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Brownian motion and diffusion: From stochastic processes to chaos

and beyond
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One century after Einstein’s work, Brownian motion still remains both a fundamental open issue
and a continuous source of inspiration for many areas of natural sciences. We first present a
discussion about stochastic and deterministic approaches proposed in the literature to model the
Brownian motion and more general diffusive behaviors. Then, we focus on the problems concern-
ing the determination of the microscopic nature of diffusion by means of data analysis. Finally, we
discuss the general conditions required for the onset of large scale diffusive motig@0%®
American Institute of Physic§DOI: 10.1063/1.1832773

Brownian motion (BM) played a fundamental role in the
development of molecular theory of matter, statistical
mechanics and stochastic processes. Remarkably, one
century after Einstein’s work, BM is still at the origin of
scientific discussions as testified by a recent experiment
performed to detect a trace of deterministic chaotic
sources on macroscopic diffusion. Several authors, which
discussed the results of such an experiment, argued that
the possibility to discern experimentally between a deter-
ministic chaotic and noisy dynamics, at the microscopic
level, is severely limited by subtle technical and concep-
tual points. However, the remarks raised by the scientific
community have gone over the criticism and have led to a
deeper understanding of the role of chaos in the diffusion.
After a short historical introduction to BM, we focus on
the dynamical conditions to observe macroscopic diffu-
sion. In particular, we discuss the technical and concep-
tual limits in distinguishing, by means of data analysis,
the deterministic or stochastic nature of diffusion. A main
tool for that is the e-entropy. Part of the discussion is
devoted to the problem of macroscopic diffusion in deter-
ministic nonchaotic dynamics.

I. INTRODUCTION

spherical particles Avogadro’s numbelN,, the temperature
T and the gas constai
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N Ny 677a’

1)

This relation can be employed, and actually had been, to
determine experimentally the Avogadro’s numbéndeed,

the diffusion coefficient can be measured by monitoring the
growth, with timet, of the particle displacemenix=x(t)
-x(0), which is expected to behave as

((Ax)?) = 2Dt. (2

Einstein relatior(1), that may be seen as the first example of
the fluctuation—dissipation theorehgllowed for the deter-
mination of Avogadro’s number and gave one of the ultimate
evidences of the existence of atoms.

Einstein’s theoretical explanation of BM is based on the
intuition that the irregular motion of a Brownian particle is a
consequence of the huge number of collisions per unit time
with the surrounding fluid molecules. Since Einstein’s ap-
proach, diffusion and irregular phenomena were commonly
associated to the presence of many degrees of freedom. The
effects of the disregarded degrees of freedom on an observed
small part of a system can be either studied dire@ly ini-
tiated by Smoluchowsf‘() or modeled by means of stochastic

At the beginning of the twentieth century, the atomistic dynamics(as proposed by Lange\?m From the latter point
theory of matter was not yet fully accepted by the scientificof view, BM provided the first and main stimulus to the
community. While searching for phenomena that wouldbuilding of the modern theory of stochastic processes.

prove, beyond any doubt, the existence of atoms, Einstein

realized that *.. according to the molecular-kinetic theory of

After the (re)discovery of deterministic chads, it was
clear that also fully deterministic and low dimensional sys-

heat, bodies of microscopically-visible size suspended in g&ems can give rise to erratic seemingly random motions,
liquid will perform movements of such magnitude that theypractically indistinguishable from those produced by a sto-

can be easily observed in a microscopg” as he wrote in
his celebrated paper in 19649n this work, devoted to ex-

plain the irregular motion of Brownian particles on theoreti-

chastic process. This implied an affective unpredictability of
chaotic systems and the need for a probabilistic description
also of a strictly deterministic world. The success in under-

cal grounds, Einstein argued that the motion of these sma#itanding the basic mechanisms for the onset of chaos, and
bodies has a diffusive character. Moreover, he discovered dahe wealth of interesting phenomena occurring in low dimen-

important relation involving the diffusion coefficielt, the
fluid viscosity 7, the particles radiusa (having assumed
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sional systems hinted at optimistic expectations about the
possibility of a systematic deterministic approach to irregular

© 2005 American Institute of Physics

Downloaded 18 Jul 2005 to 193.175.8.27. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


http://dx.doi.org/10.1063/1.1832773

026102-2 Cecconi et al. Chaos 15, 026102 (2005)

natural phenomena. This raised a rapid development of timeumber of impacts with the surrounding fluid molecules, re-
series analysis with the idea to demonstrate the determinist&ponsible for the thermal agitation of the particle. In statisti-
character of many irregular phenomena. cal mechanics terms, this corresponds to molecular chaos.

Nowadays we are aware of the limits of this optimistic With the assumption that the foréeis a Gaussian, time
program’® and we know that a definite answer on the deter-uncorrelated random variable, the probability distribution
ministic or stochastic character of experimental signals igunctions(pdf) for the position and velocity of the Brownian
impossible. However, some tools of time series analysisparticle can be exactly derivé@in particular, the pdf of the
such as the entropy analysis at varying the scale of resolyosition, at long times, reduces to the Gaussian distribution
tion, are very useful to characterize important features ofn agreement with Einstein’s result.
complex systems. Among the recent developments in this Langevin’s work along with that of Ornstein and
context, we can mention the experiment by Gas;mreil.lo UhlenbecR® are at the foundation of the theory of stochastic
on the motion of a Brownian particle. The debatéaround  differential equations. The stochastic approach is, however,
the possible theoretical interpretation of the experiment is ainsatisfactory being at the level of a phenomenological de-
clear indication of how, one century after the seminal Ein-scription.
stein's work, BM continues to be a subject of intricate and  The next theoretical challenge toward the building of a
fascinating discussions. dynamical theory of Brownian motion is to understand its

Beyond its undoubted importance for applications inmicroscopic origin from first principles. A very early attempt
many natural phenomena, deterministic chaos also enforcggas made in 1906 by Smoluchowski, who tried to derive the
us to reconsider some basic problems standing at the foumarge scale diffusion of Brownian particles starting from the
dations of statistical mechanics such as, for instance, the agnicroscopic description of their collisions with the fluid
plicability of a statistical description to low dimensional sys- molecules' A renewed interest on the subject appeared some
tems. years later, when it was realized that even purely determin-

In addition, the combined effects of noise and determin-istic Systems Composed of a |arge number of partic|es pro-
istic evolution can generate highly nontrivial and rather in-quce macroscopic diffusion, at least on finite time scales.
triguing behaviors. As an example, we just mention the stoThese models had an important impact in the justification of
chastic resonanc&™* and the role of colored noise in Brownian motion theory and, more in general, in deriving a
dynamical system¥’ consistent microscopic theory of irreversibility.

The aim of this paper is a discussion on the viable ap-  some of these works considered chains of harmonic os-
proaches to characterize and understand the dynamdal Gjjlators of equal masség;?°while other§* 2 analyzed the
croscopi¢ character of BM(Sec. I)). In particular, we shall  mgtion of a heavy impurity linearly coupled to a chain of
focus on the distinction between chaos and noise from a daigyual mass oscillators. For an infinite number of oscillators,
analysis and on conceptual aspects of the modeling problefe momentum of the heavy particle behaves as a genuine
(Sec. Il). Moreover, we shall investigate and discuss aboutgchastic process described by the Langevin equagipn
the basic microscopic ingredients necessary for BM as, fo{yhen their number is finite, diffusion remains an effective
instance, the possibility of genuine BM in nonchaotic deter'phenomenon lasting for @ong bub limited time.

ministic systems(Sec. 1V). Finally, we conclude(Sec. V) Soon after the discovery of dynamical chaos, it was re-
ywth a discussion on the role of chaos in statistical mechansjized that also simple low dimensional deterministic sys-

ICS. tems may exhibit a diffusive behavior. In this framework, the
two-dimensional Lorentz g&é,describing the motion of a
Il. THE ORIGIN OF DIFFUSION free particle through a lattice of hard round obstacles, pro-

vided the most valuable example. Particle trajectories can be

Einstein’s work on BM is based on statistical mechanics, jistic (with very few collisions in the case of infinite ho-
and thermodynamical considerations applied to suspend on) or chaotic as a consequence of the convexity of the

lpartllcles,hwn)r; the assumption of velocity decorrelatiaro- obstacles. In the latter case, at large times, the mean square
ecular chao displacement from the particle initial condition grows lin-

d Ins_tealdt,h one OI éh'j (;'rft att)tenly)tts Lto dg%l/frllotp a IE;]urelyearly with time. Lorentz system is closely related to the Sinai
ynamical theory o ates back fo Langevinat, as Ne ;0 4 2526 \yhich can be obtained from the Lorentz gas by

writes, gave *.. a demonstratiotiof Einstein resultsthat is folding the trajectories into the unitary lattice cell. The ex-

|nf|n|tely,'more S'”.‘p'e by means of a method that.'s er]t're'ytensive study on billiards has shown that chaotic behavior
different’ Langevin considers the Newton equation for a

. o . S might usually be associated to diffusion in simple low di-
small spherical particle in a fluid, taking into account that the . . .
. . . . mensional models, supporting the idea that chaos was at the
Stokes viscous force it experiences is only a mean force. In

one direction. sav. e.a.. thedirection. one has very origin of diffusion. However, more recentl(gee, e.g.,
» Say, €0, ’ Ref. 27 it has been shown that even nonchaotic determinis-

d?x dx tic systems, such as a bouncing particle in a two-dimensional

il 6mna i F, (3)  billiard with polygonal but randomly distributed obstacles
(wind-tree Ehrenfest modelmay exhibit a diffusionlike be-

wherem is the mass of the particle. In the right-hand sidehavior (see Sec. IV.

(r.h.s) the first term is the Stokes viscous foréeis a fluc- Deterministic diffusion is a generic phenomenon present

tuating random force which models the effects of the hugealso in simple chaotic maps on the line. Among the many

m
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contributions we mention the work by Fujisaka, correlation, e.g.C(7)~ 7 # with 8<1, may appear in very
Grossmani®?® and Geisef®3! A typical example is thed  intermittent system& When this happens, conditiciii) is
discrete-time dynamical system: violated, and superdiffusion{x?(t))~t>"#, is observed.
Though interesting, superdiffusion is a quite rare phenom-
X(t+1) =[x(O)]+ FXxO - [x®)]), ) enon. Moreover, usually, small changes of the control param-
wherex(t) (the position of a pointlike particjgperforms dif-  eters of the dynamics restore standard diffusion. Therefore,
fusion in the real axis. The brackpt.] denotes the integer also for chaotic systems we can state that the “rule” is the
part of the argument=(u) is a map defined on the interval standard diffusion and the “exception” is the
[0, 1] that fulfills the following properties: superdiffusiort’
(i) The map,u(t+1)=F(u(t)) (mod 1) is chaotic; We end this section by asking whether is it possible to
(i) F(u) must be larger than 1 and smaller than 0 fordetermine, by the analysis of a Brownian particle, if the mi-
some values ofi, so there exists a nonvanishing probability croscopic dynamics underlying the observed macroscopic
to escape from each unit céd unit cell of real axis is every diffusion is stochastic, deterministic chaotic, or regular?
interval C,=[¢, € +1], with  €Z);
(i) Fy(u)=1-F,(1-u), whereF, andF, define the map
in u€[0,1/4and u€[1/2,1], respectively. This anfi- "0 cr\cTION BETWEEN CHAOS AND
symmetry condition with respect to=1/2 isintroduced to  \ o sg
avoid a net drift.
A very simple and much studied examplefois Inferring the microscopic deterministic character of
{2(1 +au it ue[0,1/7, Srownian motion on an ex_perim_ental basis wo_uld be attrac-
F(u) = ) (5) tive from a fundamental viewpoint. Moreover it could pro-
21+au-+1 ifuell/2,], vide further evidence to some recent theoretical and numeri-

wherea>0 is the control parameter. It is useful to remind €& st.udie_§’.4'35 Before discussing a recent experin8rin
the link between diffusion and velocity correlation, i.e., the this direction, we must open the “Pandora box” of the long-
Taylor—Kubo formula, that helps in understanding how dif- standlng aqd c.ontrover5|al problem of distinguishing chaos
fusion can be realized in different ways. Definitg(r) ~ fom noise in signal analysfs. _ _
=(v(7)v(0)) as the velocity correlation function, whepgt) The first observation is that, very often in the analysis of

is the velocity of the particle at time It is easy to see that experimental time series, there is not a unique model of the
for continuous time systenfe.g., Eq.(3)] “system” that produced the data. Moreover, even the knowl-

edge of the “true” model might not be an adequate answer
about the character of the signal. From this point of view,
(V) = x(0))%) = ZtJO drC(). ®) BM is a paradigmatic example: In fact it can be modeled by
a stochastic as well as by a deterministic chaotic or regular
Standard diffusion, withD=[;d7C(7), is always obtained process.
whenever the hypotheses for the validity of the central limit  In principle a definite answer exists. If we were able to
theorem are verified. determine the maximum Lyapunov exponeix) or the
() The variance of the velocity must be finit@??) < oe. Kolmogorov—Sinai(KS) entropy (hks) of a data sequence,
(I) The decay to zero of the velocity correlation function we would know without uncertainty whether the sequence
C() at large times should be faster thart. was generated by a deterministic lgw,hxs<>) or by a
In discrete-time systems, the velocityt) and the inte- stochastic oné\ ,hgs— ). Nevertheless, there are unavoid-
gration of C(t) are replaced by the finite differencét+1)  able practical limitations in computing such quantities. Those
—x(t) and by the quantityv(0)%)/2+X,C(7), respectively. are indeed defined as infinite time averages taken in the limit
Condition (1) is justified by the fact that having an infi- of arbitrary fine resolution. But, in experiments, we have
nite variance for the velocity is rather unphysical. It shouldaccess only to a finite, and often very limited, range of scales
be noted that this requirement is independent of the microand times.
scopic dynamics under consideration: Langevin, determinis- However, there are measurable quantities that are appro-
tic chaotic, or regular dynamics. priate for extracting information on the signal character. In
Condition(Il), corresponding to the request of molecular particular, we shall consider thee,7)-entropy per unit
chaos, is surely verified for the Langevin dynamics wherdime® =°h(e, 7) that generalizes the Kolmogorov—Sinai en-
the presence of the stochastic force entails a rapid decay t¢fopy. In a nutshell, while for evaluatinigks one has to de-
C(7). In deterministic regular systems, such as the many ogtect the properties of a system with infinite resolution, for
cillator model, the velocity decorrelation comes from theh(e,7) a finite scale (resolution e is requested. The
huge number of degrees of freedom that act as a heat bath #mImogorov—Sinai entropy is recovered in the lingit-0,
a single oscillator. While in thénonchaoti¢ Ehrenfest wind- i.e., h(e, 7) — hgs. This means that if we had access to arbi-
tree model decorrelation originates from the disorder in thararily small scales, we could answer the original question
obstacle positions, the situation is more subtle for determinabout the character of the law that generated the recorded
istic chaotic systems. In fact, even if nonlinear instabilitiessignal. Even if this limit is unattainable, still the behavior of
generically lead to a memory loss and, henceforth, to thda(e,r) provides a very useful scale-dependent description of
validity of the molecular-chaos hypothesis, slow decay ofthe nature of a signal.

t
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A. e-entropy the smallest characteristic length scale of the system. Instead,
for e> ¢. due to(12) h(e, 7) <hgg, in this range the details of
the e-dependence may be informative on the large scale
(slow) dynamics of the systertsee, e.g., Refs. 36 and 41

In stochastic signalbcs=0, but for anye>0, h(e, 7) is
finite and a well defined function of and 7. The nature of
the dependence df(e, 7) on € and 7 provide a characteriza-
tion of the underlying stochastic proce&ee Refs. 37, 39,
and 41. For an important and wide class of stochastic
XM(t) = (x(1),...,x(t+ mr= 7)), (7)  processe¥ an explicit expression fan(e, 7) can be given in
the limit 7— 0. This is the case of stationary Gaussian pro-
cesses characterized by a power spect$(m) o« w 2D,
with 0< a<1, for whicH’

The e-entropy was originally introduced in the context
of information theory by Shanndh and, later, by
Kolmogorov'’ in the theory of stochastic processes. An op-
erative definition is as follows.

One considers a continuous variabig) € 19, that rep-
resents the state of @&dimensional system, and one intro-
duces the vector

which lives in 9™ and is a portion of the trajectory dis-
cretized in time with stepr. Then the phase spacg? is
partitioned using hyper-cubic cells of side The vector
XM(t) is coded into the word, of lengtim, limh(e,7) ~ €1, (13)

WT(e,t) = (i(e,t),...,iI(e,t +m7— 7)), (8)

7—0

) . 4 o ) The casex=1/2, corresponding to the power spectrum of a
wherei(e,t+]7) labels the cell imk® containingx(t+j). For  Brownian signal, would giveh(e)~ €2 Some stochastic
bounded motions, the number of visited célls., the alpha-  processes, such as, e.g., time uncorrelated and bounded ones,

be? is finite. Under the hypothesis of stationarity, the prob-are characterized by a logarithmic divergence below a criti-

tained from the time evolution of™(t). The (e, 7)-entropy
per unit time,h(e, 7) is then defined by B. Numerical determination of the  e-entropy
h(e,7) = lim hy(e,7) = 1 lim le(e, ), (9) In experiments, usually, only a scala}r va_riah[e) can
Mmoo Tm—e=M be measured and moreover the dimensionality of the phase
space is not known. In these cases it is reconstructed by
delay embedding techniqd&, where the vectoX™(t) is
Ho(e, D == > PW"(e)INP(W™(e)), (10)  built as(u(®),u(t+7),...,u(t+mr-7)), now in R™ This is a
WMo} special instance of7).

Then to determine the entropids,(€), very efficient

numerical methods are availaffié® (the reader may find an

Itis w%rth remalrkmg Oga‘% few Ilgwporta_nt pomtsk. A L'g' exhaustive review in Refs. 8 and. Here, avoiding techni-
929“3 mat emaliuca p_rktj)lce avou rgﬂuwle to ta eft € calities, we just mention some subtle points which should be
infimum over all possible partitions with elements of size ;. an into account in data analysis.

smaller thare. The Kolmogorov—Sinai entropy is obtained in
the limit of small e

whereH,, is them-block entropy:

andh(e,7)=[Hs1(e, 7 —Hy(e, D]/ .

First, if the information dimension of the attractor for a
given system igl; then, to have a meaningful measure of the
hks = limh(e, 7). (11) entropy, the embedding dimensionhas to be larger thaah.

€0 Second, as mentioned above, the plategl¢) ~ hys appears
only below a criticale,, meaning that it is possible to distin-

do not depend on the sampling time so thkt) can be in guish a deterministic signal from a random one only éor _
principle used with any choice af40 However, in practical < ¢.. However, one should be aware of the fact that the fi-

computations, where the rigorous definition is not applicableinitenes_S of the data set imposes a lower cut-off seglge-

the specific value of is important andh(e) may also depend 'OW which no information can be extracted from the dae

on the used norm. For very small no matter of the norm Ref. 44. Also in stochastic signals, there exists a lower criti-
the correct value of the Kolmogorov—Sinai entropy is usuallyc@! cut-off €5 due to the finiteness of the data set, and often,
recovered. Indeed, when the partition is very fine, usually, i@S mentioned at the end of the previous subsection, one has
well approximates a generating partition. It is worth remind-logarithmic divergences below,. Since, this is also what

ing that the Kolmogorov—Sinai entropy is a dynamical in- happens in general f@’<3§%4the interpretation of the results
variant, i.e., independent of the used state represent@tjon "€duires much attentich™

In deterministic systems the following chain of inequali-  1nerefore, ifmis not large enough and/eris not small
ties holds® enough(or in the lack of a good estimation of the important

range of scales for the different behavioome may obtain
misleading results.

Another important problem concerns the choicerdf 7
is much larger or much shorter than the characteristic time-
where the summation is over all positive Lyapunov expo-scale of the system at the scalehen the correct behavior of
nents. A system is chaotic when<thcs<c and regular the e-entropy®° cannot be properly recovered.
when hys=0. Typically, one observes théile,r) attains a To exemplify the above difficulties let us consider the
plateauhgs, below a resolution threshold,, associated to map

Note that in deterministic systenige) and henceforthyg

+

h(en) =hs =2\, (12)
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surement of a BM. The data were then processed by means
of standard nonlinear time-series analysis tools, i.e., the
Cohen—Procaccia methdtifo compute thee-entropy. This
computation shows a power-law dependehte ~ € 2. Ac-
tually, similarly to what displayed in Fig. 1, this behavior is
recovered only by considering the envelope of the
h(e, 7)-curves, for differentr’s. However, unlike Fig. 1, no
saturationh(e, 7) = const is observed in the smadtregion
because of the finiteness of data set and resolution as well.
From the previous discussion, this can be understood as the
fact thate. of the observed system is much smaller than the
smallest detectable scale extracted from data and, therefore,
the KS entropy cannot be properly estimated. Nevertheless,
FIG. 1. Numerically evaluatede, 7)-entropy for the mag14) with p=0.8  from the chain of inequalitie€l2) and byassumingrom the

computed by the standard techniqu&ef. 6 at 7=1 (O), 7=10(A), and - . -
+=100(V) and different block lengtim=4, 8, 12, 20. The boxes give the outset that the system dynamics is deterministic, the authors

entropy computed withr=1 by using periodic boundary condition over 40 deduce, from the positivity dfi(e), the existence of positive
cells. The straight lines correspond to the two asymptotic behaviges,  Lyapunov exponents in the system. Their conclusion is thus

=hys=1.15 andh(e) ~ € that microscopic chaos is at the origin of the macroscopic
diffusive behavior.

(14) As pointed out by several works, a few points need to be
considered in the data analysis of the aforementioned experi-

which, for p>0.7326.., is chaotic[similarly to (4)] and  ment, namely: The huge amount of involved degrees of free-

displays large scale diffusion. On the basis of the PreViOU%iom(Brownian particle and the fluid moleculeshe impos-

10°

107 |

h(e)

10-2 |

10-3 L

10-4 |

10" 10° 10’ 10?
e

X(t+ 1) =x(t) + psin(2mx(t)),

discussion, the-entropy is expected to behave as sibility to reach high enough(spatial and temporhal
Nfore<1, resolution; the limited amount of data points.
& =1 5/ 2for e> 1 (15 The limitation induced by the finite resolution is particu-

larly relevant to the experiment. Even if one assumes that the
where\ is the Lyapunov exponent arid is the diffusion  number of data points and the embedding dimension are
coefficient. The typical problems encountered in numericallyarge enough, the impossibility to see a saturation to a con-
computingh(e) can be appreciated in Fig. 1. First notice thatgignt valueh(e) = const, prevents any conclusion about the
the thresholds.~ 1. As for the importance of the choice 8f  cparacter of the analyzed signal. For example, whenever the
note that the diffusive behavidn(e) ~€? is roughly ob- e analysis of Fig. 1 would be restricted to the region with
tained only by considering the envelopeif(e, 7) evaluated - 1 'hen discerning whether the data were originated by a

at ;j|ffe|rent Valll.JeS Qf_'t Thelreasolr:jfobr tr_"i |shas foIIowsir;I.' he chaotic system or by a stochastic process would be impos-
nafuralsampiing nterval wou &=1, NOWEVer, WIS ghe In fact in both cases the behaviofe) ~ € 2 would

choice requires considering larger and larger embedding dh
. . ; . . ; ave been observed.
mensionsm at increasinge. Indeed, a simple dimensional

argument suggests that the characteristic time of the systep As for thte nurrbet.r of dfecfrr]ees Otf freedcf)r?r; we recall thqt,
is determined by its diffusive behavidr~ €/D. If we con- or a correct evaluation ot the entropy of theé microscopic

sider, for examplee=10 and the typical values of the diffu- 9YNamics, a very high embedding dimension should be used,
sion coefficienD = 10°L, the characteristic timd[, is much N Practicem>d,. For a fluid[with O(10) moleculeg the
larger than the elementary sampling time1. On the other Necessary number of points is of course prohibitive. More-
hand, the plateau at the valbigs can be recovered only for OVer, as stressed by Grassberger and Schréibvenen the
r=~1, even if, in principle, any value of could be used. number of degrees of freedom is so high that it can be con-
The above difficulties can be partially overcome by sidered practically infinite there is an additional difficulty

means of a recently introduced method based on exit tffhes.related to the definition of entropy and Lyapunov exponents,
The main advantage of this approach is that it is not neede@hich become norm dependent.

to fix a priori 7, because the “correct} is automatically Furthermore, the limited amount of data severely affects
selected. even our ability to recognize if the signal is deterministic but
of zero entropy(i.e., regula). This has been pointed out by
C. Does Brownian motion arise from chaos, noise, or Dettmannet al,*>?"who have shown that the same entropic
regular dynamics? analysis of Ref. 10, applied to the Ehrenfest wind-tree model

We are now ready to discuss the experiment and its re(See next sectionreproduced results very similar to those
sults reported in Ref. 10. In this experiment, a long time€extracted in the Brownian experiment. This model is deter-
record(about 1.5< 10° data pointy of the motion of a small ministic and nonchaotic. In fact if the time records were long
colloidal particle in water was sampled at regular time inter-enough to see the periodic nature of the signal, and the em-
vals (At=1/60 9 with a remarkable high spatial resolution bedding dimension high enough to resolve the system mani-
(25 nm). To our knowledge, this is the most accurate mea<fold, the measured entropy would have been zero.
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FIG. 2. (a) Signals obtained from Eq17) with M=10* and random phases 10

uniformly distributed in[0,27]. The numerically computed diffusion con-
stant isD =0.007.(b) Time record obtained with a continuous random walk
(16) with the same value of the diffusion constant agah In both cases
data are sampled with=0.02, i.e., 10 data points.
© 107 |
&
. 8
The following example serves as a clue to better under- & 452
stand these points. Let us consider two signals, the first gen-
erated by a continuous random walk:

10° |
X()= 2D (), (16 .
. . . 10 . : =
where 7 is a zero mean Gaussian variable with(t) n(t')) 10" 1 10
=4(t-t’), and the second obtained as a superpositions of £
Fourier modes: FIG. 3. h(e) computed with the Grassberger—Procaccia algorithm usifig 10
M points from the time series of Fig. 2. We show the results for embedding
. dimensionm=50. The straight lines show ti2/ > behavior.
X(t) = 2 Xor sin(Qt + ). (17)
i=1

The coordinate(t) in Eq. (17), upon properly choosing the as deterministic or stochastic without referring to a specific
frequencie®*® and the amplitudege.g., X5, de- model, and is no longer obliged to answer the metaphysical
scribes the motion of a heavy impurity in a chainMflin- question, whether the system that produced the data was a
early coupled harmonic oscillators. We krfowhatx(t) per-  deterministic or a stochastft*® one.
forms a genuine BM in the limitM —oo. For M < the This is not a mere way to escape the original question.
motion is periodic and regular, nevertheless for large butndeed, it is now clear that the maximum Lyapunov exponent
finite times it is impossible to distinguish signals obtained byand the Kolmogorov-Sinai entropy are not completely satis-
(16) and(17) (see Fig. 2 This is even more striking looking factory for a proper characterization of the many faces of
at the compute@-entropy of both signal¢see Fig. 3. complexity and predictability of nontrivial systems, such as
The results of Fig. 3 along with those by Dettnetral™  intermittent systems or with many degrees of freedeng.,
suggest that, also by assuming the deterministic character adrbulence.*
the system, we are in the practical impossibility of discerning  In the literature the reader may find several methods de-
chaotic from regular motion. veloped to distinguish chaos from noise. They are based on
From the above discussion, one may have reached a vetlie difference in the predictability using prediction algo-
pessimistic view on the possibility to detect the “true” naturerithms rather than estimating the entr8py or they relate
of a signal by means of data analysis only. However, thedeterminism to the smoothness of the sigfial All these
scenario is different when the question about the character ahethods have in common the necessity to choose a certain
a signal remains restricted only to a certain interval of scaledength scalee and a particular embedding dimensiom
In this case, in fact, it is possible to give an unambiguougherefore they suffer the same limitations of the entropy
classification of the signal character based solely on the eranalysis presented here.
tropy analysis and free from any prior knowledge on the
system—model thafc generated t.he data._lndeed., we can defiR? DIEEUSION IN NONCHAOTIC SYSTEMS
stochastic—deterministic behavior of a time series on the ba-
sis of the absence—presence of a saturation platgéau With all the provisos concerning its interpretation, Gas-
~const in the observed range of scales. Moreover the behapard’s and co-worker¥’ experiment had a very positive role
ior of h(e,7) as a function of(e, 7) provides a very useful not only in stimulating the discussion about the chaos—noise
“dynamical” classification of stochastic proces%%‘és. One  distinction but also in focusing the attention on deep concep-
has then a practical tool to classify the character of a signalal aspects of diffusion. In this context, from a theoretical
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point of view, the study of chaotic models exhibiting diffu- L L
sion and their nonchaotic counterpart contributed to a better 1.0 / Z
understanding of the role of chaos on macroscopic diffusion. i i yd
In Lorentz gases, the diffusion coefficient is related, by Fu) r ye
S . . 3 . 3 A e
means of periodic orbits expansion methdtis> to chaotic L J /
indicators such as the Lyapunov exponents. This suggested, o5 7 /

for certain time, that chaos was or might have been the basic
ingredient for diffusion. However, as argued by Dettmann
and Coherf! even an accurate numerica_ll analysis.based on 0.0 /
the e-entropy has no chance to detect differences in the dif- P | | ]
fusive behavior between a chaotic Lorentz gas and its non- 00 '0!2' - '(,L{ 06 08 10
chaotic counterpart, such as the wind-tree Ehrenfest's model. u

In the latter model, particlegwind) scatter against square FiG. 4. sketch of the random staircase map in the unitary cell. The param-
obstaclegtrees randomly distributed in the plane but with etera defining the macroscopic slope is set to 0.23. Half dorf@jri/2] is
fixed orientation. Since the reflection by the flat edges of thélivided intoN=12 micro-intervals of random size. The map [an(2, 1] is
obstacles cannot produce exponential separation of trajectﬁg;?g]regf ?geacpénlgl?g tlhle;nt'symmemc transformation with respect to the
ries, the maximal Lyapunov exponent is zero and the system

is not chaotic. In this case the relation between the diffusion

coefficient and the Lyapunov exponents is of course nullithe continuous chaotic system is conceptually equivalent to
fied. replacing circular by polygonal obstacles in the Lorentz
The result of Ref. 27 implies thus that chaos may be nokysten?” The steps with unitary slope are indeed the analo-
indispensable for having deterministic diffusion. The quesyoys of the flat boundaries of the polygon. While the discon-
tion may be now posed on what are the necessary micrqinuities inF,, allowing for a moderate dispersion of trajec-
scopic ingredients to observe deterministic diffusion at largggries, play a role similar to the vertex of the polygon that
scales. In the wind-tree Ehrenfest's model, most likely, thesp"ts a narrow beam of particles hitting on it. Sireg has
disorder in the distribution of the obstacles is crucial. In Par-siope 1 almost everywhere, the map is no longer chaotic,
ticular, one may conjecture that a finite spatial entropy de”violating the condition(i) (see Sec. )l For A—0 (i.e., N
sity, hg, is necessary to the diffusion. So that deterministic_, ) the continuous chaotic mapg) is recovered. However,
diffusion may be a consequence either of a nonzero “dythis limit is singular and as soon as the number of intervals is
namical” entropy(hgs>0) in chaotic systems or of a non- finite, even if extremely large, chaos is absent. It has been
zero “static” entropy(hs> 0) for nonchaotic systems. This is founcP* that this model still exhibits diffusion in the presence

key point, because someone can argue that a determinisig hoth quenched disorder and a quasi-periodic external per-
infinite system with spatial randomness can be interpreted agrpation

an effective stochastic system, but this is probably a “matter
of taste.” With the aim of clarifying this point, we consider ~ X(t+1) =[x(t)] + Fo(x(t) = [x(t)]) + & cogat). (19
now a spatially disordered nonchaotic motfevhich is the The strength of the external forcing is controlled dgand «

one-dimensional gnalog of a two-dimensional nonChaOtICdefines its frequency, whild indicates a specific quenched
Lorentz system with polygonal obstacles. It has the advanélisorder realization

tage that both the case with finite and zero spatial entropy The diffusion coefficienD has been numerically com-
density can be investigated. Let us start with the map deﬁneguted from the linear asymptotic behavior of the mean
by Eq_s. (4) and (.5)' and introduce some modifiggtions to square displacement. The results, summarized in Fig. 5,
make i nonchao'u(_:. One can proceed as exemplmed b.y Fidshow thatD is significantly different from zero only for val-
4, that 1S by repla(_:mg Fhe funct|.c(|5) on each unit cell by its uese>¢g.. For e>¢g. D exhibits a saturation close to the
§tep—W|se approxmatlon th{;\t IS ge.nerated' as TOHOWS' Thﬁ"/alue of the chaotic systelinorizontal ling defined by Egs.
first half of C, '_S partltloneq n N_ micro-intervals (4) and(5). The existence of a threshaodd is not surprising.
[C+&a, €+&L n=1,... ’,N' with 50_0_< §1<,§2<"' .. Due to the staircase nature of the system, the perturbation
,<§N‘1<§N:1_/2' !n each interval the map is defined by its has to exceed the typical discontinuity I6f to activate the
linear approximation “macroscopic” instability which is the first step toward the
o . diffusion. Data collapsing, obtained by plottiiyvs €N, in
FaW=u=&+F(&) ifu€ sl (18) Fig. 5 confirms this argument. These findings are robust and
where F(&,) is (5) evaluated ag,. The map in the second do not depend on the details of forcing. Therefore, we have
half of the unit cell is then determined by the antisymmetryan example of a nonchaotic model in the Lyapunov sense by
condition with respect to the middle of the cell. The construction, which performs diffusion. Now the question
quenched random variablé&&ﬁ‘;ll are uniformly distributed concerns the possibility that the diffusive behavior arises
in the interval[0, 1/2], i.e., the micro-intervals haveran-  from the presence of a quenched randomness with nonzero
dom extension. Further they are chosen independently ispatial entropy per unit length. To clarify this point, similarly
each cellC, (so one should properly writéf)). All cells are  to Ref. 27, the model can be modified in such a way that the
partitioned into the same numbé of randomly chosen spatial entropy per unit cell is forced to be zero, and see if
micro-intervals(of mean sizeA=1/N). The modification of the diffusion still persists.

\\
o
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N
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10—y billiards studied by Dettmann and Cohen and the r@p
i ] (18), and (19), the stable periodic orbits seem to be sup-
107 v'v.f'”--:,."_ﬁé’:v.v v : pressed or, at least, strongly depressed, by the quenched ran-
o domnesgalso in the limit of zero spatial entropyWWe note
plo% & . that, unlike the two-dimensional nonchaotic billiards, in the
i o N= 50 ] one-dimensionallD) system(5), (18), and(19), the periodic
10.3;_ o7 s N=100 _ orbits may survive to the presence of disorder, so we need
F P v N=150 ] the aid of a quasiperiodic perturbation to obtain their destruc-
104;_‘,' . . | _ tion and the consequent diffusion.
10" 10° ;"Nl 10° 10 V. DISCUSSIONS AND CONCLUSIONS
FIG. 5. Log—log plot of the dependence of the diffusion coefficrmin the Before summarizing the results of this article, we believe

external forcing strengtk. Different data relative to a number of cell micro- that it is conceptually important to comment about the rel-
intervalsN=50, 100, and 150 are plotted vs the natural scaling varieldle evance of chaos in statistical mechanics approaches_
to obtain a collapse of the curves. Horizontal line represents the result for . . _
chaotic systenid) and (5). The statistical mecham%%had been fun_ded by Max
well, Boltzmann, and Gibbs for systems with a very large
number of degrees of freedom without any precise require-
, , . ment on the microscopic dynamics, apart from the assump-
This program can be accomplished by((gepeﬁ:l?g t"8ion of ergodicity. After the discovery of deterministic chaos
same disorder configuration evely cells (i.e., &, —'ﬁfw ): it becomes clear that also in systems with few degrees of
ensuring a zero entropy for unit length. Looking at the dif-freeqom statistical approaches are necessary. But, even after
fusion of an ensemble of walkers it was observed that dlffu-many years, the experts do not agree yet on the fundamental

sion is still present wittD very close to the expected value jgredients which should ensure the validity of the statistical
(as in Fig. 5. However, a close analysis reveals the presenc@,ecnanics.

of weak average drifi, _that vanishes approximately _él/s The spectrum of points of view is very wide, ranging
~1/M2 for Iazrge M. This suggests that, at large times, from the Landauand Khinchifi’) belief on the main role of
((x(®)%)=(V)*+2Dt and the ballistic motion should over- {he many degrees of freedom and tlaémos) complete ir-
come diffusion. However, the crossover timgat which the  rejevance of ergodicity, to the opinion of who, as Prigogine
motion switches from diffusive to ballistic, diverges with  5nd his schoot®® considers chaos as the basic ingredient.
as 7.~ DM?, so for very large but finiteM, the ballistic re- e strongly recommend the reading of Ref. 60 for a detailed
gime is not observed in simulations. Finally, it should begiscussion of irreversibility. This work discusses the “ortho-
considered that the value dfdepends on the realization of oy point of view (based on the role of the large number of
th_e randomness, and after averaging over the _dlsorder theegrees of freedom, as stressed by BoltzMi8me-proposed
drift becomes zero. Indeed the behawor 1/M indicates @ by | ehowit#? and the following debate on the role of deter-
self-averaging property for largél. Therefore, we can con-  minjstic chao$®%*Here we focus only on the aspects related
clude that the system displays genuine diffusion for a veryy giffusion problems(and some related aspects, e.g., con-
long time even with a vanishingspatia) entropy density, at  qyction.

least for sufficiently largeM. By means of the powerful method of periodic orbits ex-
These results along with those by Dettmann and cthen pansion, in systems with very strong chgaamely hyper-
allow us to draw some conclusions on the fundamental inggjic systemy it has been shown that there exists a close
gredients for observing deterministic diffusidpoth in cha-  rejation between transport properti@sg., viscosity, thermal
otic and nonchaotic systems and electrical conductivity and diffusion coefficiensnd in-

« An instability mechanism is necessary to ensure particlélicators of chaogLyapunov exponents, KS entropy, escape
dispersion at small scaleere small means inside the rate). These aspects are, e.g., discussed in Refs. 51 and 52. At
cells). In chaotic systems this is realized by the sensitivity@ first glance, the existence of such relations seem to give
to the initial condition. In nonchaotic systems this may be€Vidence against the “anti dynamical” point of view of Lan-
induced by finite size instability mechanisms. Also with dau and Khinchin. However, it may be incorrect to employ
zero maximal Lyapunov exponent one can have a fast inthose results to obtain definite answers valid for generic Sys-

creasing of the distance between two trajectories initiallyt®ms. In fact it seems to us that there are rather clear evi-

and (19) from the jumps fusion in nonchaotic systems, it is worth mentioning the in-
. . . 67 . .
« Mechanisms able to suppress periodic orbits and, therd€resting resultssof Lepst al.”” showing that the Gallavotti—
fore, to allow for a diffusion at large scale. Cohen formul&? originally proposed for chaotic systems,

holds also in some nonchaotic model. Moreover, recently Li

It is clear that the first requirement is not very strongand co-worker¥ °studied the transport properties in quasi-
while the the second is more subtle. In systems with “strongne-dimensional channels with triangular scatters. In such
chaos,” all periodic orbits are unstable and, so, it is automatisystems, the maximal Lyapunov exponent is zero because of
cally fulfilled. In nonchaotic systems, such as the nonchaotithe flatness of triangle sides. However, numerical simulations
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