ultimate
evidences of the existence of atoms.

Einstein’s theoretical explanation of BM is based on the
intuition that the irregular motion of a Brownian particle is a
consequence of the huge number of collisions per unit time
with the surrounding fluid molecules. Since Einstein’s ap-
proach, diffusion and irregular phenomena were commonly
associated to the presence of many degrees of freedom. The
effects of the disregarded degrees of freedom on an observed
small part of a system can be either studied directlysas ini-
tiated by Smoluchowski4d or modeled by means of stochastic
dynamicssas proposed by Langevin5d. From the latter point
of view, BM provided the first and main stimulus to the
building of the modern theory of stochastic processes.

After the sreddiscovery of deterministic chaos,6,7 it was
clear that also fully deterministic and low dimensional sys-
tems can give rise to erratic seemingly random motions,
practically indistinguishable from those produced by a sto-
chastic process. This implied an affective unpredictability of
chaotic systems and the need for a probabilistic description
also of a strictly deterministic world. The success in under-
standing the basic mechanisms for the onset of chaos, and
the wealth of interesting phenomena occurring in low dimen-
sional systems hinted at optimistic expectations about the
possibility of a systematic deterministic approach to irregular
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natural phenomena. This raised a rapid development of time
series analysis with the idea to demonstrate the deterministic
character of many irregular phenomena.

Nowadays we are aware of the limits of this optimistic
program,8,9 and we know that a definite answer on the deter-
ministic or stochastic character of experimental signals is
impossible. However, some tools of time series analysis,
such as the entropy analysis at varying the scale of resolu-
tion, are very useful to characterize important features of
complex systems. Among the recent developments in this
context, we can mention the experiment by Gaspardet al.10

on the motion of a Brownian particle. The debate11,12around
the possible theoretical interpretation of the experiment is a
clear indication of how, one century after the seminal Ein-
stein’s work, BM continues to be a subject of intricate and
fascinating discussions.

Beyond its undoubted importance for applications in
many natural phenomena, deterministic chaos also enforces
us to reconsider some basic problems standing at the foun-
dations of statistical mechanics such as, for instance, the ap-
plicability of a statistical description to low dimensional sys-
tems.

In addition, the combined effects of noise and determin-
istic evolution can generate highly nontrivial and rather in-
triguing behaviors. As an example, we just mention the sto-
chastic resonance13,14 and the role of colored noise in
dynamical systems.15

The aim of this paper is a discussion on the viable ap-
proaches to characterize and understand the dynamicalsmi-
croscopicd character of BMsSec. IId. In particular, we shall
focus on the distinction between chaos and noise from a data
analysis and on conceptual aspects of the modeling problem
sSec. IIId. Moreover, we shall investigate and discuss about
the basic microscopic ingredients necessary for BM as, for
instance, the possibility of genuine BM in nonchaotic deter-
ministic systemssSec. IVd. Finally, we concludesSec. Vd
with a discussion on the role of chaos in statistical mechan-
ics.

II. THE ORIGIN OF DIFFUSION

Einstein’s work on BM is based on statistical mechanics
and thermodynamical considerations applied to suspended
particles, with the assumption of velocity decorrelationsmo-
lecular chaosd.

Instead, one of the first attempts to develop a purely
dynamical theory of BM dates back to Langevin5 that, as he
writes, gave “… a demonstrationfof Einstein resultsg that is
infinitely more simple by means of a method that is entirely
different.” Langevin considers the Newton equation for a
small spherical particle in a fluid, taking into account that the
Stokes viscous force it experiences is only a mean force. In
one direction, say, e.g., thex-direction, one has

m
d2x

dt2
= − 6pha

dx

dt
+ F, s3d

wherem is the mass of the particle. In the right-hand side
sr.h.s.d the first term is the Stokes viscous force.F is a fluc-
tuating random force which models the effects of the huge

number of impacts with the surrounding fluid molecules, re-
sponsible for the thermal agitation of the particle. In statisti-
cal mechanics terms, this corresponds to molecular chaos.

With the assumption that the forceF is a Gaussian, time
uncorrelated random variable, the probability distribution
functionsspdfd for the position and velocity of the Brownian
particle can be exactly derived.16 In particular, the pdf of the
position, at long times, reduces to the Gaussian distribution
in agreement with Einstein’s result.

Langevin’s work along with that of Ornstein and
Uhlenbeck16 are at the foundation of the theory of stochastic
differential equations. The stochastic approach is, however,
unsatisfactory being at the level of a phenomenological de-
scription.

The next theoretical challenge toward the building of a
dynamical theory of Brownian motion is to understand its
microscopic origin from first principles. A very early attempt
was made in 1906 by Smoluchowski, who tried to derive the
large scale diffusion of Brownian particles starting from the
microscopic description of their collisions with the fluid
molecules.4 A renewed interest on the subject appeared some
years later, when it was realized that even purely determin-
istic systems composed of a large number of particles pro-
duce macroscopic diffusion, at least on finite time scales.
These models had an important impact in the justification of
Brownian motion theory and, more in general, in deriving a
consistent microscopic theory of irreversibility.

Some of these works considered chains of harmonic os-
cillators of equal masses,17–20 while others21–23 analyzed the
motion of a heavy impurity linearly coupled to a chain of
equal mass oscillators. For an infinite number of oscillators,
the momentum of the heavy particle behaves as a genuine
stochastic process described by the Langevin equations3d.
When their number is finite, diffusion remains an effective
phenomenon lasting for aslong butd limited time.

Soon after the discovery of dynamical chaos, it was re-
alized that also simple low dimensional deterministic sys-
tems may exhibit a diffusive behavior. In this framework, the
two-dimensional Lorentz gas,24 describing the motion of a
free particle through a lattice of hard round obstacles, pro-
vided the most valuable example. Particle trajectories can be
ballistic swith very few collisions in the case of infinite ho-
rizond or chaotic as a consequence of the convexity of the
obstacles. In the latter case, at large times, the mean square
displacement from the particle initial condition grows lin-
early with time. Lorentz system is closely related to the Sinai
billiard,25,26 which can be obtained from the Lorentz gas by
folding the trajectories into the unitary lattice cell. The ex-
tensive study on billiards has shown that chaotic behavior
might usually be associated to diffusion in simple low di-
mensional models, supporting the idea that chaos was at the
very origin of diffusion. However, more recentlyssee, e.g.,
Ref. 27d it has been shown that even nonchaotic determinis-
tic systems, such as a bouncing particle in a two-dimensional
billiard with polygonal but randomly distributed obstacles
swind-tree Ehrenfest modeld, may exhibit a diffusionlike be-
havior ssee Sec. IVd.

Deterministic diffusion is a generic phenomenon present
also in simple chaotic maps on the line. Among the many
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contributions we mention the work by Fujisaka,
Grossmann,28,29 and Geisel.30,31A typical example is the 1d
discrete-time dynamical system:

xst + 1d = fxstdg + Fsxstd − fxstdgd, s4d

wherexstd sthe position of a pointlike particled performs dif-
fusion in the real axis. The bracketf…g denotes the integer
part of the argument.Fsud is a map defined on the interval
f0, 1g that fulfills the following properties:

sid The map,ust+1d=Fsustdd smod 1d is chaotic;
sii d Fsud must be larger than 1 and smaller than 0 for

some values ofu, so there exists a nonvanishing probability
to escape from each unit cellsa unit cell of real axis is every
interval C,;f, , , +1g, with ,[Zd;

siii d Frsud=1−Fls1−ud, whereFl andFr define the map
in u[ f0,1/2fand u[ f1/2,1g, respectively. This anti-
symmetry condition with respect tou=1/2 is introduced to
avoid a net drift.

A very simple and much studied example ofF is

Fsud = H2s1 + adu if u [ f0,1/2f,

2s1 + adsu − 1d + 1 if u [ f1/2,1g,
s5d

wherea.0 is the control parameter. It is useful to remind
the link between diffusion and velocity correlation, i.e., the
Taylor–Kubo formula, that helps in understanding how dif-
fusion can be realized in different ways. DefiningCstd
=kvstdvs0dl as the velocity correlation function, wherevstd
is the velocity of the particle at timet. It is easy to see that
for continuous time systemsfe.g., Eq.s3dg

ksxstd − xs0dd2l . 2tE
0

t

dtCstd. s6d

Standard diffusion, withD=e0
`dtCstd, is always obtained

whenever the hypotheses for the validity of the central limit
theorem are verified.

sId The variance of the velocity must be finite:kv2l,`.
sII d The decay to zero of the velocity correlation function

Cstd at large times should be faster thant−1.
In discrete-time systems, the velocityvstd and the inte-

gration of Cstd are replaced by the finite differencexst+1d
−xstd and by the quantitykvs0d2l /2+otCstd, respectively.

Condition sId is justified by the fact that having an infi-
nite variance for the velocity is rather unphysical. It should
be noted that this requirement is independent of the micro-
scopic dynamics under consideration: Langevin, determinis-
tic chaotic, or regular dynamics.

ConditionsII d, corresponding to the request of molecular
chaos, is surely verified for the Langevin dynamics where
the presence of the stochastic force entails a rapid decay of
Cstd. In deterministic regular systems, such as the many os-
cillator model, the velocity decorrelation comes from the
huge number of degrees of freedom that act as a heat bath on
a single oscillator. While in thesnonchaoticd Ehrenfest wind-
tree model decorrelation originates from the disorder in the
obstacle positions, the situation is more subtle for determin-
istic chaotic systems. In fact, even if nonlinear instabilities
generically lead to a memory loss and, henceforth, to the
validity of the molecular-chaos hypothesis, slow decay of

correlation, e.g.,Cstd,t−b with b,1, may appear in very
intermittent systems.32 When this happens, conditionsII d is
violated, and superdiffusion,kx2stdl, t2−b, is observed.
Though interesting, superdiffusion is a quite rare phenom-
enon. Moreover, usually, small changes of the control param-
eters of the dynamics restore standard diffusion. Therefore,
also for chaotic systems we can state that the “rule” is the
standard diffusion and the “exception” is the
superdiffusion.33

We end this section by asking whether is it possible to
determine, by the analysis of a Brownian particle, if the mi-
croscopic dynamics underlying the observed macroscopic
diffusion is stochastic, deterministic chaotic, or regular?

III. DISTINCTION BETWEEN CHAOS AND
NOISE

Inferring the microscopic deterministic character of
Brownian motion on an experimental basis would be attrac-
tive from a fundamental viewpoint. Moreover it could pro-
vide further evidence to some recent theoretical and numeri-
cal studies.34,35 Before discussing a recent experiment10 in
this direction, we must open the “Pandora box” of the long-
standing and controversial problem of distinguishing chaos
from noise in signal analysis.36

The first observation is that, very often in the analysis of
experimental time series, there is not a unique model of the
“system” that produced the data. Moreover, even the knowl-
edge of the “true” model might not be an adequate answer
about the character of the signal. From this point of view,
BM is a paradigmatic example: In fact it can be modeled by
a stochastic as well as by a deterministic chaotic or regular
process.

In principle a definite answer exists. If we were able to
determine the maximum Lyapunov exponentsld or the
Kolmogorov–SinaisKSd entropy shKSd of a data sequence,
we would know without uncertainty whether the sequence
was generated by a deterministic lawsl ,hKS,`d or by a
stochastic onesl ,hKS→`d. Nevertheless, there are unavoid-
able practical limitations in computing such quantities. Those
are indeed defined as infinite time averages taken in the limit
of arbitrary fine resolution. But, in experiments, we have
access only to a finite, and often very limited, range of scales
and times.

However, there are measurable quantities that are appro-
priate for extracting information on the signal character. In
particular, we shall consider these ,td-entropy per unit
time37–39 hse ,td that generalizes the Kolmogorov–Sinai en-
tropy. In a nutshell, while for evaluatinghKS one has to de-
tect the properties of a system with infinite resolution, for
hse ,td a finite scale sresolutiond e is requested. The
Kolmogorov–Sinai entropy is recovered in the limite→0,
i.e., hse ,td→hKS. This means that if we had access to arbi-
trarily small scales, we could answer the original question
about the character of the law that generated the recorded
signal. Even if this limit is unattainable, still the behavior of
hse ,td provides a very useful scale-dependent description of
the nature of a signal.
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A. e-entropy

The e-entropy was originally introduced in the context
of information theory by Shannon38 and, later, by
Kolmogorov37 in the theory of stochastic processes. An op-
erative definition is as follows.

One considers a continuous variablexstd[Rd, that rep-
resents the state of ad-dimensional system, and one intro-
duces the vector

X smdstd = sxstd,…,xst + mt − tdd, s7d

which lives in Rmd and is a portion of the trajectory dis-
cretized in time with stept. Then the phase spaceRd is
partitioned using hyper-cubic cells of sidee. The vector
X smdstd is coded into the word, of lengthm,

Wmse,td = sise,td,…,ise,t + mt − tdd, s8d

whereise ,t+ jtd labels the cell inRd containingxst+ jtd. For
bounded motions, the number of visited cellssi.e., the alpha-
betd is finite. Under the hypothesis of stationarity, the prob-
abilities PsWmsedd of the admissible wordshWmsedj are ob-
tained from the time evolution ofX smdstd. The se ,td-entropy
per unit time,hse ,td is then defined by38

hse,td = lim
m→`

hmse,td =
1

t
lim
m→`

1

m
Hmse,td, s9d

whereHm is them-block entropy:

Hmse,td = − o
hWmsedj

PsWmseddlnPsWmsedd, s10d

andhmse ,td=fHm+1se ,td−Hmse ,tdg /t.
It is worth remarking on a few important points. A rig-

orous mathematical procedure39 would require to take the
infimum over all possible partitions with elements of size
smaller thane. The Kolmogorov–Sinai entropy is obtained in
the limit of smalle

hKS = lim
e→0

hse,td. s11d

Note that in deterministic systemshsed and henceforthhKS

do not depend on the sampling time so thats11d can be in
principle used with any choice oft.40 However, in practical
computations, where the rigorous definition is not applicable,
the specific value oft is important andhsed may also depend
on the used norm. For very smalle, no matter of the norm,
the correct value of the Kolmogorov–Sinai entropy is usually
recovered. Indeed, when the partition is very fine, usually, it
well approximates a generating partition. It is worth remind-
ing that the Kolmogorov–Sinai entropy is a dynamical in-
variant, i.e., independent of the used state representations7d.

In deterministic systems the following chain of inequali-
ties holds:40

hse,td ø hKS ø o
i

+

li , s12d

where the summation is over all positive Lyapunov expo-
nents. A system is chaotic when 0,hKS,` and regular
when hKS=0. Typically, one observes thathse ,td attains a
plateauhKS, below a resolution threshold,ec, associated to

the smallest characteristic length scale of the system. Instead,
for e.ec due tos12d hse ,td,hKS, in this range the details of
the e-dependence may be informative on the large scale
sslowd dynamics of the systemssee, e.g., Refs. 36 and 41d.

In stochastic signalshKS=`, but for anye.0, hse ,td is
finite and a well defined function ofe and t. The nature of
the dependence ofhse ,td on e andt provide a characteriza-
tion of the underlying stochastic processssee Refs. 37, 39,
and 41d. For an important and wide class of stochastic
processes39 an explicit expression forhse ,td can be given in
the limit t→0. This is the case of stationary Gaussian pro-
cesses characterized by a power spectrumSsvd~v−s2a+1d,
with 0,a,1, for which37

lim
t→0

hse,td , e−1/a. s13d

The casea=1/2, corresponding to the power spectrum of a
Brownian signal, would givehsed,e−2. Some stochastic
processes, such as, e.g., time uncorrelated and bounded ones,
are characterized by a logarithmic divergence below a criti-
cal ec, which may depend ont.

B. Numerical determination of the e-entropy

In experiments, usually, only a scalar variableustd can
be measured and moreover the dimensionality of the phase
space is not known. In these cases it is reconstructed by
delay embedding technique,8,9 where the vectorX smdstd is
built as sustd ,ust+td ,… ,ust+mt−tdd, now in Rm. This is a
special instance ofs7d.

Then to determine the entropiesHmsed, very efficient
numerical methods are available42,43 sthe reader may find an
exhaustive review in Refs. 8 and 9d. Here, avoiding techni-
calities, we just mention some subtle points which should be
taken into account in data analysis.

First, if the information dimension of the attractor for a
given system isd1 then, to have a meaningful measure of the
entropy, the embedding dimensionm has to be larger thand1.
Second, as mentioned above, the plateauhmsed<hKS appears
only below a criticalec, meaning that it is possible to distin-
guish a deterministic signal from a random one only fore
,ec. However, one should be aware of the fact that the fi-
niteness of the data set imposes a lower cut-off scaleed be-
low which no information can be extracted from the datassee
Ref. 44d. Also in stochastic signals, there exists a lower criti-
cal cut-off ed due to the finiteness of the data set, and often,
as mentioned at the end of the previous subsection, one has
logarithmic divergences belowec. Since, this is also what
happens in general fore,ed, the interpretation of the results
requires much attention.8,36,44

Therefore, ifm is not large enough and/ore is not small
enoughsor in the lack of a good estimation of the important
range of scales for the different behaviorsd one may obtain
misleading results.

Another important problem concerns the choice oft. If t
is much larger or much shorter than the characteristic time-
scale of the system at the scalee, then the correct behavior of
the e-entropy36 cannot be properly recovered.

To exemplify the above difficulties let us consider the
map
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xst + 1d = xstd + p sins2pxstdd, s14d

which, for p.0.7326…, is chaotic fsimilarly to s4dg and
displays large scale diffusion. On the basis of the previous
discussion, thee-entropy is expected to behave as

hsed . Hl for e ! 1,

D/e2 for e @ 1,
s15d

where l is the Lyapunov exponent andD is the diffusion
coefficient. The typical problems encountered in numerically
computinghsed can be appreciated in Fig. 1. First notice that
the thresholdec<1. As for the importance of the choice oft,
note that the diffusive behaviorhsed,e−2 is roughly ob-
tained only by considering the envelope ofhmse ,td evaluated
at different values oft. The reason for this is as follows. The
natural sampling interval would bet=1, however, this
choice requires considering larger and larger embedding di-
mensionsm at increasinge. Indeed, a simple dimensional
argument suggests that the characteristic time of the system
is determined by its diffusive behaviorTe<e2/D. If we con-
sider, for example,e=10 and the typical values of the diffu-
sion coefficientD.10−1, the characteristic time,Te, is much
larger than the elementary sampling timet=1. On the other
hand, the plateau at the valuehKS can be recovered only for
t<1, even if, in principle, any value oft could be used.

The above difficulties can be partially overcome by
means of a recently introduced method based on exit times.45

The main advantage of this approach is that it is not needed
to fix a priori t, because the “correct”t is automatically
selected.

C. Does Brownian motion arise from chaos, noise, or
regular dynamics?

We are now ready to discuss the experiment and its re-
sults reported in Ref. 10. In this experiment, a long time
recordsabout 1.53105 data pointsd of the motion of a small
colloidal particle in water was sampled at regular time inter-
vals sDt=1/60 sd with a remarkable high spatial resolution
s25 nmd. To our knowledge, this is the most accurate mea-

surement of a BM. The data were then processed by means
of standard nonlinear time-series analysis tools, i.e., the
Cohen–Procaccia method,42 to compute thee-entropy. This
computation shows a power-law dependencehsed,e−2. Ac-
tually, similarly to what displayed in Fig. 1, this behavior is
recovered only by considering the envelope of the
hse ,td-curves, for differentt’s. However, unlike Fig. 1, no
saturationhse ,td<const is observed in the smalle-region
because of the finiteness of data set and resolution as well.
From the previous discussion, this can be understood as the
fact thatec of the observed system is much smaller than the
smallest detectable scale extracted from data and, therefore,
the KS entropy cannot be properly estimated. Nevertheless,
from the chain of inequalitiess12d and byassumingfrom the
outset that the system dynamics is deterministic, the authors
deduce, from the positivity ofhsed, the existence of positive
Lyapunov exponents in the system. Their conclusion is thus
that microscopic chaos is at the origin of the macroscopic
diffusive behavior.

As pointed out by several works, a few points need to be
considered in the data analysis of the aforementioned experi-
ment, namely: The huge amount of involved degrees of free-
dom sBrownian particle and the fluid moleculesd; the impos-
sibility to reach high enoughsspatial and temporald
resolution; the limited amount of data points.

The limitation induced by the finite resolution is particu-
larly relevant to the experiment. Even if one assumes that the
number of data points and the embedding dimension are
large enough, the impossibility to see a saturation to a con-
stant value,hsed<const, prevents any conclusion about the
character of the analyzed signal. For example, whenever the
the analysis of Fig. 1 would be restricted to the region with
e.1, then discerning whether the data were originated by a
chaotic system or by a stochastic process would be impos-
sible. In fact in both cases the behaviorhsed,e−2 would
have been observed.

As for the number of degrees of freedom, we recall that,
for a correct evaluation of the entropy of the microscopic
dynamics, a very high embedding dimension should be used,
in practicem.d1. For a fluid fwith Os1023d moleculesg the
necessary number of points is of course prohibitive. More-
over, as stressed by Grassberger and Schreiber,12 when the
number of degrees of freedom is so high that it can be con-
sidered practically infinite there is an additional difficulty
related to the definition of entropy and Lyapunov exponents,
which become norm dependent.

Furthermore, the limited amount of data severely affects
even our ability to recognize if the signal is deterministic but
of zero entropysi.e., regulard. This has been pointed out by
Dettmannet al.,11,27 who have shown that the same entropic
analysis of Ref. 10, applied to the Ehrenfest wind-tree model
ssee next sectiond reproduced results very similar to those
extracted in the Brownian experiment. This model is deter-
ministic and nonchaotic. In fact if the time records were long
enough to see the periodic nature of the signal, and the em-
bedding dimension high enough to resolve the system mani-
fold, the measured entropy would have been zero.

FIG. 1. Numerically evaluatedse ,td-entropy for the maps14d with p=0.8
computed by the standard techniquessRef. 6d at t=1 ssd, t=10 snd, and
t=100 s,d and different block lengthsm=4, 8, 12, 20d. The boxes give the
entropy computed witht=1 by using periodic boundary condition over 40
cells. The straight lines correspond to the two asymptotic behaviors,hsed
=hKS.1.15 andhsed,e−2.
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The following example serves as a clue to better under-
stand these points. Let us consider two signals, the first gen-
erated by a continuous random walk:

ẋstd = Î2Dhstd, s16d

whereh is a zero mean Gaussian variable withkhstdhst8dl
=dst− t8d, and the second obtained as a superpositions of
Fourier modes:

xstd = o
i=1

M

X0i sinsVit + fid. s17d

The coordinatexstd in Eq. s17d, upon properly choosing the
frequencies23,36 and the amplitudesse.g., X0i ~Vi

−1d, de-
scribes the motion of a heavy impurity in a chain ofM lin-
early coupled harmonic oscillators. We know23 that xstd per-
forms a genuine BM in the limitM→`. For M ,` the
motion is periodic and regular, nevertheless for large but
finite times it is impossible to distinguish signals obtained by
s16d ands17d ssee Fig. 2d. This is even more striking looking
at the computede-entropy of both signalsssee Fig. 3d.

The results of Fig. 3 along with those by Dettmanet al.11

suggest that, also by assuming the deterministic character of
the system, we are in the practical impossibility of discerning
chaotic from regular motion.

From the above discussion, one may have reached a very
pessimistic view on the possibility to detect the “true” nature
of a signal by means of data analysis only. However, the
scenario is different when the question about the character of
a signal remains restricted only to a certain interval of scales.
In this case, in fact, it is possible to give an unambiguous
classification of the signal character based solely on the en-
tropy analysis and free from any prior knowledge on the
system–model that generated the data. Indeed, we can define
stochastic–deterministic behavior of a time series on the ba-
sis of the absence–presence of a saturation plateauhsed
<const in the observed range of scales. Moreover the behav-
ior of hse ,td as a function ofse ,td provides a very useful
“dynamical” classification of stochastic processes.39,45 One
has then a practical tool to classify the character of a signal

as deterministic or stochastic without referring to a specific
model, and is no longer obliged to answer the metaphysical
question, whether the system that produced the data was a
deterministic or a stochastic36,46 one.

This is not a mere way to escape the original question.
Indeed, it is now clear that the maximum Lyapunov exponent
and the Kolmogorov–Sinai entropy are not completely satis-
factory for a proper characterization of the many faces of
complexity and predictability of nontrivial systems, such as
intermittent systems or with many degrees of freedomse.g.,
turbulenced.41

In the literature the reader may find several methods de-
veloped to distinguish chaos from noise. They are based on
the difference in the predictability using prediction algo-
rithms rather than estimating the entropy47,48 or they relate
determinism to the smoothness of the signal.49,50 All these
methods have in common the necessity to choose a certain
length scalee and a particular embedding dimensionm,
therefore they suffer the same limitations of the entropy
analysis presented here.

IV. DIFFUSION IN NONCHAOTIC SYSTEMS

With all the provisos concerning its interpretation, Gas-
pard’s and co-workers’10 experiment had a very positive role
not only in stimulating the discussion about the chaos–noise
distinction but also in focusing the attention on deep concep-
tual aspects of diffusion. In this context, from a theoretical

FIG. 2. sad Signals obtained from Eq.s17d with M =104 and random phases
uniformly distributed inf0,2pg. The numerically computed diffusion con-
stant isD<0.007.sbd Time record obtained with a continuous random walk
s16d with the same value of the diffusion constant as insad. In both cases
data are sampled witht=0.02, i.e., 105 data points.

FIG. 3. hsed computed with the Grassberger–Procaccia algorithm using 105

points from the time series of Fig. 2. We show the results for embedding
dimensionm=50. The straight lines show theD /e2 behavior.
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point of view, the study of chaotic models exhibiting diffu-
sion and their nonchaotic counterpart contributed to a better
understanding of the role of chaos on macroscopic diffusion.

In Lorentz gases, the diffusion coefficient is related, by
means of periodic orbits expansion methods,51–53 to chaotic
indicators such as the Lyapunov exponents. This suggested,
for certain time, that chaos was or might have been the basic
ingredient for diffusion. However, as argued by Dettmann
and Cohen,27 even an accurate numerical analysis based on
the e-entropy has no chance to detect differences in the dif-
fusive behavior between a chaotic Lorentz gas and its non-
chaotic counterpart, such as the wind-tree Ehrenfest’s model.
In the latter model, particlesswindd scatter against square
obstaclesstreesd randomly distributed in the plane but with
fixed orientation. Since the reflection by the flat edges of the
obstacles cannot produce exponential separation of trajecto-
ries, the maximal Lyapunov exponent is zero and the system
is not chaotic. In this case the relation between the diffusion
coefficient and the Lyapunov exponents is of course nulli-
fied.

The result of Ref. 27 implies thus that chaos may be not
indispensable for having deterministic diffusion. The ques-
tion may be now posed on what are the necessary micro-
scopic ingredients to observe deterministic diffusion at large
scales. In the wind-tree Ehrenfest’s model, most likely, the
disorder in the distribution of the obstacles is crucial. In par-
ticular, one may conjecture that a finite spatial entropy den-
sity, hS, is necessary to the diffusion. So that deterministic
diffusion may be a consequence either of a nonzero “dy-
namical” entropyshKS.0d in chaotic systems or of a non-
zero “static” entropyshS.0d for nonchaotic systems. This is
key point, because someone can argue that a deterministic
infinite system with spatial randomness can be interpreted as
an effective stochastic system, but this is probably a “matter
of taste.” With the aim of clarifying this point, we consider
now a spatially disordered nonchaotic model,54 which is the
one-dimensional analog of a two-dimensional nonchaotic
Lorentz system with polygonal obstacles. It has the advan-
tage that both the case with finite and zero spatial entropy
density can be investigated. Let us start with the map defined
by Eqs. s4d and s5d, and introduce some modifications to
make it nonchaotic. One can proceed as exemplified by Fig.
4, that is by replacing the functions5d on each unit cell by its
step-wise approximation that is generated as follows. The
first half of C, is partitioned in N micro-intervals
f,+jn−1, , +jnf, n=1,… ,N, with j0=0,j1,j2,…
,jN−1,jN=1/2. In each interval the map is defined by its
linear approximation

FDsud = u − jn + Fsjnd if u [ fjn−1,jnf, s18d

whereFsjnd is s5d evaluated atjn. The map in the second
half of the unit cell is then determined by the antisymmetry
condition with respect to the middle of the cell. The
quenched random variableshjkjk=1

N−1 are uniformly distributed
in the intervalf0, 1/2g, i.e., the micro-intervals have aran-
dom extension. Further they are chosen independently in
each cellC, sso one should properly writejn

s,dd. All cells are
partitioned into the same numberN of randomly chosen
micro-intervalssof mean sizeD=1/Nd. The modification of

the continuous chaotic system is conceptually equivalent to
replacing circular by polygonal obstacles in the Lorentz
system.27 The steps with unitary slope are indeed the analo-
gous of the flat boundaries of the polygon. While the discon-
tinuities in FD, allowing for a moderate dispersion of trajec-
tories, play a role similar to the vertex of the polygon that
splits a narrow beam of particles hitting on it. SinceFD has
slope 1 almost everywhere, the map is no longer chaotic,
violating the conditionsid ssee Sec. IId. For D→0 si.e., N
→`d the continuous chaotic maps4d is recovered. However,
this limit is singular and as soon as the number of intervals is
finite, even if extremely large, chaos is absent. It has been
found54 that this model still exhibits diffusion in the presence
of both quenched disorder and a quasi-periodic external per-
turbation

xst + 1d = fxstdg + FDsxstd − fxstdgd + « cossatd. s19d

The strength of the external forcing is controlled by« anda
defines its frequency, whileD indicates a specific quenched
disorder realization.

The diffusion coefficientD has been numerically com-
puted from the linear asymptotic behavior of the mean
square displacement. The results, summarized in Fig. 5,
show thatD is significantly different from zero only for val-
ues «.«c. For «.«c, D exhibits a saturation close to the
value of the chaotic systemshorizontal lined defined by Eqs.
s4d ands5d. The existence of a threshold«c is not surprising.
Due to the staircase nature of the system, the perturbation
has to exceed the typical discontinuity ofFD to activate the
“macroscopic” instability which is the first step toward the
diffusion. Data collapsing, obtained by plottingD vs «N, in
Fig. 5 confirms this argument. These findings are robust and
do not depend on the details of forcing. Therefore, we have
an example of a nonchaotic model in the Lyapunov sense by
construction, which performs diffusion. Now the question
concerns the possibility that the diffusive behavior arises
from the presence of a quenched randomness with nonzero
spatial entropy per unit length. To clarify this point, similarly
to Ref. 27, the model can be modified in such a way that the
spatial entropy per unit cell is forced to be zero, and see if
the diffusion still persists.

FIG. 4. Sketch of the random staircase map in the unitary cell. The param-
etera defining the macroscopic slope is set to 0.23. Half domainf0, 1/2g is
divided intoN=12 micro-intervals of random size. The map onf1/2, 1g is
obtained by applying the antisymmetric transformation with respect to the
center of the cells1/2, 1/2d.
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This program can be accomplished by repeating the
same disorder configuration everyM cells si.e., jn

s,d=jn
s,+Mdd,

ensuring a zero entropy for unit length. Looking at the dif-
fusion of an ensemble of walkers it was observed that diffu-
sion is still present withD very close to the expected value
sas in Fig. 5d. However, a close analysis reveals the presence
of weak average driftV, that vanishes approximately asV
,1/M for large M. This suggests that, at large times,
ksxstdd2l.sVtd2+2Dt and the ballistic motion should over-
come diffusion. However, the crossover timetc, at which the
motion switches from diffusive to ballistic, diverges withM
astc,DM2, so for very large but finiteM, the ballistic re-
gime is not observed in simulations. Finally, it should be
considered that the value ofV depends on the realization of
the randomness, and after averaging over the disorder the
drift becomes zero. Indeed the behaviorV,1/M indicates a
self-averaging property for largeM. Therefore, we can con-
clude that the system displays genuine diffusion for a very
long time even with a vanishingsspatiald entropy density, at
least for sufficiently largeM.

These results along with those by Dettmann and Cohen27

allow us to draw some conclusions on the fundamental in-
gredients for observing deterministic diffusionsboth in cha-
otic and nonchaotic systemsd.

• An instability mechanism is necessary to ensure particle
dispersion at small scalesshere small means inside the
cellsd. In chaotic systems this is realized by the sensitivity
to the initial condition. In nonchaotic systems this may be
induced by finite size instability mechanisms. Also with
zero maximal Lyapunov exponent one can have a fast in-
creasing of the distance between two trajectories initially
close.55 In the wind-tree Ehrenfest model this stems from
the edges of the obstacles, in “stepwise” systems5d, s18d,
and s19d from the jumps.

• Mechanisms able to suppress periodic orbits and, there-
fore, to allow for a diffusion at large scale.

It is clear that the first requirement is not very strong
while the the second is more subtle. In systems with “strong
chaos,” all periodic orbits are unstable and, so, it is automati-
cally fulfilled. In nonchaotic systems, such as the nonchaotic

billiards studied by Dettmann and Cohen and the maps5d,
s18d, and s19d, the stable periodic orbits seem to be sup-
pressed or, at least, strongly depressed, by the quenched ran-
domnesssalso in the limit of zero spatial entropyd. We note
that, unlike the two-dimensional nonchaotic billiards, in the
one-dimensionals1Dd systems5d, s18d, ands19d, the periodic
orbits may survive to the presence of disorder, so we need
the aid of a quasiperiodic perturbation to obtain their destruc-
tion and the consequent diffusion.

V. DISCUSSIONS AND CONCLUSIONS

Before summarizing the results of this article, we believe
that it is conceptually important to comment about the rel-
evance of chaos in statistical mechanics approaches.

The statistical mechanics56 had been funded by Max-
well, Boltzmann, and Gibbs for systems with a very large
number of degrees of freedom without any precise require-
ment on the microscopic dynamics, apart from the assump-
tion of ergodicity. After the discovery of deterministic chaos
it becomes clear that also in systems with few degrees of
freedom statistical approaches are necessary. But, even after
many years, the experts do not agree yet on the fundamental
ingredients which should ensure the validity of the statistical
mechanics.

The spectrum of points of view is very wide, ranging
from the Landausand Khinchin57d belief on the main role of
the many degrees of freedom and thesalmostd complete ir-
relevance of ergodicity, to the opinion of who, as Prigogine
and his school,58,59 considers chaos as the basic ingredient.
We strongly recommend the reading of Ref. 60 for a detailed
discussion of irreversibility. This work discusses the “ortho-
dox” point of view sbased on the role of the large number of
degrees of freedom, as stressed by Boltzmann61d re-proposed
by Lebowitz62 and the following debate on the role of deter-
ministic chaos.58,63Here we focus only on the aspects related
to diffusion problemssand some related aspects, e.g., con-
ductiond.

By means of the powerful method of periodic orbits ex-
pansion, in systems with very strong chaossnamely hyper-
bolic systemsd, it has been shown that there exists a close
relation between transport propertiesse.g., viscosity, thermal
and electrical conductivity and diffusion coefficientsd and in-
dicators of chaossLyapunov exponents, KS entropy, escape
rated. These aspects are, e.g., discussed in Refs. 51 and 52. At
a first glance, the existence of such relations seem to give
evidence against the “anti dynamical” point of view of Lan-
dau and Khinchin. However, it may be incorrect to employ
those results to obtain definite answers valid for generic sys-
tems. In fact it seems to us that there are rather clear evi-
dences that chaos is not a necessary condition for the validity
of some statistical behavior.64–66Beyond the problem of dif-
fusion in nonchaotic systems, it is worth mentioning the in-
teresting results of Lepriet al.67 showing that the Gallavotti–
Cohen formula,68 originally proposed for chaotic systems,
holds also in some nonchaotic model. Moreover, recently Li
and co-workers69,70 studied the transport properties in quasi-
one-dimensional channels with triangular scatters. In such
systems, the maximal Lyapunov exponent is zero because of
the flatness of triangle sides. However, numerical simulations

FIG. 5. Log–log plot of the dependence of the diffusion coefficientD on the
external forcing strengthe. Different data relative to a number of cell micro-
intervalsN=50, 100, and 150 are plotted vs the natural scaling variableeN
to obtain a collapse of the curves. Horizontal line represents the result for
chaotic systems4d and s5d.
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show that, when the scatterers are placed at randomsor their
height is randomd, the Fourier heat law remains valid. An-
other interesting nonchaotic model exhibiting the Fourier
heat conduction is the simple one-dimensional hard-particle
system with alternating masses.71 For a recent review on heat
conduction in one dimension see Ref. 72.

These and many other examples prove that the heat con-
duction is present also in system without microscopic chaos.
This is a further indication that microscopic chaos is not the
unique possible source of a macroscopic transport in a given
dynamical system.

Finally let us briefly summarize the main items of this
article. The problem of distinguishing chaos from noise can-
not receive an absolute answer in the framework of time
series analysis. This is due to the finiteness of the observa-
tional data set and the impossibility to reach an arbitrary fine
resolution and high embedding dimension. However, this re-
striction is not necessarily negative, and we can classify the
signal behavior, without referring to any specific model, as
stochastic or deterministic on a certain range of scales.

Diffusion may be realized in stochastic and deterministic
systems. In particular, in the latter case, chaos is not a pre-
requisite for observing diffusion and, more in general, non-
trivial statistical behaviors.
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