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Exit time of turbulent signals: A way to detect the intermediate dissipative range
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The exit-time statistics of experimental turbulent data is analyzed. By looking at the exit-time moments
~inverse structure functions! it is possible to have a direct measurement of scaling properties of the laminar
statistics. It turns out that the inverse structure functions show a much more extended intermediate dissipative
range than the structure functions, leading to the first clear evidence of the existence of such a range of scales.
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In isotropic turbulence, the most studied statistical indi
tors of intermittency are the longitudinal structure function
i.e., moments of the velocity increments at distanceR in the

direction ofR̂: Sp(R)5^@(v(x1R)2v(x)#•R̂#p&. In typical
experiments one is forced to analyze one-dimensional st
of data: the output of hot-wire anemometer. In these ca
Taylor frozen-turbulence hypothesis is used in order
bridge measurements in space with measurements in t
Within the Taylor hypothesis, one has the large-scale typ
time, T05L0 /U0, and the dissipative time,td5r d /U0,
whereU0 is the large scale velocity field,L0 is the scale of
the energy injection, andr d is the Kolmogorov dissipative
scale. As a function of time increment,t, structure functions
assume the form:Sp(t)5^@(v(t1t)2v(t)#p&. It is well
known that for time increment corresponding to the iner
range,td!t!T0, structure functions develop an anomalo
scaling behavior:Sp(t);tz(p), where z(p) is a nonlinear
function, while far inside the dissipative range,t!td , they
show the laminar scaling:Sp(t);tp.

Beside the huge amount of theoretical, experimental,
numerical studies devoted to the understanding of velo
fluctuations in the inertial range~see@1# for a recent over-
view!, only few attempts, mainly theoretical, have focus
on the intermediate dissipation range~IDR!, introduced in
@2# ~see also@3–6#!. By IDR we mean the range of scale
t;td , between the inertial and the dissipative range.

The very existence of the IDR is relevant for the und
standing of many theoretical and practical issues. Amo
them we cite: the modelizations of small scales for optim
ing large eddy simulations and the validity of the refin
Kolmogorov hypothesis@1#.

A nontrivial IDR is connected to the presence of interm
tent fluctuations in the inertial range. Namely, anomalo
scaling law characterized by the exponentsz(p) can be ex-
plained by assuming that velocity fluctuations in the iner
range are characterized by a spectrum of different local s
ing exponents:dtv5v(t1t)2v(t);th, with the probabil-
ity to observe at scalet a value h given by Pt(h)
;t32D(h). This is the celebrated multifractal picture of th
energy cascade which has been confirmed by many inde
dent experiments@1#. The nontrivial dissipative statistics ca
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be explained by defining the dissipative cutoff as the sc
where the local Reynolds number is of the order of unity

Re~td!5
td vtd

n
;O~1!. ~1!

By inverting ~1! we obtain a prediction of a fluctuatingtd :
td(h);n1/(11h), where for the sake of simplicity we hav
assumed the large scale velocity,U0, and the outer scale,L0,
both fixed to 1.

In this Rapid Communication we propose, and measur
experimental and synthetic data, a set of observables tha
able to highlight the IDR properties. The main idea is to ta
a one-dimensional string of turbulent data,v(t), and to ana-
lyze the statistical properties of the exit times from a set
defined velocity thresholds; roughly speaking, a kind ofin-
versestructure function@8# ~inverse-SF!.

This analysis leads to clear evidence of nontrivial int
mittent fluctuations of the dissipative cutoff in turbulent si
nals. A similar approach has already been exploited
studying the particle separation statistics@7#. Recently, exit-
time moments have also been studied to characterize in
mittency in the realm of shell models@8#.

The paper is organized as follows. First we discuss w
the the exit-time probability density function is dominated
the IDR. Then, we present the data analysis performed
high-Reynolds number turbulent flows and in synthetic m
tiaffine signals@9#. Finally, we summarize the evidence su
porting a nontrivial IDR and discuss possible further inve
tigations.

Fluctuations of viscous cutoff are particularly importa
for all those regions in the fluid where the velocity field
locally smooth, i.e., the local fluctuating Reynolds numbe
small. In this case, the matching between nonlinear and
cous terms happens at scales much larger than the Kolm
orov scale,td;n23/4. It is natural, therefore, to look for
observables that have been subjected to mainly lam
events. A possible choice is to measure theexit-time mo-
ments through a set of velocity thresholds. More precise
given a reference initial timet0 with velocity v(t0), we de-
fine t(dv) as the first time necessary to have an abso
variation equal todv in the velocity data, i.e.,uv(t0)2v@ t0
R6295 © 1999 The American Physical Society



e

dis

th
n

a
e

.,
n
s

o
e

ar
-

fo
y

i-

a

rv
se
a
e
re
th

is

nt

sh-
l at

m-
t
s in
he
ni-

ll

ely

time

n
the
ny
his
ent
ref-

nce
le

of
d
y-
at

i-

RAPID COMMUNICATIONS

R6296 PRE 60L. BIFERALE, M. CENCINI, D. VERGNI, AND A. VULPIANI
1t(dv)#u5dv. By scanning the whole time series we recov
the probability density functions oft(dv) at varying dv
from the typical large scale values down to the smallest
sipative values. Positive moments oft(dv) are dominated by
events with a smooth velocity field, i.e., laminar bursts in
turbulent cascade. Let us define the inverse structure fu
tions as

Sp~dv ![^tp~dv !&. ~2!

According to the multifractal description we suppose th
for velocity thresholds corresponding to inertial range valu
of the velocity differences,dtd

v[vm!dv!vM[dT0
v, the

following dimensional relation is valid:dtv;th→t(dv)
;dv1/h. The probability to observe a valuet for the exit
time is given by inverting the multifractal probability, i.e
P(t;dv1/h);dv [32D(h)]/h. Made this ansatz, the predictio
for the inverse-SF,Sp(dv) evaluated for velocity threshold
within the inertial range is

Sp~dv !;E
hmin

hmax
dhdv [ p132D(h)]/h;dvxsp(p), ~3!

where the RHS has been obtained by a saddle point,

xsp~p!5min
h

$@p132D~h!#/h%. ~4!

Let us now consider the IDR properties. For eachp the
saddle point evaluation~4! selects a particularh5hs(p)
where the minimum is reached. Let us also remark that fr
Eq. ~1! we have an estimate for the minimum value assum
by the velocity in the inertial range given a certain singul
ity h: vm(h)5dtd(h)v;nh/(11h). Therefore, the smallest ve

locity value at which the scalingSp(dv);dvxsp(p) still
holds depends on bothn and h. Namely, dvm(p)
;nhs(p)/11hs(p). The most important consequence is that
dv,dvm(p) the integral~3! is not any more dominated b
the saddle point value but by the maximumh value still
dynamically alive at that velocity difference, 1/h(dv)521
2 log(n)/log(dv). This leads fordv,dvm(p) to a pseudoal-
gebraic law,

Sp~dv !;dv $p132D[h(dv)] %/h(dv). ~5!

The presence of thisp-dependent velocity range, intermed
ate between the inertial range,Sp(dv);dvxsp(p), and the far
dissipative scaling,Sp(dv);dvp, is the IDR signature.
Then, it is easy to show that inverse-SF should display
enlarged IDR. Indeed, for the usualdirect structure functions
the saddle poinths(p) value is reached forh,1/3. This
pushes the IDR to a range of scales very difficult to obse
experimentally@4#. On the other hand, as regards the inver
SF, the saddle point estimate of positive moments is alw
reached forhs(p).1/3. This is an indication that we ar
probing the laminar part of the velocity statistics. Therefo
the presence of the IDR must be felt much earlier in
range of available velocity fluctuations. Indeed, ifhs(p)
.1/3, the typical velocity field at which the IDR shows up
given by dvm(p);nhs(p)/[11hs(p)] , that is much larger than
the Kolmogorov valuedv r d

;n1/4. In Fig. 1 we plotS1(dv)
evaluated on a string of high-Reynolds number experime
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data as a function of the available range of velocity thre
oldsdv. This data set has been measured in a wind tunne
Rel;2000.

Let us first make a technical remark. If one wants to co
pare the predictions~3! and~5! with the experimental data, i
is necessary to perform the average over the time-statistic
a weighted way. This is due to the fact that by looking at t
exit-time statistics we are not sampling the time-series u
formly, i.e., the higher the value oft(dv) is, the longer it is
detectable in the time series. Let us ca
t1(dv),t2(dv), . . . ,tN(dv) the string of exit time values
obtained by analyzing the velocity string data consecutiv
for a given dv. N is the number of times for whichdtv
reaches a given threshold. It is easy to realize@10# that the
sequential time average of any observable based on exit-
statistics, ^tp(dv)& t[(1/N)( i 51

N t i
p , is connected to the

uniformly-in-time multifractal average,̂(•)&[*dh(•), by
the relation

^tp~dv !&5(
i 51

N

t i
p t i

(
j 51

N

t j

5
^tp11& t

^t& t
, ~6!

where t i /( j 51
N t j takes into account the nonuniformity i

time. Let us now go back to Fig. 1. One can see that
scaling is very poor. Indeed, it is not possible to extract a
quantitative prediction about the inertial range slope. For t
reason, we have only drawn the dimensional non-intermitt
slope and the dissipative slope as a possible qualitative
erences. On the other hand,~inset of Fig. 1! the scaling be-
havior of the direct structure functionŝudv(t)u&;tz(1) is
quite clear in a wide range of scales. This is a clear evide
of IDR’s contamination into the whole range of availab
velocity values for the Inverse-SF cases. Similar results~not
shown! are found for higher ordersSp structure functions.

In order to better understand the scaling properties
Sp(dv) we investigate a synthetic multiaffine field obtaine
by combining successive multiplications of Langevin d
namics@9#. The advantage of using a synthetic field is th

FIG. 1. Inverse-SFS1(dv). The straight line shows the diss
pative range bahavior~dashed line! S1(dv);dv, and the inertial
range nonintermittent behavior~dotted line! S1(dv);(dv)3. The
inset shows the direct structure functionS1(t) with superimposed
the intermittent slopez(1)50.39.
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one can control analytically the scaling properties of dir
structure functions in order to have the same scaling la
observed in experimental data. An IDR can be introduced
the synthetic signals by smoothing the original dynamics
a moving time-window of sizedT. Imposing a smoothing
time-window is equivalent to fixing the Reynolds numbe
Re;dT24/3. The purpose to introduce this stochastic mu
affine field is twofold. First we want to reach high Reynol
numbers to test the inverse-multifractal formula~4!. Second,
we want to test that the very extended IDR observed in
experimental data, see Fig. 1, is also observed in this
chastic field. This would support the claim that the expe
mental result is the evidence of an extended IDR.

In Fig. 2 we show the inverse-SF,S1(dv), measured in
the multiaffine synthetic signal at high-Reynolds numbe
The observed scaling exponent,x(1), is in agreement with
the prediction~4!. The same agreement also holds for high
moments. In Table I, we compare the best fit to theSp(dv)
measured on the synthetic field with the inversion form
~4!. As for the comparison between the theoretical expe
tion ~4! and the synthetic data let us note the followi
points. First, in@9# it was proved that the signal possesses
given direct-structure functions exponents for positive m
ments, i.e., thez(p) exponents are in a one-to-one corr
spondence with theD(h) curve for h,1/3. Nothing was
proved for observables feeling theh.1/3 interval and there-
fore the agreement between the inversion formula~4! and the
numerical results cannot be found analytically. Second,
cause the synthetic signal is defined by using Langevin p
cesses, the less singularh-exponents expected to contribu
to the saddle-point~4! is h50.5. Therefore, the theoretica

FIG. 2. Inverse-SFS1(dv) vs dv for the synthetic signals no
smoothed ~NS! and smoothed with time windows:dT54.8
31024, 331025, 231026, the straight line is obtained from th
inverse multifractal prediction~4!.

TABLE I. Comparison betweenxsyn(p) measured in the syn
thetic signal and the multifractal prediction~4!. The synthetic signal
has aD(h) function which leads to the same set of experimen
z(p) for direct structure functions.

p 1 2 3 4 5

xsyn(p) 2.32~4! 4.40~8! 6.38~8! 8.3~1! 10.1~2!

xsp(p) 2.32 4.34 6.34 8.35 10.35
t
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prediction,xsp(q), in Table I has been obtained by imposin
hmax50.5.

Let us now go back to the most interesting question ab
the statistical properties of the IDR. In order to study th
question we have smoothed the stochastic field,v(t), by
performing a running-time average over a time-window,dT.
Then we compare Inverse-SF scaling properties at vary
Reynolds numbers, i.e. for different dissipative cutoff: R
;dT24/3.

The expression~5! predicts the possibility to obtain a dat
collapse of all curves with different Reynolds numbers
rescaling the inverse-SF as follows@2,3#:

2
ln@Sp~dv !#

ln~dT/dT0!
vs 2

ln~dv/U !

ln~dT/dT0!
, ~7!

where U and dT0 are adjustable dimensional paramete
Within the same experimental~or synthetic! set up they are
Reynolds number independent~i.e., dT independent!.

The rationale for the rescale~7! stems from the observa
tion that, in the IDR,hs(p) is a function of ln(dv)/ln(n) only.
Therefore, identifying Re}n21, the relation~7! directly fol-
lows from ~5!. This rescaling was originally proposed as
possible test of IDR for direct structure functions in@2# but,
as already discussed above, for the latter observable it is
difficult to detect any IDR due to the extremely small sca
involved @4#.

Figure 3 shows the rescaling~7! of the Inverse-SF,
S1(dv), for the synthetic field at different Reynolds num
bers and for the experimental signals. As it is possible to s
the data-collapse is very good for both the synthetic a
experimental signal. This is a clear evidence that the p
scaling range observed in Fig. 1 for the experimental sig
can be explained as the signature of the IDR. The same
havior holds for higher moments~not shown!.

It is interesting to remark that for a self-affine sign
@D(h)5d(h21/3)#, the IDR is highly reduced and th
inverse-SF, scaling trivially asSp(dv);(dv)3p, do not
bring any new information.

In conclusions we have shown that exit-time momen
Sp(dv), are dominated by the laminar part of the ener

FIG. 3. Data collapse of the inverse-SF,S1(dv), obtained by
the rescaling~7! for the smoothed synthetic signals~with time win-
dows: dT54.831024, 331025, 231026) and the experimenta
data~EXPT!. The two straight lines have the dissipative~solid line!
and the inertial range~dashed line! slope.
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cascade: they depend only on the part ofD(h) which falls to
the right of its maximum , i.e.,h.1/3. Theseh’s values are
not testable by the direct structure functions. Inverse-SF
the natural tool to test any model concerning velocity flu
tuations less singular than the Kolmogorov valuedv;t1/3.

By analyzing high-Reynolds data and synthetic fields,
have proved that the extension of the IDR forSp(dv) is
magnified. The rescaling~7! based on the assumption~1!
gives a good data collapse for different Reynolds numb
This is a clear evidence of the IDR.

Many questions are still open. First, the analysis o
wider set of experimental data could make it possible
quantify the agreement of the data-collapse with the pre
tion based on Eqs.~1! and ~5!. Indeed, it is easy to realiz
that, by using different parameterization for the onset of
viscous range, one would have predicted the existence o
extended IDR forSp(dv) but with a slightly different res-
caling procedure@5#. The quality of experimental data avai
able to us is not high enough to distinguish between the
c.
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re
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e

s.

a
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c-

e
an

o

different predictions. Analyzing different experimental dat
sets, at different Reynolds numbers, could also make it p
sible to better exploreD(h) for h.1/3. This is an important
question which opens a new problem. Indeed, doubts ab
the universality of theseD(h) values may be raised on th
basis of the usual energy cascade picture. For example
discussed above, in the Langevin synthetic-data a g
agreement between the multifractal prediction and the
merical data is obtained by imposinghmax50.5, similarly in
true turbulent data otherhmax values could appear dependin
on the physical mechanism driving the energy transfer
large scales.
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