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Abstract. Gyrotactic algae are bottom heavy, motile cells whose swimming direction is determined by a
balance between a buoyancy torque directing them upwards and fluid velocity gradients. Gyrotaxis has, in
recent years, become a paradigmatic model for phytoplankton motility in flows. The essential attractiveness
of this peculiar form of motility is the availability of a mechanistic description which, despite its simplicity,
revealed predictive, rich in phenomenology, easily complemented to include the effects of shape, feedback
on the fluid and stochasticity (e.g., in cell orientation). In this review we consider recent theoretical,
numerical and experimental results to discuss how, depending on flow properties, gyrotaxis can produce
inhomogeneous phytoplankton distributions on a wide range of scales, from millimeters to kilometers, in
both laminar and turbulent flows. In particular, we focus on the phenomenon of gyrotactic trapping in
nonlinear shear flows and in fractal clustering in turbulent flows. We shall demonstrate the usefulness of
ideas and tools borrowed from dynamical systems theory in explaining and interpreting these phenomena.

1 Introduction

Biological and geophysical fluids host a sea of microorgan-
isms many of which are motile. An often overlooked aspect
of the life of such microorganisms is that the fluids where
they are suspended are not still but flowing. For instance,
in fresh water and marine environments microorganisms,
such as unicellular algae or bacteria, are exposed to tur-
bulent motion [1] and turbulence is believed to have been
one of the main factors in shaping the huge variety of form
and strategies of such aquatic microbes [2]. In (photo-)bio-
reactors microorganisms are grown in continuously stirred
tanks [3,4]. Bacteria composing the microbioma of mam-
mals undergo flowing fluids in several organs that they in-
habit such as, e.g., the gut or renal tissues [5,6]. Microbes
are also exposed to a variety of water flows in the soil [7].

In the presence of flows, microorganisms are at the
mercy of the velocity field which transports them possi-
bly, for motile species, in addition to their intrinsic swim-
ming, and modifies their orientation by action of velocity
gradients. Flow can thus impact the motility of microor-
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ganism, their spatial distribution, interaction with sur-
faces, response to nutrients or other chemicals for motile
species [8–11], and nutrient uptake also for non-motile
ones [12]. Moreover, flow influences the encounter rate
of microorganisms [13], affecting their reproduction and
competition [14,15]. In summary, flows are key in shaping
microbial responses and ecology [16].

In this brief review we aim at emphasizing some in-
teresting phenomena that can emerge due to the modifi-
cation of the microorganisms’ swimming direction by ve-
locity gradients, which affects both the individual motion
of microorganisms and their spatial distribution in dilute
suspensions. More specifically, we focus on the case study
of gyrotactic phytoplankton.

Phytoplankton is responsible for about half of the pho-
tosynthetic activity on Earth. It is composed by thousands
of species many of which are able of swim. Motility confers
phytoplankton the ability to reach well-lit waters near the
sea surface during daylight and migrate into deeper wa-
ter, richer of nutrients, during the night [17]. For several
species, the upward migration is guided by a stabilizing
torque, induced, e.g., by bottom heaviness, which biases
cells swimming direction upwards, and is opposed by hy-
drodynamic shear, which exerts a viscous torque tending
to overturn the cell. When the swimming direction results
from the competition between the cells stabilizing torque
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and the shear-induced viscous torque, we speak of gyro-
taxis [18–20]. In both laminar and turbulent flows gyro-
taxis can promote heterogeneous spatial distribution of
phytoplankton cells.

Unicellular algae of the genus Chlamydomonas aggre-
gate in the center (walls) of downwelling (upwelling) ver-
tical pipe flows [18], a similar phenomenon can be induced
by phototaxis in horizontal pipe flows [21,22]. Gyrotaxis
not only alters cells’ spatial distribution but also the cells’
dispersion properties [23–25], which can be important for
photobioreactors [4]. When the fluid acceleration is not
negligible with respect to the gravitational one, the sta-
bilizing torque biases the motion in a position dependent
direction given by superposition of fluid and gravitational
acceleration. This causes, for instance, cell focusing to-
ward the rotation axis, when this is directed along the
vertical [26,27]. Remarkably, also when the shear-induced
viscous torque is not balanced by the stabilizing one, in-
teresting phenomena can happen. In this condition, cells
overturn due to the shear-induced torque and start tum-
bling without directed motion. In inhomogeneous shear
flows, this tumbling motion can trap cells in regions of
high shear, a phenomenon, discovered in microfluidic ex-
periments [28], which can explain the formation of high
phytoplankton concentrations in very thin layers as ob-
served in coastal oceans [29]. This gyrotactic trapping has
an interesting interpretation from a dynamical systems
point of view [30]. In more complex laminar flows, such
as Tayolor-Green vortices, the combination of gyrotactic
motility and flow can give rise to small-scale aggregation
and complex trajectories [31]. Such effects become even
more striking in turbulent flows of moderate intensity,
where gyrotaxis can generate small-scale fractal clusters
which are dynamically formed and dissolved, both when
the fluid acceleration can be neglected and when it can-
not [32,26], see also [33,34]. The properties of such fractal
clusters is also influenced by cell morphology [34,35]. The
physics underlying the formation of such fractal clusters
can be easily understood using dynamical systems con-
cepts: cells swimming in turbulence can be described in
terms of a chaotic, dissipative system, whose trajectories
naturally evolve onto (multi-)fractal sets [36].

Here, we review some of the above phenomena empha-
sizing their interpretation within the framework of dynam-
ical systems theory. This point of view is chosen on the
basis of the background of the Authors. This might have
biased the choice of some topics and it is inevitable that
some relevant works on the subject have been not properly
discussed. This choice also left out many interesting phe-
nomena arising in dense suspensions of gyrotactic organ-
isms such as bioconvection [37,38] or complex rheological
effects [39]. Before presenting the organization of the mat-
ter, we would like to mention some interesting phenomena
induced by the interplay between motility and flow that
arise in other kinds of microorganisms, such as bacteria,
and that are connected with those observed in gyrotactic
phytoplankton.

For instance, owing to their elongated shape, bacte-
rial cells swimming in a pipe (Poiseuille) flow are affected
by Jeffery orbits [40] which can induce upstream swim-

ming in low shear regions and tumbling in high shear ones.
This was predicted on the basis of mathematical models
in [41,42] and observed in microfluidic experiments [43],
which revealed also the accumulation of cells in high shear
regions due to trapping induced by Jeffery orbits. This
trapping causes spatial inhomogeneity and can reduce the
efficiency of chemotaxis [43], as also confirmed by math-
ematical analysis [44]. Motility also modifies the trans-
port properties with respect to passively advected parti-
cles [45]. More in general, flow effects on motility are ex-
pected to impact chemotaxis and other kinds of taxis [11].
Although such effects are largely unexplored, we mention
here the numerical study of chemotaxis in the presence of
a turbulent flow [46]. The details of cell morphology, such
as the chirality of the flagella, can also induce further di-
rectional biases in the presence of velocity gradients [47].
Flows can also impact the interaction of microorganisms
with surfaces [9], e.g., inducing accumulation [48] and up-
stream swimming [49] close to the walls of pipe flows. Frac-
tal clustering, similar to that found in gyrotactic cells, was
also found in models of bacteria swimming in cellular and
chaotic flows with or without taxis [50,51].

The material is organized as follows. In sect. 2 we
describe the equations which have become the standard
model of gyrotactic motility and their modification when
fluid acceleration is important. Moreover, we briefly dis-
cuss the experimental validation of that modification and
the generic phenomenology one can derive from these
models. Section 3 is devoted to the phenomenon of gy-
rotactic trapping in inhomogeneous shear flows. In partic-
ular, we will consider the case of the Kolmogorov flow and
show how, borrowing ideas from conservative dynamical
systems, gyrotactic trapping can be ascribed to the pres-
ence of effective barriers to transport. We will also briefly
discuss how the presence of small-scale turbulence desta-
bilizes the trapping. In sect. 4, we shall focus on the effects
of turbulence on gyrotactic motility, showing how fractal
clustering emerges due to the chaotic dissipative character
of the dynamics. Moreover, we will link this phenomenon
to the well-known clustering of inertial particles in turbu-
lence, showing that there are many conceptual analogies.
We will also briefly consider the case of a population in
which cells have different characteristics, closer to what
one may observe in the ocean, to discuss how clustering
can be revealed in these cases. Finally, sect. 5 is devoted
to conclusions.

2 Mathematical models

Gyrotaxis is observed in several species of unicellular al-
gae such as, e.g., biflagellate spheroidal algae belonging
to the genus Chlamydomonas and Dunaliella, and also
in some monoflagellate species such as, e.g., Heterosigma
akashiwo [18,52,28,32]. Having as a reference Chlamy-
domonas, we can consider the cell close to spherical with
a diameter of about 10μm and swimming speeds around
100μms−1 [52]. Most phytoplankton cells have density
very close to that of water and thus can be considered as
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neutrally buoyant. A characteristic of most cells display-
ing gyrotaxis is to have an inhomogeneous distribution of
mass leading to a displacement of the cell center of grav-
ity with respect to its center of symmetry. In particular,
their center of mass is displaced opposite to their direc-
tion of swimming, so they are generally defined as bottom
heavy [18].

The mathematical model for gyrotactic algae was in-
troduced by Kessler [18] (see also [53,20]) on the basis
of the observation that bottom heavy swimming microor-
ganisms focus in the center of a pipe when the fluid flows
downwards. The swimming direction p results from the
competition between gravity-buoyant torque, due to bot-
tom heaviness, and the shear-induced viscous torque and
evolves according to

ṗ=
1

2B
[ẑ − (ẑ · p)p]+

1
2
ω×p+α[Ŝp−(p · Ŝp)p]+Γr, (1)

where ω = ∇ × u is the vorticity at the position of the
cell, B = να⊥/(2hg) is a characteristic orientation time
which depends on viscosity ν, gravity g = −gẑ, on the
displacement h of the cell center of mass relative to the
geometrical center and on α⊥ the dimensionless resistance
coefficient for rotation about an axis perpendicular to p.
For a sphere α⊥ = 6 and thus B = 3ν/(hg). The third
term on the rhs is the rotation due to local rate of strain
Ŝij = 1

2 (∂jui +∂iuj) and it is controlled by the shape fac-
tor α = (l2−d2)/(l2 +d2) measuring the elongation l with
respect to the width d of the cell [40]. Prolate (respectively
oblate) particles have α > 0 (respectively α < 0) and the
particular cases of rods, disks and spheres are described
by α = 1,−1, 0. As a consequence, this term vanishes for
spheres. The stochastic term Γr represents rotational dif-
fusion of the swimming direction as a results of irregular-
ities in the cell propulsion [54], indeed cells are too large
to be subjected to Brownian rotation. Equation (1) has
been written assuming the general case of ellipsoidal cells,
although in this review we will mainly consider spheri-
cal cells, and we will thus assume α = 0 unless otherwise
specified.

Owing to their small size and small density mismatch
with the fluid, gyrotactic cells can be represented as point-
like and neutrally buoyant particles transported by the
fluid velocity u(x, t) with a superimposed swimming ve-
locity of intensity vs along the direction p

ẋ = u + vsp. (2)

We remark that in writing the model defined by
eqs. (1), (2) many details have been neglected including
the unsteadiness of swimming due to flagella beating, cell-
cell interactions, the feedback of cell motion on the sur-
rounding fluid, and (see below) effects due to fluid accel-
eration. The model can thus be appropriate only for di-
lute suspensions where interactions between cells and flow
modifications are expected to be negligible. In spite of its
simplicity, however, the gyrotactic model (1), (2) is able
to predict remarkable features observed in experiments,
such as the focusing observed in pipe flows [18].

To illustrate the phenomenon of focusing, we consider
a two-dimensional laminar flow in a vertical pipe, in which
the velocity field has only the vertical component w(x) =
U(1 − (x/L)2) and the coordinate x ∈ [−L : L] varies in
the wall-normal direction. Neglecting the stochastic term,
with this choice it is easy to find the equilibrium, quasi-
stationary solution of eq. (1):

peq
x = 4UBx/L2,

peq
z =

(
1 − 16B2U2x2/L4

)1/2
. (3)

The equilibrium solution exists for BU/L ≤ 1/4, i.e. for
small stability number Ψ ≡ BU/L, which is the ratio of
the second to the first term in the RHS of (1). When used
in (2), the stationary solution (3) shows that for down-
welling flow (U < 0) the horizontal swimming direction is
toward the symmetry axis (since px ∝ −x). This leads to
the gyrotactic focusing, i.e. an accumulation of motile cells
at the center of the pipe [18]. For upwelling flows (U > 0)
the sign reverses and accumulation happens at the pipe’s
walls. When the stochastic term is included one realizes
that cells focus in a region with a finite width controlled
by the noise strength [53,20].

In analogy to the stability numbers, from (2) we also
introduce a swimming number defined as Φ = vs/U , mea-
suring the swimming speed with respect to the fluid ve-
locity. More complex dynamics of gyrotactic swimmers in
laminar flows, with or without stochastic behavior, have
been investigated [23].

2.1 Effects of fluid acceleration

Recently, the gyrotactic model has been generalized by
taking into account the effect of fluid acceleration in the
orientation of the cell [26]. By introducing the total accel-
eration on the cell A = g − a, where a = du/dt, eq. (1)
becomes

ṗ = − 1
v0

[A − (A · p)p] +
1
2
ω × p + Γr, (4)

where v0 = Bg is the reorientation speed.
The general model (4) has been validated by labora-

tory experiments of a suspension of gyrotactic cells in a
cylindrical vessel of radius R which rotates with constant
angular velocity Ω [27]. When rotation is sufficiently fast,
centripetal acceleration overcomes gravity and the cells
are expected to swim towards the axis of the cylinder.
Neglecting the stochastic term, the deterministic motion
given by (1), (2) in the velocity field produced by solid
body rotation u = (−Ωy,Ωx, 0) can be easily obtained
in cylindrical coordinates x = (r, z) under the hypothe-
sis of local equilibrium in the swimming direction, i.e. by
assuming ṗ = 0 locally. In this limit one obtains [27]

peq =

(
−γr

√
1 + (γr)2

,
1

√
1 + (γr)2

)

, (5)

where γ = Ω2/g. For γr � 1, from (2) and (5) we have
ṙ = −γvsr which implies that the cell position relaxes
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Fig. 1. Experimental setup for the validation of the model (4).
A cylindrical vessel is filled with a suspension of C. augustae
and placed over a table rotating with constant angular velocity
Ω = 2πf . A blue laser (wavelength 450 nm) is used to induce
fluorescence in the cells and their images are taken by a CCD
camera at resolution 3000 × 2000 pixels with a low-pass red
filter at 600 nm. The two pictures on the right are examples of
the images (central part) taken by the camera at the final time
t = 600 s for f = 5 Hz (top) and f = 8 Hz (bottom).

exponentially towards the rotation axis r = 0 as r(t) =
r(0)e−γvst.

Figure 1 shows a sketch of the experimental setup
together with two pictures of the asymptotic cell distri-
butions for different angular velocities. The experiments
show that, at late times, the asymptotic cell distribution
is over a finite radius around the axis, and this has been
interpreted as due to stochastic effects, modeled as ro-
tational diffusion, which deviate the swimming direction
with respect to the equilibrium one (5).

The stationary distribution in presence of rotational
diffusivity can be obtained within the so-called General-
ized Taylor Dispersion theory [55,56,25]. The basic idea
is to reduce the Fokker-Planck equation for the probabil-
ity P(x,p, t) to an advection-diffusion equation for the
population density n(x, t) =

∫
dpP which includes an ef-

fective drift and diffusivity tensor which can be analyti-
cally derived in the approximation of fast orientation of
the swimming direction [56,25]. The final result (see [27]
for details) is, for γr � 1, a Gaussian distribution of the
radial population density

ns(r) = N exp
(
− γr2

2vsBF 2
3 (λ)

)
, (6)

where F3(λ) a dimensionless function of the parameter
λ = 1/(2Bdr) (dr is the rotational diffusivity), which
can be analytically expressed as series, and the coefficient
N can be written in terms of the total number of cells
Ns =

∫
drns(r) as N = Nsγ/(2πHvsBF 2

3 (λ)) (H is the
vertical size of the vessel). Figure 2 shows the evolution
of the experimental radial population density measured at
different times, together with the asymptotic theoretical
density eq. (6) for the case γ = 0.20mm−1 with param-
eters vs = 0.1mm, dr = 0.067 rad s−1 taken from the lit-
erature and B = 7.5 s as fitting parameter. The inset of
the figure shows the average radius at stationarity as a
function of the rotation angular velocity. As one can see
the full line, obtained on the basis of eq. (6) (once the
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Fig. 2. Evolution of the experimental radial population den-
sity nexp(r, t) (in arbitrary units) for the experiment at fre-
quency f = 7 Hz a time t = 150 s (purple squares), t = 300 s
(green circles) and at time t = 600 s (blue triangles) as a func-
tion of the distance from the cylinder axis r. The continuous
line is the theoretical prediction (6). Inset: average radius of
the cell population, 〈r〉 in asymptotic stationary conditions as
a function of rotation frequency. The line represents the theo-
retical prediction obtained from (6).

effect of background non-motile impurities is taken into
account, see [27] for details), is in very good agreement
with the experimental data demonstrating the validity of
the model (4).

3 Gyrotactic trapping in laminar and
turbulent Kolmogorov flow

The mechanisms of cell accumulation described above rely
on the assumption that Ψ < 1, since they are based on
the existence of a quasi-static solution of eq. (1). How-
ever, when Ψ > 1, the second term dominates and the cell
tumbles with no persistent direction.

Laboratory experiments [28] demonstrated that in an
inhomogeneous shear flow with vorticity varying along the
gravity direction, gyrotactic cells can get trapped where
Ψ > 1 locally. Such gyrotactic trapping has been proposed
as a possible mechanism for the formation of thin phy-
toplankton layers (TPLs) often observed in ocean coastal
areas [57–60]. TPLs are regions of high vertical concen-
tration of phytoplankton, centimeters to one meter thick,
which extend horizontally up to kilometers and last from
hours to a few days (see [29] for a review). Though TPLs
can be formed by non-motile or motile species character-
ized by different swimming styles, Heterosigma Akashiwo
—a toxic, gyrotactic algae— is known to form harmful
thin layers [61] and gyrotactic trapping could be an effec-
tive explanation. For the sake of completeness, we mention
that other mechanisms, not discussed here, of phytoplank-
ton cells accumulation in shear flows can emerge when the
cell shape is elongated, see e.g. [62].
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3.1 The Kolmogorov flow (KF)

We focus on the Kolmogorov flow (KF), a periodic shear
flow model, much studied for the transition to turbu-
lence [63–65], characterized by an inhomogeneous distri-
bution of vorticity, necessary for gyrotactic trapping. The
KF solves the incompressible Navier-Stokes equations sub-
jected to a monochromatic body force:

∂tu + u · ∇u = −∇p + νΔu + F cos(z/L)x̂, (7)

where p is the pressure, density is taken to unity ρ = 1, and
x̂ denotes the unit vector in the horizontal direction. The
physical domain is a cube of side LB = 2πL with periodic
boundary conditions in all directions. Equation (7) admits
a stationary solution, the laminar KF u = U cos(z/L)x̂
with U = L2F/ν, which becomes unstable to large-scale
perturbations when the Reynolds number, Re = UL/ν,
exceeds the critical value Rec =

√
2. The first instabil-

ity is two dimensional, at increasing Re three-dimensional
motion develops and the flow eventually becomes turbu-
lent [65,66]. Also in the turbulent KF the time averaged
velocity ū remains monochromatic, u = U cos(z/L)x̂, but
with a different amplitude U < L2F/ν [66]. This latter
property is useful to study the effect of turbulent fluctu-
ations, which will be briefly discussed at the end of the
section.

3.2 Gyrotactic cells in laminar Kolmogorov flow

After non-dimensionalization by measuring lengths, veloc-
ities and times in terms of L, U and L/U , for the KF
eq. (2) reads

Ẋ = cos Z + Φpx, (8)

Ẏ = Φpy, (9)

Ż = Φpz, (10)

where Φ = vs/U is the ratio of the swimming speed over
the flow velocity. While, eq. (1) becomes

ṗx = − 1
2Ψ

pxpz −
1
2

sinZ pz, (11)

ṗy = − 1
2Ψ

pypz, (12)

ṗz =
1

2Ψ
(1 − p2

z) +
1
2

sin Z px, (13)

where Ψ = BU/L measures the cells’ stability. The box
size in dimensionless units is LB/L = 2π. Capital letters
denote the coordinates in non-dimensional units.

Considering that |p| = 1, and noticing that X and
Y do not enter the dynamics of the other variables, the
dynamics is effectively three dimensional. Moreover, using
eqs. (10)–(12) and eqs. (10), (11) one can easily check that
the system admits the two following conserved quantities,
respectively:

C(p, Z) = pyeZ/(2ΦΨ), (14)

H(p, Z) = Φe
Z

2ΦΨ

[
px − Ψ(2ΦΨ cos Z − sin Z)

1 + 4Φ2Ψ2

]
. (15)

Thus the dynamics has only one degree of freedom and it
is integrable (see [41,42] for a similar approach for bacteria
swimming in a shear flow).

For vertically migrating cells, the conservation of C in
eq. (14) implies that py should vanish exponentially as
Z increases. This observation tells us that asymptotically
the motion is described by the two-dimensional dynamics

θ̇ =
1

2Ψ
cos θ +

1
2

sin Z, (16)

Ż = Φ sin θ, (17)

where (px,pz) = (cos θ, sin θ). Strictly speaking the re-
duction to the above two-dimensional system applies only
for vertically migrating cells, however the following deriva-
tions extend also to the general three-dimensional dynam-
ics also for non-vertically migrating cells, see [30] for de-
tails. Here below we will denote with Z the unrestricted
vertical coordinate and with z = Z mod 2π its restriction
to the periodic cell, while θ ∈ [−π, π]1.

For Ψ < 1, eqs. (16), (17) do not admit fixed points
and Z grows in time. The exponential dependence on Z
in (15) and the conservation of H implies that the term in
square brackets in (15) must decrease exponentially with
Z. Therefore, for large Z, the swimming angle depends on
z (i.e., restricted on the torus) as given by

cos θ = px =
Ψ(2ΦΨ cos z − sin z)

1 + 4Φ2Ψ2
. (18)

Thus the vertical velocity will change with height and
cells will accumulate where it is minimal, i.e. for Z =
nπ − arctan[1/(2ΦΨ)], for any integer n. Around these
positions one observes ephemeral layers of high density
of cells, even though cells are trapped asymptotically.
This is confirmed in fig. 3(a) showing the time evolu-
tion of the vertical probability density distribution (PDF),
ρ(Z, t), resulting from an initially uniform distribution in
Z ∈ [0 : 2π] for Ψ < 1. The transient accumulations last
longer for smaller values of Φ.

Since | cos θ| ≤ 1, after some algebra, one can realize
that eq. (18) corresponds to a well-defined relation be-
tween θ and z on the torus [−π : π] × [0 : 2π] either
for fast swimmers Φ ≥ Φc = 1/2 or if Φ < Φc when-
ever Ψ < Ψc = (1 − 4Φ2)−1/2. Considering first the case
Φ < Φc, since Ψc > 1 we have two possible instances.
For 1 < Ψ < Ψc (fig. 3(b)), we observe the coexistence of
upward migrating cells that, as for the Ψ < 1 case, asymp-
totically satisfy eq. (18), and of cells remaining vertically
confined with high concentration in thin regions unrelated
to the minima of pz. Conversely, for Ψ > Ψc (fig. 3(c)), we
observe that all cells are asymptotically vertically trapped
and organized in thin layers.

The origin of these two behaviors can be traced back to
the properties of the phase-space dynamics on the (θ, z)

1 We remark that H (15) is not periodic in Z: when Z →
Z ± 2π n, we have H(θ, z) → H(θ, z)e±πn/(ΦΨ). We also notice
that H(θ, z) plays a similar role to the Hamiltonian and though
the system is not Hamiltonian it can be made so by a non-
canonical change of variables [30].
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Fig. 3. Phenomenology of the gyrotactic swimming in the Kolmogorov flow. (a)–(c) Evolution of the vertical density of cells,
ρ(Z, t), in the 2d laminar Kolmogorov flow for Φ = 0.2 with (a) Ψ = 0.9 < Ψc, (b) 1 < Ψ = 1.06 < Ψc and Ψ = 1.12 > Ψc, with
Ψc = (1 − 4Φ2)−1/2. The density has been obtained coarse-graining the vertical position of N = 104 cells initialized uniformly
in (θ, Z) ∈ [−π, π]× [0 : 2π] and evolved by integrating eqs. (16) and (17) with a 4th-order Runge-Kutta scheme. (d) Swimming
behavior in parameter space (Φ, Ψ) for the laminar Kolmogorov flow. The white region corresponds to vertically trapped orbits
(Ψ > Ψc), the grey one to partially trapped trajectories (1 < Ψ < Ψc, with coexistence of trapped and vertically migrating cells)
and, finally, the black to vertically migrating cells (Ψ < 1). The colored circles denote the parameters used in panels (a)–(c),
whose border has the same color. The black dot corresponds to the (Φ, Ψ) values used in panels (e)–(g), which are the same as
(a)–(c) but for the 3d turbulent Kolmogorov flow for Φ = 0.05, in the trapping regime, Ψ = 1.1 > Ψc, at varying the intensity
of turbulent fluctuations γ = 0.01 (a), 0.05 (b), 0.2 (c). Time and scale have been made non-dimensional as for the laminar
case. The thin layers are now transient and their duration decreases at increasing the intensity of the turbulent fluctuations (see
sect. 3.3 for a discussion).

torus. We start noticing that for Ψ > 1, eqs. (16), (17)
possess two hyperbolic (at (θ∗, z∗) = (0, 2π − arcsin Ψ−1)
and (π, π − arcsin Ψ−1)) and two elliptic fixed points (at
(θ∗, z∗) = (0, π + arcsinΨ−1) and (π, arcsin Ψ−1)). How-
ever, depending on Ψ being smaller or larger than Ψc

the separatrices, corresponding to the orbits emerging
from the hyperbolic fixed points, qualitatively change (see
fig. 4). 1 < Ψ < Ψc (fig. 4(a)), the hyperbolic point is the
vertex of a slip-knot containing the elliptic fixed point.
Orbits whose initial condition falls into this loop can-
not escape it, those starting outside it migrate vertically
asymptotically following (18). We thus have only partial
trapping. Conversely, for Ψ > Ψc (fig. 4(b)), the separatri-
ces roll up around the torus in the θ direction becoming
impenetrable barriers to vertical transport and thus trap-
ping the cells. As clear from fig. 4, the compression be-
tween the elliptic and hyperbolic points is responsible for
the higher concentration layers observed in fig. 3(b), (c).
When Φ > Φc only purely vertically migrating cells (for
Ψ < 1) or partial trapping (for Ψ > 1) is possible. Fig-
ure 3(d) summarizes the various regime in the parameter
space (Φ, Ψ).

3.3 Gyrotactic cells in turbulent Kolmogorov flow

Fluctuations of velocity and/or vorticity, due to turbu-
lence, allow a swimmer to escape from the homoclinic

0

π

2π

-π 0 π

(a)

z

θ

0

π

2π

-π 0 π

(b)

z

θ

Fig. 4. Cells positions in the laminar 2D Kolmogorov flow at
a long time on the (θ, z) torus for (a) Ψ = 1.06 < Ψc and (b)
Ψ = 1.12 > Ψc with Φ = 0.2, corresponding to fig. 3(b) and (c),
respectively. Red circles (purple diamonds) mark the hyper-
bolic (elliptic) fixed points. Red curves denote the separatrices
emerging from the hyperbolic fixed points. At Ψ < Ψc (a) small
black dots corresponds to trapped orbits and empty blue cir-
cles to the orbit (18) which asymptotically characterized the
vertically migrating cells and is very close to the separatrix.
For Ψ > Ψc (b) all orbits are trapped, being confined between
the separatrices.

loops in the partial trapping regime or from the separa-
trices in the trapping one (fig. 4). As a result, layers are
less intense and, more importantly, they become transient.
Below, we briefly discuss the transient dynamics of such
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layers, for further details see [30]. Such a phenomenology
is indeed observed in field experiments with simultaneous
measurement of biological and physical properties, which
have shown that while thin layers are weakly affected by
turbulence of moderate intensity, stronger turbulence dis-
solves them [67,68]. As discussed in [30] a similar effect
can be induced, in the laminar KF, by the presence of ro-
tational diffusion, but this effect is typically much smaller
than that due to turbulence.

Increasing the Reynolds number the Kolmogorov flow
becomes unstable and eventually turbulence for large
values of Re. Nonetheless, since the (time-averaged)
mean flow remain monochromatic, velocity and vortic-
ity fields can be still decomposed in the time-averaged
fields with superimposed fluctuations, i.e. u′ and ω′ as
u = U cos(z/L)x̂ + u′(x, t) and ω = −(U/L) sin(z/L)ŷ +
ω′(x, t). However, even at relatively low Re, fluctuations
are non-negligible with respect to the mean flow, indeed
it has been found that u′

rms/U 	 0.5 [66]. Conversely, in
real oceans fluctuations are typically much smaller than
the mean flow being depleted by, e.g., stratification [69].
For this reason, here, while solving eq. (7) by means of di-
rect numerical simulations (see [30] for details), gyrotactic
swimmers are evolved by modulating the fluctuations u′

and ω′ with a multiplicative factor γ < 1, so to control
their intensity. Besides the possibility to control fluctua-
tion intensity, another advantage of such an approach is
that the statistical properties of the turbulent fluctuations
do not change with γ as they would by introducing strat-
ification.

Numerical simulations show that as soon as turbu-
lent fluctuations are considered (i.e., γ > 0), even if Φ
and Ψ are chosen in the trapping region (black circle in
fig. 3(d)), vertical migration becomes possible as clear
by comparing figs. 3(e)–(g) with fig. 3(c). At moderate
values of the turbulent intensity (fig. 3(e)), velocity and
vorticity fluctuations allow cells to escape from the trap-
ping regions by moving them to regions of lower shear,
where upward directed swimming is possible. Then cells
get trapped around another high shear region. We recall
that the periodic layer structure is inherited from the flow
periodicity. As a result, the average vertical cell velocity,
〈vz〉, which was zero in the absence of turbulent fluctua-
tions, becomes positive (fig. 5(a)). However, very intense
turbulence rotates the cell swimming direction randomly
and, moreover, fluctuations of the vertical velocity also
mix cells. As a consequence, the average vertical motion
〈vz〉 decreases for large values of γ. An intermediate turbu-
lence intensity maximizes the vertical migration velocity.

From the point of view of the single cell dynamics,
the above phenomenology means that, for low intensity
fluctuations, a cell is trapped for a finite time until fluc-
tuations of the vertical velocity or of the vorticity makes
the cell able to escape its trapped trajectory and to swim
upwards until it gets trapped again. At high turbulent in-
tensity trapping is less and less effective, even transiently,
and the motion becomes basically diffusive in the vertical
direction due to turbulent diffusion.

The above observation suggests to model the vertical
dynamics of gyrotactic swimmers in terms of a diffusive
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Fig. 5. Quantitative characterization of single cell and layer
properties as a function of turbulent intensity γ, for Φ = 0.05
and Ψ = 1.1. (a) Average vertical velocity 〈vz〉 normalized to
the swimming speed vs. (b) Exit time PDF for Ψ = 1.1, and
Φ = 0.05 at three turbulent intensities γ as labeled, compared
with the prediction (19) with Vd obtained from (a) and Dz

obtained as explained in the text.

process with drift Vd (due to the average vertical migra-
tion speed, i.e. Vd = 〈vz〉) and diffusion constant Dz, both
depending on turbulent fluctuations. With this modeliza-
tion in mind one can study the exit times statistics —a
standard problem in stochastic processes [70]— from a
layer, i.e. of the times T needed for a swimmer to travel a
vertical distance LB/2, separating two consecutive layers.
For diffusion with drift, the probability density function of
the exit time T is given by the inverse Gaussian function,
which reads

P(T ) =
LB

(4πDzT 3)1/2
e−

(VdT−LB/2)2

4DzT . (19)

The above expression provides a prediction for the exit
time PDF that can be directly tested against the mea-
sured one. For the drift velocity we have Vd = 〈vz〉, which
is measured in DNS. The diffusion constant Dz can be es-
timated by measuring 〈T 2〉 in the DNS and noticing that
in eq. (19) 〈T 2〉 = LB(Dz + LVd/2)/V 3

d .
Figure 5(b) shows the comparison between measured

exit-time PDF p(T ) and the inverse Gaussian predic-
tion (19), with Dz and Vd obtained as discussed above.
The prediction results rather accurate for the right tail
(long exit times) for all turbulent intensities γ, while the
left tail is fairly well captured only for large values of γ.
The latter deviations can be interpreted as the result of
the suppression of fast escapes due to gyrotactic trapping,
which is more effective in the limit γ → 0. Conversely, long
escape times allow trajectories to sum-up many uncorre-
lated contributions, thus recovering a diffusive behavior,
which explains the good agreement on the right tail. The
average exit time of single trajectories, Te, is given by
Te = LB/(2〈vz〉) (as implied by the argument of the ex-
ponential in (19)). While for Dz the estimation is more
difficult because the turbulent diffusivity is influenced by
swimming, especially for low γ values (see [30] for a dis-
cussion).

The persistence time of the layer Tp, can be heuris-
tically estimated as the time needed for 90% of the cells
to escape the layer,

∫ Tp

0
p(T )dT ≈ 0.9. Using (19) one
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finds that Tp is in the order of a few (typically ∼ 2–3)
Te depending on the value of the vertical diffusivity Dz.
Ignoring some difficulties in estimating Dz for realistic
oceanic flows, if we consider average swimming speed 〈vz〉
in the range 0.2–0.6 vs, as suggested by fig. 5(a) (with
vs ≈ 100–200μm/s) and typical lengths LB of the order
of a few centimeters, we obtain an estimation of Tp from
a few hours to a few days, which is akin to values found
in TPLs observed on the field [68].

4 Gyrotactic clustering in homogeneous
turbulence

As discussed in previous sections, inhomogeneous distri-
butions can arise in dilute suspensions of gyrotactic phyto-
plankton in laminar flow, either due to directed motility
for stable cells (Ψ < 1) [18] or due to trapping of un-
stable cells (Ψ > 1) in high shear regions [28], phenom-
ena well reproduced by the mechanistic model defined by
eqs. (1), (2). Clustering of cells has been numerically pre-
dicted also in a Taylor-Green vortical flow both for gy-
rotactic swimmers [31] and for elongated, non-gyrotactic
motile cells [50]. It is rather difficult to infer, from these
results, the effects of unsteadiness of the flow or of the
presence, typical of turbulence, of many active scales and
intense fluctuations.

While data on large-scale phytoplankton patchiness
abound [71,72], small-scale inhomogeneities have not been
widely studied until recently, when in-situ observations by
high resolution submarine cameras became feasible [73,
74]. Although data are still scarce, they provide evidence
of clustered distribution (patchiness) of phytoplankton
cells on scales comparable to the dissipative scales of tur-
bulence [73]. In particular, motile cells exhibit a more in-
tense patchiness on these scales. One possible interpre-
tation is that swimming can interact with turbulence to
produce inhomogeneous distributions at small scales.

The above hypothesis seems, apparently, at odds with
the mixing properties of turbulent flow, which typically
smooth out inhomogeneities, e.g., of tracer particles. How-
ever, it is a now common observation in fluid dynamic
research that inertial particles, i.e. finite-size impurities
with a density different from that of the advecting fluid,
distribute inhomogeneously in an incompressible flow, typ-
ically in the form of small-scale fractal aggregates. It
can be shown, for example by making use of a standard
description of the force acting on small spherical parti-
cles [75], that particles heavier than the fluid are ejected
from vortices, while lighter particles (such as bubbles) are
attracted to the center of vortices thus forming quasi–one-
dimensional clusters in the core of vortex filaments [76–
78], a phenomenon dubbed preferential concentration. It
is based on those observations that one can understand
how gyrotaxis can indeed give rise to nontrivial cell distri-
butions in generic turbulent flows, even without a definite
large-scale mean flow.

As we will see in the following, in order for small-scale
clustering to occur, the swimming speed, vs, and the gy-
rotactic orientation time, B, of a cell must be of the order

of the typical, small-scale speeds and turn-over times of
turbulence, i.e. of the Kolmogorov velocity uη ≈ (νε)1/4

and time τη ≈ (ν/ε)1/2 (ν being the fluid viscosity) [79].
In the ocean, typical turbulence intensities, measured in
terms of the energy dissipation rate ε, fall in the range
ε ≈ 10−8–10−4 m2/s3 [69]. These values correspond to
uη ∼ 3×10−4–3×10−3 m/s and τη ∼ 10–10−1 s. Given the
typical values of B ∼ 1–10 s and vs ∼ 100–300μm/s [80,
52], one can see that both Φ = vs/uη and Ψ = B/τη can
be of order 1.

4.1 Fractal clustering of gyrotactic phytoplankton in
turbulence

Oceanic turbulence in the bulk of the mixed layer can be
considered as homogeneous and isotropic [69]. Direct nu-
merical simulations of homogeneous and isotropic turbu-
lent flows seeded with cells following the dynamics (1), (2),
relevant for most oceanic applications where fluid acceler-
ations are much smaller than gravity, showed indeed that
intense clustering (as clear from fig. 6(a)) can occur even
in the absence of coherent large-scale structures or of a
mean flow [32,35]. In analogy to the case of inertial par-
ticles [81], this effect can be explained in the framework
of dynamical systems theory. Equations (1), (2) describe
a dissipative, potentially chaotic (depending on the ad-
vecting flow) system. It has five, in general non-null, Lya-
punov exponents2 λi whose sum gives the rate of change
Γ̇ of an infinitesimal phase-space volume [36]. The latter
is in turn given by the average divergence in phase space
of eqs. (1), (2), namely

Γ̇ =
3∑

i=1

〈
∂ẋi

∂xi
+

∂ṗi

∂pi

〉
= − 2

Ψ
〈pz〉, (20)

where B has been made non-dimensional in terms of the
stability parameter Ψ = B/τη. Though the above aver-
age cannot be done analytically in general, it should be
noticed that, in the limit of small Ψ (and therefore fast
orientation), pz → 1 and the sign of (20) is negative. This
is the signature of the dissipative nature of the system
and it has the consequence that an initially uniform dis-
tribution of cells will converge onto a fractal set of dimen-
sion D < 5 in phase space and, consequently, produce a
distribution of particles in physical space with dimension
D = min{D, 3} [82]. If D < 3 the dimension in real space
will be D = D < 3 signalling the presence of observable
clustering, indeed a homogeneous distribution would give
D = 3.

Figure 6(b) shows the fractal dimension D as a func-
tion of Ψ for different values of the swimming parameter
Φ. The particular definition of D used here is the correla-
tion dimension D2, which represents the scaling exponent
of the r-dependence of the probability p2(r) ∼ rD2 to
find a pair of particles with separation less than r [83].
This is, of course, only one possible definition of D as

2 Five and not six dimensions because p is a unit vector.
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Fig. 6. Clustering and preferential sampling of fluid velocity for gyrotactic swimmers in turbulence. (a) Instantaneous configu-
ration of 3×105 particles, at Φ = 3, Ψ = 0.7. Each particle is colored according to the ratio of the local number density around it
to the average density. (b) Correlation dimension D2 of cell clusters as a function of the stability parameter for non-dimensional
swimming speeds Φ = 1/3 (orange diamonds), Φ = 2/3 (red circles), Φ = 1 (green triangles) and Φ = 3 (blue squares). In the
inset, D2 vs. ΦΨ (left branch of the curves shown) with the fitting curve D2 = 3–1.73Φ2Ψ2, compatible with the theoretical
prediction of a quadratic dependence. (c) The average vertical component of the fluid velocity, sampled on particle positions
(same symbols as panel (b)). Gyrotactic swimmers clearly reside preferentially in downwelling regions.

cell distributions will in general be multifractal [84]. The
qualitative behavior of D2 as a function of the stability
parameter Ψ can be understood considering the limits of
fast and slow orientation. In the limit Ψ → 0, cells rapidly
orient upwards, so that one can write ẋ = u(x, t) + Φẑ,
in non-dimensional units. The latter expression has zero
divergence and leads to no accumulation, the dynamics
collapses onto the real space, where it preserves the vol-
ume [36]. In the opposite limit Ψ → ∞ cells are unsta-
ble and randomly tumble due to the local vorticity fluc-
tuations. Moreover, in this limit, as clear from eq. (20)
Γ̇ → 0, meaning that the dynamics preserve phase-space
volumes so that one expects D → 5 and thus D → 3.
Again this means no clustering. Any clustering must there-
fore happen for intermediate values of Ψ , as indeed shown
in fig. 6(b).

The above phenomenological argument suggests the
possibility to obtain a quantitative theory for clustering in
the limit of fast orientation (Ψ � 1). In order to make the
derivation clear it is useful to better define the parameter
range in which we are working: to this aim we refer to the
theory developed in ref. [33]. First of all we notice that the
orientation dynamics (1) is fully determined by the history
of the velocity gradients along the trajectory of the parti-
cle. In turbulence the typical correlation time of velocity
gradients along a tracer path is of the order of τη. However,
for swimming particles such correlation time depends on
the swimming speed. Indeed when Φ > 1, i.e. vs > uη, the
correlation time will be of the order of η/vs = τη/Φ, being
the Kolmogorov length η the typical scale of the gradients.

Hence the correlation time of the vorticity along the swim-
ming particle path will be tcor = min{τη, τη/Φ}. As de-
tailed in ref. [33], from eq. (1), the above observation and
the fact that the vorticity magnitude is order 1/τη one can
derive that p is weakly affected by turbulence under two
circumstances: either when Ψ � tcor/τη = min{1, 1/Φ},
or when Ψ � tcor/τη and Ψ/Φ � 1. The latter regime
corresponds to the case in which the gradients seen by the
particle are almost uncorrelated and the vertical polariza-
tion results from the central limit theorem. In this case
precise predictions on the PDF of the orientation can be
obtained [33]. In the former regime, instead, the vorticity
changes slowly with respect to the orientation dynamics,
and local equilibrium is a good approximation. Therefore,
similarly to what was done in sect. 2 to explain cell focus-
ing, one can impose ṗ = 0 and expand (1) to first order in
Ψ obtaining the following expression for the instantaneous
equilibrium orientation,

peq ∼ (Ψωy,−Ψωx, 1) . (21)

In ref. [33] the reader can find a detailed discussion of the
limit of validity of the flow description (21) in terms of the
appearence of singularities in the gradients of the particle
orientation, which are analogous to caustics in inertial
particles [85]. We now discuss the consequence of eq. (21).

First, in this limit the equations of motion reduce to
ẋ = v = u(x, t) + Φpeq. Thus, the swimmers behave as
tracers transported by an effective velocity field v with
divergence

∇ · v = Φ∇ · peq = −ΨΦ∇2uz. (22)
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Thus the effective velocity field is the sum of an incom-
pressible part (the fluid velocity) and a compressible one
proportional to ΦΨ . This situation is in close analogy with
that found when considering the small-Stokes-number
limit for inertial particles [86–88]. Following closely those
derivations, one can show that 3 − D ∼ (ΦΨ)2 as indeed
observed in the inset of fig. 6(b), where the left branches of
the curves approximately rescale when plotted as a func-
tion of ΦΨ and are well approximated by a parabola. It is
worth observing that the (ΦΨ)2 dependence for the codi-
mension of the fractal clusters is based on (22) and is
valid when both Ψ � 1 and Φ � 1. However, it was then
shown [33] (see also [34]) that the same dependence should
be expected also when Φ � 1 provided Ψ � 1/Φ, though
with a different prefactor. These derivations are based on
an estimation of the Kaplan-Yorke dimension [33] and per-
turbative results based on a small Kubo expansion [34].
The analogy with weakly compressible flows allows one
to extend this argument to the generalized fractal co-
dimension of any order q, which is predicted to depend
linearly on q [88].

Secondly, trajectories will tend to concentrate in re-
gions where the divergence of the effective flow is negative.
Therefore, from the expression for Γ̇ we can predict that
cells will preferentially sample regions where ∇2uz > 0.
By considerations of isotropy of the velocity field and a
positive energy dissipation at small scales, one can con-
clude that such regions are also, on average, regions where
uz < 0 [32]. In other words, fast re-orienting gyrotac-
tic swimmers preferentially sample downwelling regions
of the flow, even when the background flow is turbulent
and statistically isotropic3. This conclusion is confirmed in
fig. 6(c), which shows that the average vertical fluid speeds
at cells’ positions are negative and, moreover, as shown in
the inset, rescale with the swimming parameter Φ.

The above argument to explain the prefential sam-
pling of downwelling flow is based on an Eulerian average
and not on the average on the particle position. In [33] a
different, more precise, derivation was obtained based on
the observation that denoting with n(x, t) the density of
swimming particles, the average flow vertical velocity at
the particle positions is 〈uzn〉. Then one observes that in
the limit in which they can be described as tracers in a
compressible flow, n evolves as ṅ = −∇ · v = ΨΦ∇2uz,
where (22) is used. By the formal solution of the above
equation one can write

〈uzn〉 = ΨΦ

∫ t

−∞
ds〈uz(x(t), t)∇2uz(x(s), s)〉. (23)

Again, to show that 〈uzn〉 < 0, the Authors of [33] as-
sume that, at equal time, 〈uz∇2uz〉 = −〈(∇uz)2〉 < 0.
Moreover, in the regime in which Φ � 1 and Ψ � 1/Φ the
negative sign can be proved computing explicitly the cor-
relation in (23) as an Eulerian correlation, because, thanks
to the fast swimming speed, the turbulent velocity field
can be assumed as frozen on the time scales involved. We

3 Clearly, the symmetry breaking happens at the level of the
dynamics (1).

also mention that the preferential sampling of downwelling
regions was also derived, following a completely different
approach, in ref. [34], where sharp analytical results were
obtained for random flows.

In ref. [35] the model (1) was studied, by means of
numerical simulations, for generic values of α thus tak-
ing into account the effect of the cell’s shape. Theoretical
predictions as a function of α were obtained in ref. [34],
some of which were recently numerically confirmed in tur-
bulent flows (ref. [89]). For elongated, ellipsoidal cells, be-
sides vorticity also the strain rate can indeed influence
the cell orientation. Remarkably, it was found, both by
theoretical considerations [34] and by numerical simula-
tions [34,89] that when the cells’ aspect ratio increases,
i.e. they become more rod-like, and for large swimming ve-
locities the preferential sampling reverses and cells spend
more time in upwelling regions. Here we will focus for
simplicity on the case of rods. The effect can be appreci-
ated in fig. 7(a), showing the average of uz computed on
the positions of rod-like swimmers in a DNS of homoge-
neous turbulence [89]. Clearly there is a critical swimming
speed Φc(Ψ) above which they experience positive, instead
of negative, average vertical fluid speeds. If this analysis
is repeated at varying Re, the observed value of ΦC in-
creases with Re (fig. 7(b), inset) and appears to scale with
urms (which is a large-scale quantity), as can be seen in
fig. 7(b) (main panel) where a large-scale swimming pa-
rameter ΦL = vs/urms has been introduced. The latter re-
sults lead one to conclude that the inversion in the prefer-
ential sampling is controlled by velocity correlations, while
the small-Φ dinamics is controlled by velocity-gradient
correlations. In developed turbulence, the two quantities
have different characteristic times, namely τη for the gra-
dients and the large-eddy turnover time τL for velocities,
with τL/τη ∼ Re1/2, so that the separation of the two
dynamics increases at increasing Re. Differences between
the elongated and the spherical case were found also for
fractal clustering, both in stochastic models [34] and in
DNS of homogeneous turbulence [35,89] It was found that
the intensity of clustering, i.e. the extent of the deviation
of D2 from the homogeneous value 3, decreases for such
more elongated cells. However, elongated cells display a
tendency to accumulate even in the absence of gyrotaxis
(Ψ → ∞). A theoretical framework for this phenomenon
was provided in the context of stochastic models [34].

4.2 Effects of turbulent accelerations on gyrotactic
clustering

In the case of intense turbulence, swimmers may ex-
perience extreme accelerations [90], which in principle
require the use of model (4) instead of (2). As seen
from the experimental results in fig. 1, when centrifu-
gal acceleration exceeds gravity swimmers are expected
to concentrate towards the center of a stationary vortex.
Again one can wonder what would happen when unsteady,
turbulent flows are considered. Direct numerical simula-
tions model (1)–(4) in homogeneous and isotropic turbu-
lence [26] show that indeed this dynamics is relevant also
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Fig. 7. Effects of shape on the preferential sampling of fluid
velocity. (a) Average of the vertical component of fluid velocity
conditioned on swimmer position, computed along the trajec-
tory of rod-like gyrotactic particles. For swimming parameters
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〈uz〉 depends on Re (inset), the same cuves collapse together
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in more general flows. Figure 8 shows the correlation di-
mension of cell clusters in the case where fluid acceler-
ation is explicitly considered. Comparing with fig. 6(b),
the main qualitative change due to fluid acceleration is
observed for fast orientations (Ψ � 1): at increasing tur-
bulence, and thus the weight of fluid acceleration, D2 de-
viates more and more from the uniform value 3 also when
Ψ → 0. In the limit of negligible gravity, D2 is monotonous
in Ψ and one has maximum clustering at Ψ → 0.

When fluid acceleration is very intense and gravity
negligible, the dynamics is better described in terms of
a stability number based on the typical acceleration en-
countered Ψa = ωrmsv0/arms. With the same ideas used
in the previous case, it is easy to realize that when Ψa is
small, cells will orient along the local acceleration so that
an effective velocity field can be written as v = u + Φâ
(with â = a/|a|). Again one has that swimmers behave as
tracers in a compressible velocity field as ∇ · â �= 0 and
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ity regions when fluid acceleration is considered. Main plot:
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circles), and including the effect of fluid acceleration (eq. (4),
filled symbols) at Reλ = 20 (squares), 36 (diamonds), 62 (cir-
cles).

they will concentrate in regions characterized by ∇·â < 0.
Numerical simulations lead to conclude that the signs of
∇ · â and ∇ · a are strongly correlated. The request that
the latter quantity be negative is tantamount to requiring
that the flow is locally dominated by vorticity, since

∇ · a =
∑

ij

(
Ŝ2

ij − Ω̂2
ij

)
, (24)

with Ŝij = 1
2 (σij + σji) and Ω̂ij = 1

2 (σij − σji) being the
symmetric (rate of strain) and antisymmetric (vorticity)
part of the velocity gradient σij = ∂jui, respectively. At
increasing Reλ, therefore, gyrotactic swimmers are more
and more attracted towards regions of high vorticity. This
is confirmed in the inset of fig. 8, showing the average
mean square vorticity measured at the position of cells
is plotted. As one can see, swimmers experience larger
vorticities than tracers (which would remain homogeneous
and therefore be subject to the Eulerian average 〈ω2〉E) or
purely gravitactic swimmers, which also show very small
deviations from the Eulerian value. Remarkably, the above
argument is essentially the same one can use to explain
the clustering of light inertial particles in turbulent vortex
filaments [87,77].

4.3 Clustering of polydisperse populations

In the above discussion, fractal clustering has been nu-
merically demonstrated for monodisperse suspensions, i.e.
when all cells have identical stability and swimming pa-
rameters. Natural colonies are of course characterized by
a distribution of Φ and Ψ , it is thus natural to wonder
whether fractal clustering can be observed in realistic con-
ditions. We discuss here the robustness of clustering in two
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Fig. 9. Probability P12(r) for different pairs of sub-populations
characterized by constant Ψ = 0.57 and by ΔΨ = 0.0042 (green
diamonds), ΔΨ = 0.021 (blue circles), ΔΨ = 0.042 (red trian-
gles) and ΔΨ = 0.125 (orange squares). Note that Φ = 3 for all
curves. Inset: crossover scale as a function of ΦΔΨ for two dif-
ferent sets of populations with Φ = 3 (red circles) and Φ = 1.5
(green triangles).

cases: when the swimming parameters are Gaussian dis-
tributed within the swimmers population and when two
sub-populations are present with different parameters, e.g.
representing two hypothetical strains. These two cases will
be referred as Gaussian and bimodal cases.

When considering two sub-population of swimmers,
we necessarily have to extend the previous definition of
D2 to quantify a cross correlation dimension [91,92];
the latter can be defined via the probability of finding
two swimmers, characterized by two values of parameters
(Φ1, Ψ1) and (Φ2, Ψ2), at a distance smaller than r, namely
P12(r) ∝ rD

(12)
2 . Clearly, for a monodisperse population

(i.e. Φ1 = Φ2 and Ψ1 = Ψ2), one recovers the correlation
dimension introduced in the previous section. In order to
understand what we should expect for such quantity, it
is useful, for simplicity, to consider the case in which the
two sub-populations are characterized by the same swim-
ming number Φ = Φ1 = Φ2 and a small mismatch in
the value of the stability parameter ΔΨ = Ψ1 − Ψ2. Using
non-dimensional units, from eq. (2) one can write that the
separation R between two swimmers evolves according to
Ṙ = Δu(R) + ΦΔp. At very small separation, i.e. below
the Kolmogorov length η, the velocity field is smooth and
we can write Δu(R) ∼ uη(R/η). Thus from the balance of
the two terms in the above equation a characteristic scale
emerges [92]:

R∗ 	 ηΦΔΨ. (25)

A similar argument can be done for swimmers with the
same stability parameter and different swimming veloci-
ties where one finds R∗ 	 ηΨΔΦ [92]. For R < R∗ the
separation dynamics is dominated by the parameter mis-
match and one expect poor correlation between the swim-
mers, i.e. homogeneous distribution.

For R > R∗, conversely, the dynamics is dominated by
the velocity field and it is almost indistinguishable from
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Fig. 10. Probability P (r) for a population of swimmers with
fixed Φ = 3 and Ψ Gaussian distributed with Ψ = 0.583 and
σΨ = 0.008 (green diamonds), σΨ = 0.042 (blue circles), σΨ =
0.083 (red triangles) and σΨ = 0.166 (orange squares).

that of two cells with the same stability parameter. In
this latter case, one expects to observe fractal clustering.
In practice, this means that the cross correlation dimen-
sion will depend on r and D

(12)
2 (r) ≈ 3 for r < R∗ and

D12(r) < 3, signaling fractal clustering, above R∗. This
is very similar to what happens to inertial particles with
slightly different Stokes times [91]. This scenario is con-
firmed in fig. 9, which shows the cross probability P12(r)
that quantifies the case of two sub-population with differ-
ent values of Ψ . Curves obtained with different ΔΨ but
the same Ψ = 1

2 (Ψ1 + Ψ2) display the same behavior at
very small scale, where the scaling exponent is close to
3, thus the sub-populations considered see each other as
uniformly distributed or, in other words, they have uncor-
related distributions. Conversely, at larger scales, a non-
trivial power-law behaviour is observed with a exponent
close to that one of a homogeneous population with sta-
bility number Ψ . Finally, the inset of fig. 9 confirms the
linear scaling of the characteristic scale R∗ discussed above
by showing a remarkable collapse of the different crossover
scales when plotted as a function of the combination ΦΔΨ .
Similar results, both concerning the cross probability and
the characteristic scale, can be obtained when a bimodal
distribution with two different swimming numbers Φ1 and
Φ2 = Φ1 − ΔΦ and same Ψ is considered.

We now consider a more realistic polydisperse suspen-
sion, whose stability number Ψ (or equivalently Φ) is Gaus-
sian distributed with mean value Ψ and standard deviation
σΨ . In particular, assuming a ∼ 30% of relative variation
in gyrotactic parameters, which is rather realistic [93,80],
is fractal clustering still observable? Here, it is useful to
consider the cumulative probability, P (r), of having two
cells separated by a distance less than r integrated on
all the possible pairs within the population. In the same
way of the bimodal distribution, as shown in fig. 10, P (r)
is characterized by two different scaling regions: at very
small scales all curves recover a uniform scaling r3, while
for r � η fractal clustering can be observed, as signaled
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by a power-law behavior of P (r) with a scaling exponent
very close to that expected for a monodisperse population
with D2 = D2(Ψ) 	 2, but for a weak dependence on σΨ .
The exponent for the smallest σΨ is 	 2 while it grows
to above 2.3 for the population with the largest value of
σΨ . Also, similarly with the bimodal case, the transition
between the two different scaling ranges shifts to larger
scales as σΨ is increased. Remarkably, also the case with
largest standard deviation (σΨ/Ψ 	 0.29) shows a strongly
inhomogeneous distribution at large scale indicating the
presence of fractal clustering even in a population with a
high variability in the gyrotactic parameters. This result
provides a strong indication that fractal clustering should
be detectable also in experimental suspensions.

5 Conclusions and perspectives

The range of flow effects on motile microorganisms here
reviewed is by no means exhaustive. We mostly focused on
those aspects which can be well characterized and under-
stood by using tools and ideas from dynamical systems.
To this aim we have specialized our discussion on gyrotac-
tic motility showing that ideas from integrable (conserva-
tive) dynamical systems can explain the phenomenon of
gyrotactic trapping in terms of barriers to transport in-
duced by the separatrices emerging from hyperbolic fixed
point of the dynamics. Similar ideas can, and have been
used, e.g., to explain the behavior of bacterial trajectories
in shear flows [41,42]. On the other hand the physics of
dissipative, chaotic dynamical systems has been used to
successfully explain micro-patchiness of gyrotactic phyto-
plankton in turbulent flows. Again similar ideas can be
extended to other kind of motile microorganisms [50] and
also to artificial micro-swimmers, such as phoretic col-
loids [94,95].

More in general we think that the kind of approach
here reviewed can be helpful, possibly by also accounting
for stochastic effects (which can also alter the swimming
direction via, e.g., rotational Brownian motion or intrin-
sic stochasticity of the propulsion mechanisms) for under-
standing most of the effects arising from the interplay be-
tween flow and motility in dilute suspensions of living or
artificial micro-swimmers. In particular, we believe there
are many directions that still need to be explored or fully
understood.

For instance, the dynamics of non-spherical gyrotactic
organisms [35,34,89] certainly deserves further study in
view of its richer phenomenology. Still in the context of
gyrotactic motility, some recent experiments have shown
that gyrotactic cells can, to some extent, display some
level of adaptation when exposed to frequent reorienta-
tion, such as those induced by turbulence, for a long
time [93]. It would thus be very interesting to model and
characterize such behaviors. Also the motility of other
kinds of phytoplankton cells have been shown to be in-
fluenced by shear flows, for instance, at high shear rate,
Dunaliella primolecta swims in the direction of local flow
vorticity [96]. Interestingly, this behavior seems to be the
result of active shear-induced response and this opens

several interesting questions both in the direction of un-
derstanding the origin of such adaptation and the conse-
quences for their spatial distribution.

Another direction of interest is to investigate the com-
bined effect of flow and directed motility as due to chemo-
taxis. As briefly discussed in the introduction, the presence
of shear can trap bacteria and deplete their chemotactic
efficiency [43]. This effect is mostly due to Jeffery orbits
which align elongated cells along the shear. How and to
what extent similar phenomena alter the motility in un-
steady, turbulent flows, such as those encountered in the
oceans, is largely unknown. In the presence of turbulence,
also the chemical field is advected and mixed by the flow.
What is the effect on chemotaxis? Some attempt in this
direction [46] has shown that the chemotactic response
can be altered by turbulence also without considering the
direct impact of the flow on motility. It would thus be
very interesting to include and quantify such effects. This
is particularly interesting in view of the fact that aquatic
bacteria often display different motility strategies with re-
spect to enteric ones [11], which may be an indication of
adaptation to the exposure to turbulent motion for such
microbes.
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54. N. Hill, D. Häder, J. Theor. Biol. 186, 503 (1997).
55. I. Frankel, H. Brenner, J. Fluid Mech. 204, 97 (1989).
56. R. Bearon, A. Hazel, G. Thorn, J. Fluid Mech. 680, 602

(2011).
57. M. Dekshenieks, P. Donaghay, J. Sullivan, J. Rines, T.

Osborn, M. Twardowski, Mar. Ecol. Prog. Ser. 223, 61
(2001).

58. O.M. Cheriton, M.A. McManus, D.V. Holliday, C.F.
Greenlaw, P.L. Donaghay, T.J. Cowles, Estuaries Coast
30, 575 (2007).

59. J.H. Churnside, P.L. Donaghay, ICES J. Mar. Sci. 66, 778
(2009).

60. J.V. Steinbuck, M.T. Stacey, M.A. McManus, O.M. Cheri-
ton, J.P. Ryan, Limnol. Oceanogr. 54, 1353 (2009).

61. J. Ryan, D. Greenfield, R. Marin III, C. Preston, B. Ro-
man, S. Jensen, D. Pargett, J. Birch, C. Mikulski, G.
Doucette et al., Limnol. Oceanogr. 56, 1255 (2011).

62. M.T. Barry, R. Rusconi, J.S. Guasto, R. Stocker, J. R. Soc.
Interface 12, 20150791 (2015).

63. G.I. Sivashinsky, Physica D 17, 243 (1985).
64. Z.S. She, Phys. Lett. A 124, 161 (1987).
65. V. Borue, S.A. Orszag, J. Fluid Mech. 306, 293 (1996).
66. S. Musacchio, G. Boffetta, Phys. Rev. E 89, 023004 (2014).
67. Z. Wang, L. Goodman, Cont. Shelf Res. 30, 104 (2010).
68. J.M. Sullivan, M.A. McManus, O.M. Cheriton, K.J.

Benoit-Bird, L. Goodman, Z. Wang, J.P. Ryan, M. Stacey,
D. Van Holliday, C. Greenlaw, M.A. Moline, M. McFar-
land, Cont. Shelf Res. 30, 1 (2010).

69. S.A. Thorpe, An Introduction to Ocean Turbulence (Cam-
bridge University Press, 2007).

70. S. Redner, A Guide to First Passage Processes (Cambridge
University Press, 2001).

71. A. Martin, Prog. Oceanogr. 57, 125 (2003).
72. D.L. Mackas, K.L. Denman, M.R. Abbott, Bull. Mar. Sci.

37, 652 (1985).
73. E. Malkiel, O. Alquaddoomi, J. Katz, Meas. Sci. Technol.

10, 1142 (1999).
74. S.M. Gallager, H. Yamazaki, C.S. Davis, Mar. Ecol. Prog.

Ser. 267, 27 (2004).
75. M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983).
76. K.D. Squires, J.K. Eaton, Phys. Fluids A 3, 1169 (1991).
77. E. Calzavarini, M. Kerscher, D. Lohse, F. Toschi, J. Fluid

Mech. 607, 13 (2008).
78. J. Bec et al., Phys. Rev. Lett. 98, 84502 (2007).
79. U. Frisch, Turbulence: The Legacy of AN Kolmogorov

(Cambridge University Press, 1995).
80. E.L. Harvey, S. Menden-Deuer, T.A. Rynearson, Front.

Microbiol. 6, 1277 (2015).
81. J. Bec, Phys. Fluids 15, L81 (2003).



Eur. Phys. J. E (2019) 42: 31 Page 15 of 15

82. K.J. Falconer, The Geometry of Fractal Sets, Vol. 85
(Cambridge University Press, 1986).

83. P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346
(1983).

84. G. Paladin, A. Vulpiani, Phys. Rep. 156, 147 (1987).
85. M. Wilkinson, B. Mehlig, Europhys. Lett. 71, 186 (2005).
86. G. Falkovich, A. Fouxon, M. Stepanov, Nature 419, 151

(2002).
87. E. Balkovsky, G. Falkovich, A. Fouxon, Phys. Rev. Lett.

86, 2790 (2001).
88. I. Fouxon, Phys. Rev. Lett. 108, 134502 (2012).
89. M. Borgnino, G. Boffetta, F. De Lillo, M. Cencini, J. Fluid

Mech. 856, R1 (2018).

90. A. La Porta et al., Nature 409, 1017 (2001).
91. J. Bec, A. Celani, M. Cencini, S. Musacchio, Phys. Fluids

17, 073301 (2005).
92. M. Borgnino, F. De Lillo, G. Boffetta, Phys. Rev. E 95,

023108 (2017).
93. A. Sengupta, F. Carrara, R. Stocker, Nature 543, 555

(2017).
94. L. Schmidt, I. Fouxon, D. Krug, M. van Reeuwijk, M.

Holzner, Phys. Rev. E 93, 063110 (2016).
95. V. Shukla, R. Volk, M. Bourgoin, A. Pumir, New J. Phys.

19, 123030 (2017).
96. A. Chengala, M. Hondzo, J. Sheng, Phys. Rev. E 87,

052704 (2013).


