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Abstract We consider the problem of two active particles in 2D complex flows with the multi-objective
goals of minimizing both the dispersion rate and the control activation cost of the pair. We approach the
problem by means of multi-objective reinforcement learning (MORL), combining scalarization techniques
together with a Q-learning algorithm, for Lagrangian drifters that have variable swimming velocity. We
show that MORL is able to find a set of trade-off solutions forming an optimal Pareto frontier. As a
benchmark, we show that a set of heuristic strategies are dominated by the MORL solutions. We consider
the situation in which the agents cannot update their control variables continuously, but only after a
discrete (decision) time, τ . We show that there is a range of decision times, in between the Lyapunov time
and the continuous updating limit, where reinforcement learning finds strategies that significantly improve
over heuristics. In particular, we discuss how large decision times require enhanced knowledge of the flow,
whereas for smaller τ all a priori heuristic strategies become Pareto optimal.

1 Introduction

In many engineering and geophysical applications,
robotic instruments are often used for multi-agent sens-
ing, e.g., where a fleet of instrumented drifters is used to
collect information in the ocean, multi-robots are used
for searching sources leaking hazardous substances, or
to probe complex environments [1–5]. A typical appli-
cation is how to keep the fleet under control, e.g., for
patrolling the same region, keeping a given geomet-
ric formation and/or following a predetermined point-
to-point path. In typical flows, the relative distance
between two passive drifters would always grow, either
exponentially, due to Lagrangian chaos when they are
close, or in a diffusive way at large scales, when nonlin-
ear effects become dominant [6,7]. Animal behavior is
often an inspiration and a leading direction of research
trying to develop bio-mimetic strategies [8–10]. How-
ever, it is unclear whether using heuristic hard-wired
rules would be enough to control the swarm in the
presence of a strongly mixing flow [11]. Moreover, in
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many realistic applications, agents need to take into
account of strong engineering or biological limitations,
needing to actively learn how to take advantage of the
flow to accomplish the goal. As a result, we search to
develop active complex policies to control complex envi-
ronments. In chaotic or turbulent flows, the problem is
given by the strong sensitivity of the system to any
perturbation, making the very meaning of optimal con-
trol a fragile notion. In this direction, a few attempts
to control single Lagrangian instrumented particles via
reinforcement learning (RL) algorithms have been pro-
posed to solve the Zermelo’s optimal navigation prob-
lem of reaching a fixed target [12–14]. Moreover, RL
has been successfully employed to optimize the soar-
ing of a glider in thermal currents [15,16], to harness
wind for airborne energy [17] and to optimize collective
swimming by harnessing vortices [18]. Optimal naviga-
tion is also important in biological systems, e.g., for
developing microswimmers with adaptive locomotory
gaits [19] and learning how to actively steer in response
to hydrodynamic signals [20,21]. Recently, adversarial
games between two competing agents have also been
proposed to study chase-and-escape strategies at low
Reynolds number [22], while strategies from both Opti-
mal Control and RL point of view have been explored
for a finite-size swimming predator chasing a nonmotile
prey [23]. Instead, with an analytical analysis, the role
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of noise for an active Brownian particle approaching a
moving target has been explored in [24].

In this paper, we consider two agents (a particle pair)
transported by a flow and having some limited knowl-
edge on the underlying flow, which should act collec-
tively so as to contrast the growth of their separation
and, at the same time, to minimize as much as possible
the cost for control. We assumed to solve the problem
when the two particles stay at distances where the flow
is differentiable so that, without control, their separa-
tion would grow exponentially due to Lagrangian chaos.
To improve realism, we model the problem imposing
limitations in detection (partial observability) and in
the possible actions to undertake (partial maneuverabil-
ity). Namely, we allow each agent to sample only few
local properties of the underlying flow and to receive
information about the other one only at given decision
times, spaced by an interval τ , in order to update their
actions. For what concerns the actions, following [14]
we suppose that the two objects can swim either along
the direction of their separation or in the perpendicular
one, with a variable speed. Finally, to be able to fulfill
the objective to minimize the control activation cost,
we also include the action of no-swimming to allow the
couple of particles to learn when to be passively trans-
ported by the current, if useful [13]. As a result, we
have a multi-agent (a Lagrangian pair) and a multi-task
(minimize both chaotic dispersion and activation cost)
problem [25]. We approach this typical long-term opti-
mization problem with conflicting objectives by using
Multi-Objective reinforcement learning (MORL) algo-
rithms [26–28]. Indeed, in the classical single-task RL
the reward is a scalar, whereas in MORL the reward is a
vector, with an element for each objective. We approach
MORL via scalarization, i.e., by defining a new scalar
total reward by a weighted sum along all the element
of the original reward vector [29,30]. For this reason,
there exists a set of trade-off solutions forming the so
called Pareto frontier [31,32], where each solution on
the frontier is Pareto Efficient, i.e., no single objective
can be made better off without making at least another
one worse off.

Using this approach, we show how to find a set of
Pareto optimal policies to efficiently minimize both
chaotic dispersion and swimming cost. To benchmark
these strategies, we will compare them to a set of heuris-
tic baselines. In particular, we show how the learned
strategies are able to exploit nontrivial information of
the underlying flow.

The paper is organized as follows. In Sect. 2, we
describe the general setup of the problem: the model of
the Lagrangian pair, how they can act and sense the
environment, and the details of the underlying fluid
flow. In Sect. 3, we introduce the concepts of MORL
giving details on our choice for the reward function
and the learning protocol. Furthermore, we present the
concepts of Pareto dominance and Pareto frontier. In
Sect. 4, we discuss the main results including a heuristic
analysis focused on explaining the role of the decision
time. Finally, we give our conclusion in Sect. 5.

2 The model

2.1 Active control of Lagrangian pairs in a flow

In typical flows, Lagrangian chaos [6,7] causes an expo-
nential growth of the separation, δX(t) = ‖X2(t) −
X1(t)‖, between pairs of (uncontrolled) tracer par-
ticles that are initially very close, i.e., 〈ln δX(t)〉 �
ln δ(X(0)) + λt, (λ being the Lagrangian Lyapunov
exponent). Our goal here is to develop strategies for
instrumented particles to control and, possibly, min-
imize such chaotic dispersion and at the same time
to save activation cost. In particular, we consider par-
ticles in the one-way coupling approximation and an
autonomous propelling mechanism with a speed V (t)
in the direction p̂(t) superimposed to the transport by
the flow. Thus we assume the particles to obey the fol-
lowing equations of motion:

{
Ẋα = u(Xα(t), t) + U ctrl

α (t),
U ctrl

α (t) = Vα(t)p̂α(t),
(1)

where α = 1, 2 is the agent’s index, u(Xα(t), t) is
the velocity of the underlying 2D advecting flow and
U ctrl

α (t) is the control contribution to the particle veloc-
ity. In Eq. (1), we neglect the rotation kinematics of
p̂α assuming the agents equipped with an active and
instantaneous reorientation mechanism. Thus, we con-
sider the reorientation time negligible and the current
swimming direction always aligned with the chosen one.

We assume the agents to interact between each other
only every τ time units. At each decision time, the
agents can measure some flow properties (a proxy for
the environmental state) and sense their mutual sepa-
ration. Then, on the basis of the information received,
they can decide their action, i.e., choose the swimming
intensity and direction. In this way, the control U ctrl

α (t)
becomes a piece-wise constant in time function, i.e.,
p̂α(t) = p̂α(tj) and Vα(t) = Vα(tj) for tj ≤ t < tj + τ ,
with tj = jτ being the jth decision time. Clearly, an
important role in achieving successfully strategies for
staying close is played by the dimensionless combina-
tion of the two parameters τ λ. When τλ > 1, the con-
trol is too sporadic and the velocity field can separate
considerably the agents. On the other hand, for τλ → 0,
the control problem becomes easier.

Concerning the swimming directions, p̂α(t), we
assume that the agents have a limited set of choices.
Namely, similarly to [14], the agents can either swim
along their longitudinal (joining) direction (n̂‖) or in
the transversal one (n̂⊥). Where n̂‖ = (X2 − X1)/δX
and n̂⊥ ·n̂‖ = 0 (see Fig. 1). To make the problem inter-
pretable from a dynamical system theory point of view,
we set the swimming intensity, Vα(t) to be proportional
to the agents’ distance (measured at the decision time),
i.e.,

Vα(t) = Fα(t)δX(t), (2)
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Fig. 1 (Left) Artistic view of the problem. Two agents in
a linear regime transported by a flow that tends to rotate
their separation vector clockwise (CW). We show the 5 pos-
sible actions available to each agent, namely: remain pas-
sive or swim in the longitudinal direction ±n̂‖ or in the

transversal one ±n̂⊥. (Right) Scheme of the set of 15 actions
for the couple of agents, obtained after removing symmetri-
cal action pairs. Besides the longitudinal actions, choosing
the transversal directions allows the agents to rotate with
respect to each other clockwise (CW) or ACW

and we let each agent to choose either to turn on the
control by actively swimming, Fα(t) = f > 0, or to
turn it off, Fα(t) = 0, to save activation cost. With
this choice, the two objectives are directly connected
with the minimization of the Lyapunov exponent of the
controlled system. This allowed us to derive the heuris-
tic analysis described in Sect. 4.2 and to predict the
Pareto frontier in the limit τ → 0, see Eq. (15). Fur-
thermore, from a theoretical point of view it is inter-
esting and challenging per se to understand how to
optimize the dynamics under many possible constraints,
Vα(t) ∝ δX(t) in this case. In the future, it could be
interesting to study the system with different setups,
varying both the actions (e.g., imposing a maximum
swimming velocity), the state-space and the definition
of the cost function. At the same time, had we used a
constant swimming speed, would have introduced a typ-
ical threshold distance above/below which the agents
will always be able to control/not-control, at least, for
small values of τ . Furthermore, to study the problem
in a more challenging way, we assume that swimming
cannot completely overcome the dynamics, i.e., 2f � λ
(see below).

Summarizing, at each decision time tj , agent α can
pick any of 5 actions, a ∈ {Fα(tj) = 0;Fα(tj) = f
with p̂α = ±n̂‖,±n̂⊥} namely, the agents can choose
either to be passive or to swim along their longitudinal
or perpendicular directions. We will call näıve policy
the strategy where the agents always choose to navi-
gate toward each other, i.e., p̂1 = n̂‖ and p̂2 = −n̂‖.
Likewise, we will call passive policy the strategy when

F1 = F2 = 0. In principle, a set of 52 = 25 actions is
available for the couple of agents. However, the space of
actions can be reduced by removing symmetries (e.g.,
the configuration in which p̂1 = n̂‖ and the second is
passive is equivalent to the configuration in which the
first agent is passive and p̂2 = −n̂‖). In this way, the
set of actions for the couple reduces to the set A of 15
actions shown in Fig. 1.

2.2 Sensing the environment

Besides their relative position and distance, at each
decision time, the agents receive some cues on the fluid
environmental state. Concerning the observability of
the environment, assuming that they are close enough
for the field to be smooth, we imagine the two agents
can have only a rough estimates of the relative longitu-
dinal and transverse gradients, defined as

σ‖ =
(u(X2, t) − u(X1, t))

δX
· n̂‖ (3)

σ⊥ =
(u(X2, t) − u(X1, t))

δX
· n̂⊥, (4)

which can be obtained by exchanging information about
their local velocities. To search for interpretable solu-
tions, we restrict the state-space supposing that the
agents are able to measure the gradients (3)(4) with
a limited sensitivity. In particular, we restrict the set
of values of σ⊥, σ‖ to 4 states for each one of them,
for a total of 16 discretized states, labeling whether the
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Fig. 2 Definition of the 16 states, obtained from the dis-
cretization of longitudinal (3) and transversal (4) gradi-
ents. The former informs about the local rate of expan-
sion/contraction due to the flow, the latter tells the rate of
clockwise (CW) or anticlockwise (ACW) rotation imposed
by the flow on the joining direction. In figure are shown the
states discretization with thresholds 0 and ±c

underlying flow brings them closer or farther away (lon-
gitudinal gradients) and in which direction it rotates
them (transverse gradients) see Fig. 2 for a summary
of all states. The value of the discretization constant c
is chosen so that all the 16 states are sufficiently vis-
ited (c = 2.8 in our case). Setting c too small or too
high would practically reduce the state-space from 16
to 4 resulting in sub-optimal policies with respect to
the ones obtained from the 16 almost-uniformly visited
states.

2.3 The space of control policies

Given 15 actions and 16 states, we have a possible set of
1516 deterministic policies [π : s → a], making the brute
force optimization search impossible: one has to resort
to reinforcement learning techniques (as discussed in
Sect. 3). However, there is an intuitive way to trace
back to a reduced policies space that can be analyzed
systematically as a set of hard-wired baseline policies.
By restricting perceptions to the longitudinal compo-
nents (3), we can assume that only the actions along
the joining direction are important. Considering only
the first three actions highlighted in blue in the right
panel of Fig. 1, we get to a reduced set 34 = 81 poli-
cies, which will be used in the following as our reference
heuristics to benchmark those found by MORL imple-
mentation.

2.4 Model flow

As for the fluid environment, we used a 2D homo-
geneous, (nearly) isotropic, incompressible and time-
dependent flow as in Ref. [33]. In particular, the velocity
field is defined in terms of a stream function, u(x, t) =
∇⊥ψ(x, t) = (∂yψ,−∂xψ) , which is expressed as a
superposition of few Fourier modes,

ψ(x, t) =
∑
k∈K

(A(k, t)ei k·x + cc.), (5)

K = {( 2π
L , 0), (± 2π

L , 2π
L ), (0, 2π

L )}, where L is the scale
periodicity of the flow. In (5) A(k, t) = Ar(k, t) +
i Ai(k, t) are random and time-dependent amplitudes
obtained from an Ornstein–Uhlenbeck process [34]

Ȧβ(k, t) = − 1
τf

Aβ(k, t) +
(

2σ2(k)
τf

)1/2

ηβ(k, t), (6)

with β = r, i. Here τf sets the flow correlation time,
ηβ(k, t) are zero-mean Gaussian variables with correla-
tion 〈ηα(k, t)ηβ(k′, t′)〉 = δα,βδk,k′δ(t−t′), and σ2(k) =
u2
rms

2‖k‖2 . We fixed τf = 1, L = 1, urms = 1. With this
choice, the maximum Lyapunov exponent characteriz-
ing the mean exponential rate of divergence between
two (uncontrolled) tracers particles (passive strategy)
is λ � 1.4.

3 Reinforcement learning and
multi-objective optimization

Starting from our set of states and actions, our aim is
to solve an optimization problem with two objectives:
minimizing both the rate of separation growth and the
activation cost. We are thus in the field of compet-
ing Multi-Objective Optimization (MOO) [25,26]. The
optimality of such solutions can be defined in terms of
Pareto dominance [28,32], namely a solution dominates
another if it is superior on at least one objective and at
least equal on all others. For instance, in Fig. 3a) the
solutions M and K dominate J , whereas M and K are
incomparable, because each is superior in at least one
objective. All the dominating solutions form the Pareto
frontier [28,32], depicted with black circles in Fig. 3b).

Reinforcement learning (RL) algorithms [35] aim at
maximizing a single scalar reward usually representing
a single long-term objective. MOO can also be obtained
within standard RL algorithms such as, e.g., Q-learning
[35] by scalarization, formulating a “new” total single-
objective optimization problem obtained as a weighted
sum of each sub-objective functions [29,30]. By solving
the scalar optimization problem at varying the weights
in the sum, one can find the Pareto optimal solutions
to the MOO. Following this idea, we define a differ-
ent reward function for each of the two competing sub-
problems.
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Fig. 3 Concepts of Pareto dominance (a) and Pareto fron-
tier (b). 〈Rλ〉 and 〈RA〉 represent the two single objectives
of minimizing particle separation and activation cost

The first allows the agents to judge their performance
in controlling the separation rate:

rλ(tj) = − 1
Tmax

ln
(

δX(tj)
δX(tj − τ)

)
, (7)

which penalizes actions that, between two consecutive
decisions, cause an increase of the distance, and where
Tmax is a fixed time horizon that we considered as termi-
nal state for the learning episodes and chosen such that
the relative distance between the two particles is always
in the linear regime (Tmax = 5.5 in our case). Notice
that summing the reward (7) over a whole episode

Rλ =
Tmax/τ∑

j=1

rλ(tj) (8)

when averaging over may episodes we have

〈Rλ〉 = − 1
Tmax

〈δX(Tmax)
δX(0)

〉
� −λc. (9)

Thus, the optimization problem restricted to this
reward would be solved by the policy which minimizes
the Lyapunov exponent of the controlled system, λc.

The second reward function informs the agent about
the activation cost:

rA(tj) = − 1
Tmax

λτNa(tj) (10)

where Na(tj)(= 0, 1, 2) counts the number of agents
which have selected any of the actions ‘swim’; we
have introduced a normalization term λτ to have two
rewards of the same order of magnitude (on average we
can estimate rλ = (τλ)/Tmax).

For the multi-objective optimization, we need to com-
bine (7) and (10) through a scalarization parameter, β:

rtot(tj) = rλ(tj) + βrA(tj) (11)

and consider many single-objective problems for rtot
at varying β. Therefore, at each decision time, the

Lagrangian pair receives a shared reward, rtot. For each
β, the goal is to find the policy maximizing the cumu-
lative total reward,

Rtot =
Tmax/τ∑

j=1

[rλ(tj) + β rA(tj)] = Rλ + βRA. (12)

From the above expression, there are two clear limits:
β → 0 and β → ∞. In the former limit, we minimize
particle distance without caring on activation cost, a
goal that is not obvious per se and will depend on the
decision time, τ . The latter case is simpler, because
as the cost of swimming increases the best policy is
the passive one. How does the transition between these
two limiting regimes takes place is the question that we
are going to answer in Sect. 4 by studying the Pareto
frontier of our multi-task problem. See Appendix 1 for
details of the Q-learning algorithm that we have imple-
mented.

Due to learning stochasticity and the fact that the
performances of different policies can be very close,
to find the best solutions we performed 100 indepen-
dent learning sections (i.e., using different initialization
seeds) for each scalarization parameter β. Each learning
section lasts 50,000 episodes. The 100 learned policies
for each β have been validated on 100,000 different real-
izations of the flow. Then we assumed as best learned
policies the ones that maximize the average over the
validation set of (12).

4 Results

Here, we present the results. In the first section, we
present a detailed analysis of the policy related to a
fixed decision time value, τ = 0.3, which gives that the
uncontrolled Lyapunov exponent is λ ≈ 1.4 correspond-
ing to a case τλ < 1 (and τ < τf = 1) that allows us to
control the dynamics but the interval between decision
times, τ , is sufficiently high to make the problem non-
trivial. In the second section, we analyze specifically
the role of τ presenting a heuristic analytical predic-
tion in the τ → 0 limit and a numerical study based
on the heuristic policies as a function of τ . In particu-
lar, we show that the concavity of the Pareto frontier
is strongly dependent on τ .

To make the control nontrivial, we fix the swimming
rate to f = 0.7 so that the controlled Lyapunov expo-
nent is close to 0 for β = 0 and τ → 0 and never neg-
ative for other β,τ values. For smaller values of f , we
have obtained qualitatively similar results (not shown),
even though controlling the separation becomes much
more complicated also for β = 0. Higher values of f ,
instead, make the system trivially controllable.
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Fig. 4 Example of learning process. The total reward Rtot

versus the episodes: the solid line and gray shaded area show
the running average and fluctuations over 1500 episodes,
respectively. The inset shows the evolution of the two con-
tributions to the reward Rλ (red) and RA (blue). Data refer
to one learning trial for β = 0.3 and τ = 0.3

4.1 Detailed analysis of learned policies

As discussed in Sect. 3, we approach the multi-objective
optimization through reinforcement learning via scalar-
ization, that is we perform many learning processes,
with the protocol described at the end of Sect. 3, by
varying the scalarization parameter β that weighs the
two rewards (see (12)). In Fig. 4, we show a typical
learning process for a single β value. At the begin-
ning of the learning phase, the Q-learning algorithm
explores different random policies. After many episodes,
the learning parameters, ε and α, decrease (see (19)–

(20)) and the Q-matrix stabilizes. The inset of Fig. 4
displays the evolution of two components of the reward.
As discussed, for the same β the learning process is then
repeated over 100 trials, each learned policy is evaluated
on a validation set to identify the best learned policy
for that value of β.

In Fig. 5, we show the mean (over the validation set)
of the total cumulative reward obtained to minimize the
separation, 〈Rλ〉 (9) versus the mean of the total cumu-
lative reward obtained to save control activation cost,
〈RA〉 =

〈 ∑Tmax/τ
j=1 rA(tj)

〉
, for different β values. Then

we can identify as optimal the solutions that dominate
all the others in the sense of Pareto dominance. In par-
ticular, the best learned policies for each β are surely
on the Pareto frontier (filled circles in Fig. 5). As one
can see, the learned policies reach rewards that outper-
form the 81 heuristic policies, indicating that the RL
protocol has converged to optimal solutions. The inset
in Fig. 5 provides a quantitative idea of the improve-
ment with respect to the näıve and passive baseline,
respectively, by showing the improvement of the best
learned policies as a function of β. One can see that
the best learned policies are generically better than the
baselines.

In particular, for β = 0, since there is no cost for
swimming, one might expect the näıve baseline to be
a good strategy for minimizing the agents separation.
Instead, we discovered that also in this limit there is a
nontrivial optimal strategy for Lagrangian agents that
outperform the näıve one with an improvement of 12%
in the maximization of the total reward. The discovered
strategy is such that, when the velocity field is con-

Fig. 5 〈Rλ〉 versus 〈RA〉 obtained by setting the decision
time τ = 0.3. The dashed black line indicates the highest
performances that can be achieved for τ → 0 (see (15)). We
show with black triangles the performances of 81 heuristic
policies and with light blue circles all the policies learned
by the Q-learning algorithm to solve the multi-objective
problem, in particular the filled large circles show the best

learned policies for each β, and the dashed blue line the
Pareto frontier. One can see that learned policies dominate
the heuristic ones. Inset: Relative improvement of 〈Rtot〉 as
a function of β of the best policies learned from RL with
respect to the näıve (red squares) and passive (blue pen-
tagon), respectively
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Fig. 6 (Left) 〈Rtot〉 versus β for different policies obtained
with a decision time τ = 0.3. With the 81 straight lines
are shown the heuristic performances, including the two
extreme cases of the näıve baseline and the passive policy. It
can be seen that as β increases the näıve policy immediately
get worse, while the passive policy is β-independent. In light
blue are shown the best policies learned from Q-learning for

each β that improve all the heuristic performances. (Right)
Pictorial representation of 4 policies learned from RL cor-
responding to the circled symbols on the left. In green and
orange are highlighted the ACW and CW rotation actions
chosen as a counter-move with respect to the underlying
flow rotation

tracting and rotates strongly the position of one agent
with respect to the other, it turns out to be more con-
venient to counter-rotate with respect to the rotation
induced by underlying velocity field rather than to sim-
ply navigate toward each other. We can explain that as
a realignment along the contracting direction. Indeed,
due to the finite decision time, it is less effective to
swim toward each other in the direction identified at
the decision time, which is quickly changed by the flow.
On the other hand, for high values of β, when swim-
ming has a high cost, RL easily learns that the best
policy is the passive one, where the two agents always
switch off the engine. Other β values lead to the tran-
sition region between these two extreme cases, where
new navigation strategies are learned. In particular, as
seen from the inset of Fig. 5, the region around β = 0.3
seems to be the more interesting, and it is thus worth
analyzing the learned policies in this region.

In Fig. 6(Left), we show the performance of the best
learned policies for each β in comparison with the 81
heuristic ones. Notice that for the latter it is enough
to measure 〈Rλ〉 and 〈RA〉 to know the value of 〈Rtot〉
as a function of β, obtaining 81 benchmark straight
lines, as shown in Fig. 6(Left). It can be seen that RL
always improves the maximization of the total cumula-
tive reward, 〈Rtot〉. In Fig. 6(Right)a–d, we show a tab-
ular representation of some policies learned as optimal,
i.e., that lie on the Pareto frontier and appertain to the

region around β = 0.3 (see circled dots in Fig. 6(Left)).
It emerges that counter-rotating with respect to the
underlying flow rotation is important and that, as β
increases, is more convenient navigate when the flow
is contracting rather than when it is expanding the
agents’ separation, e.g., the policy in Fig. 6c) shows that
the Lagrangian pair choose to be passive along all the
expanding states.

We end this section commenting on possible sym-
metries of swimming strategies. In fact, the counter-
rotating action with respect to the underlying flow rota-
tion, which emerges to be important, can occur both
when the counter-rotation is clockwise and when it is
anticlockwise. Even though symmetric strategies can
exist simultaneously, we found that RL is able to con-
verge to optimal solutions. In particular, the policies
shown in the panels b) and d) of Fig. 6 are exactly sym-
metric, while the policies in a) and c) are only approxi-
mately symmetric. In fact, in a) we have the agents nav-
igating toward each other (näıve strategy) in the state
in the first-row fourth-column (i.e., (1,4) state), while in
the symmetric state (4,4) one agent is counter-rotating
with respect to the underlying flow rotation. Similarly,
in c) the actions in the (1,2) state and in its symmet-
ric (4,2) are different. Analyzing the performances of
the symmetric counterparts of these policies (i.e., for
example, considering for a) one agent counter-rotating
with respect to the flow in the (1,4) state and both
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Fig. 7 Pareto frontier for a reduced policies space, which is
a lower bound to the true Pareto frontier: 〈Rλ〉 versus 〈RA〉
obtained varying the decision time, τ for the 81 heuristic
policies. The dashed black line indicates a linear dependence
between 〈Rλ〉 and 〈RA〉 reached for small τ . We show with
empty symbols the Pareto frontier that would result for each
decision time by restricting the problem to study only the
81 heuristic policies. It can be seen that as τ increases, the
frontier becomes concave

the agents swimming toward each other (näıve policy)
in the (4,4) state) we found that symmetric strategies
are actually equivalent in terms of the total cumulative
reward. Thus, for RL one policy is completely equiva-
lent to its symmetric counterpart.

4.2 Heuristic analysis

We now discuss the role of the interval between decision
times, τ , by relying on the set of 81 heuristic (hard-
wired) strategies obtained as a reduced policies space
from the 4 longitudinal states and the first 3 actions in
Fig. 1. Indeed, their analysis is enough to understand
the qualitative effect of changing the decision time with
no needed to perform any learning.

In Fig. 7, we show the same plot of Fig. 5 for differ-
ent values of τ and only considering the heuristic poli-
cies, taking the Pareto dominating strategies in this
reduced policy space we obtain a lower bound to the
true Pareto frontier, which is enough for the follow-
ing analysis. Small decision values of τ correspond to
frequent measurements of the system and thus, as intu-
ition would suggest, to major adjustments of the con-
trol variables that lead to high quality performances. In
particular, τ = 0.01 = dt (i.e., controlling at each time
step, dt) leads to a linear Pareto frontier, 〈Rλ〉 ∝ 〈RA〉,
where all policies are equivalent, meaning that they all
live on the Pareto frontier: none (Pareto) dominates the
others. For this specific value of τ , we have also inves-
tigated what MORL can learn and we discovered that,
on average, MORL solutions are indistinguishable from
heuristics, since all of them fall on the linear frontier. It
is reasonable to imagine that the linear frontier is opti-
mal because whenever we allow the agent to update
its direction continuously the optimal policies tend to
be on the linear frontier. This is true either when τ
is 0, or when we have a finite interval between deci-

sion times but still a continuous update of the direction
(not shown). On the other hand, all other best policies
found for finite τ and noncontinuous update of direc-
tion are sub-optimal with respect to the linear frontier.
In other terms, if the Lagrangian pair can continuously
sense its separation, it does not really need to search
for optimal policies. Increasing the decision time values
leads to concave frontiers where the strategies play dif-
ferent roles until τ starts to be too large with respect
to 1/λ and swimming becomes ineffective in controlling
the separation growth and it only represents an activa-
tion cost. For instance, for τ = 1 swimming does not
help on minimizing the separation and thus swimming
or being passive is almost equivalent.

To better understand the linear behavior at τ → 0,
we can derive the following heuristic analysis. Since for
the whole duration of an episode we are in the linear
regime of separation (i.e., the agents see a differentiable
velocity field), we know from (9) that −〈Rλ〉 is nothing
but the Lyapunov exponent of the controlled system,
λc. The actions of swimming along the joining direc-
tion introduce a clear contraction factor, so (if τ is suffi-
ciently small) we can estimate the controlled Lyapunov
exponent for the heuristic policies as follows:

λc � λ Tmax − (2f T2 + f T1)
Tmax

, (13)

where we have decomposed the total episode duration
as Tmax = T0 + T1 + T2, with T1 being the average
time in which only one agent is swimming, while T0

and a T2 are the average times in which both agents
are passive and swimming, respectively. For the näıve
baseline T2 = Tmax, T1 = T0 = 0 and we can estimate
λnaïve � λ− 2f (if τ → 0). This means that for λ � 1.4
and f = 0.7 the näıve baseline should be very close to
a perfect control, i.e., it can keep the distance constant.
On the other hand, based on the same decomposition
of the total time, 〈RA〉 can be approximated as

〈RA〉 = − λ

Tmax
(2T2 + T1), (14)

which implies a linear dependence between 〈Rλ〉 and
〈RA〉:

〈Rλ〉 � −λ − f

λ
〈RA〉, (15)

which explains the linearity of the Pareto frontier for
τ = dt in Fig. 7. When the above relation applies (i.e.,
for τ → 0), we can write the total reward as

〈Rtot〉 � −λ + 〈RA〉
(

β − f

λ

)
. (16)

It is now clear why all the policies lie on the Pareto
frontier, and thus are equivalent. For β < f/λ, the task
is to minimize 〈RA〉 (remember that 〈RA〉 is negative
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defined), that means controlling continuously the sys-
tem applying the näıve policy. For β > f/λ, the goal
is to maximize 〈RA〉, which is maximal (i.e., equal to
0) when both agents are passive. For β = βc = f/λ all
policies perform the same, 〈Rtot〉 � −λ.

Clearly, the linearity of the frontier is due to the
choice of the swimming penalization we adopted (Cfr.
Eq. (10)), which is linear in the number of swimming
agents. Different (nonlinear) choices would break the
linearity but will not invalidate the decomposition we
used above. In this paper, we are not interested in
exploring other definition of rewards and we have cho-
sen the simplest definition, which is enough to highlight
the nontrivial role played by the discrete decision time.
Indeed it is due to such discreteness that the agents
need to learn how to exploit the flow in an intelligent
way and where different policies are not equivalent any-
more in terms of performances.

5 Discussions and conclusions

We have presented a multi-agent and multi-task prob-
lem set to minimize, at the same time, the dispersion
rate of a Lagrangian pair dominated by Lagrangian
Chaos, in a stochastic flow, and the activation cost
due to the active control on the system. We mod-
eled the agents with limited observation capabilities, 16
states inform them on the longitudinal and transver-
sal velocity gradients in a discretized form, and with
a set of 15 possible choices of action for the agent
pair. Thus, the space of deterministic policies is very
large and counts 1516 navigation strategies. Further-
more, the agents could swim with a variable but limited
velocity intensity, namely they were not able to over-
come the chaoticity properties of the system. To solve
this problem, we have developed a MORL approach
based on the combination of the simple Q-learning
algorithm and the scalarization technique; this enabled
us to show a systematic investigation of the problem
studying the Pareto frontier. In this direction, we have
shown how controlling only at discrete decision times
makes the problem nontrivial. Indeed, the larger the
interval between decision times is the more control vari-
ables performances become unpredictable or, at least,
not easy to guess a priori. In the limit of continu-
ous control, τ → 0, the problem reduces to a linear
Pareto frontier, where all policies are equivalent (i.e.,
they all live on the frontier), while increasing τ the
frontier becomes concave and the strategies play dif-
ferent roles in minimizing the separation. Instead, for
high decision time, τ  1/λ, with λ the Lagrangian
Lyapunov exponent of the system, swimming becomes
ineffective to control the pair separation. We stress that
the MORL technique here implemented is model-free,
as it requires only a few local and instantaneous infor-
mation about the underlying flow to define the set of
states and actions, while from the other requires nonlo-
cal information to define the agents dynamics. In fact,
the particles swim by continuously resetting their con-

trol variables equal to the ones chosen at the last deci-
sion time, reacting instantaneously to the underlying
flow. Remarkably, we showed that, within our setup,
RL is able to reach solutions that are strongly differ-
ent from a näıve baseline and, in general, they are
different from heuristic references based on “longitu-
dinal” actions only. It would be important to extend
the present approach to the case of smart tracers able
to control their separation within scales where velocity
field is no more differentiable, i.e., in the inertial range
of turbulent flows.
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Appendix A: Q-learning implementation

To solve the optimization problem, we used the Q-learning
algorithm [35] which is based on evaluating the action-value
function, Q(s, a), that is the expected future cumulative
reward given that the agents are in state s and take action
a. The algorithm is expected to converge to the optimal
policy by the following iterative trial-and-error protocol. At
each decision time tj , the agents pair measures its state
stj and selects an action atj using an ε-greedy strategy,
where atj (stj ) = arg maxa{Q(stj , a)} with probability 1− ε
or atj is chosen randomly with probability ε. Then, we let
the dynamical system evolve for a time τ , according to (1),
keeping both control directions and velocity intensity fixed.
Afterward, the agents receive a reward rtot(tj+1) (11) and
the Q-matrix is updated as

Q(stj , atj ) ← Q(stj , atj ) + α[rtot(tj+1)+

+ max
a

Q(stj+1 , a) − Q(stj , atj )],
(17)

where α is the learning rate. Updates are repeated up to the
end of the episode t = Tmax, when no reward is assigned.
The learning protocol is repeated restarting with another
pair with the same initial distance in another flow position
until we reach a “local” optimum given by the equation
Q∗(stj , a) = rtot(tj+1) + maxa Q∗(stj+1 , a) and defined by
the policy

a(s) = arg max
a

{Q∗(s, a)}.
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In order to ease the convergence of the algorithm, the learn-
ing rate α is taken as a decreasing functions of the time
spent in the state-action pair, while the exploration param-
eters decrease with the time spent in the visited state. Thus
if n(s, a) is the number of decision times in which the couple
(s, a) has been visited, and

n(s) =
∑

a

n(s, a)/|A|, (18)

ε and α are taken as:

α = 5/[2001/γ + τn(s, a)]γ (19)

ε = 5/[2001/γ + τn(s)]γ (20)

with γ = 4/5, the numerical values of the constants have
been determined after some preliminary tests. As for the
initialization of the matrix Q, we have taken the same large
(optimistic) value for all the state-action pairs.
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