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Exit time of turbulent signals: A way to detect the intermediate dissipative range
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The exit-time statistics of experimental turbulent data is analyzed. By looking at the exit-time moments
(inverse structure functionst is possible to have a direct measurement of scaling properties of the laminar
statistics. It turns out that the inverse structure functions show a much more extended intermediate dissipative
range than the structure functions, leading to the first clear evidence of the existence of such a range of scales.
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In isotropic turbulence, the most studied statistical indica-be explained by defining the dissipative cutoff as the scale
tors of intermittency are the longitudinal structure functions,where the local Reynolds number is of the order of unity:
i.e., moments of the velocity increments at distaRde the
direction ofR: S,(R) = ([ (V(x+R)—Vv(x)]-R]?). In typical Re(74) = 7-dVTdNO(l)_ o
experiments one is forced to analyze one-dimensional string v
of data: the output of hot-wire anemometer. In these cases i . o )

Taylor frozen-turbulence hypothesis is used in order toBY '”Vertl'/r(‘%%) we obtain a prediction of a fluctuating, :
bridge measurements in space with measurements in tim@&(n)~v , where for the sake of simplicity we have
Within the Taylor hypothesis, one has the large-scale typicz{f;‘ssumEd the large scale velocity, and the outer scalé,,
time, To=Ly/Uy, and the dissipative timety=r4/U, oth f|x_ed to 1 — .
. o . In this Rapid Communication we propose, and measure in

whereU, is the large scale velocity field,, is the scale of . .
the enerav iniection. and. is the Kolmoaorov dissipative expenmgnta_l and synthetic data., a set of ob.se_rvabl_es that are

gy injection, anty 1 9 pe able to highlight the IDR properties. The main idea is to take
scale. As a function of time increment, structure functions " Jimensional string of turbulent dadt), and to ana-

= _ p i N : N

assume the formS;(7)=([(v(t+7)—v()]°). It is well lyze the statistical properties of the exit times from a set of
known that for time increment corresponding to the inertial jefined velocity thresholds: roughly speaking, a kindrof
range,7q<7<Ty, structure functions develop an anomalousyersestructure functiorf8] (inverse-SF.

scaling behQViOVSQ(T)ng(p), where {(p) is a nonlinear This analysis leads to clear evidence of nontrivial inter-
function, while far inside the dissipative ranges 74, they  mittent fluctuations of the dissipative cutoff in turbulent sig-
show the laminar scalingsp(r)~rp. nals. A similar approach has already been exploited for

Beside the huge amount of theoretical, experimental, andtudying the particle separation statistig$. Recently, exit-
numerical studies devoted to the understanding of velocityime moments have also been studied to characterize inter-
fluctuations in the inertial rangésee[1] for a recent over- mittency in the realm of shell model8].
view), only few attempts, mainly theoretical, have focused The paper is organized as follows. First we discuss why
on the intermediate dissipation rang®R), introduced in  the the exit-time probability density function is dominated by
[2] (see alsd3-6]). By IDR we mean the range of scales, the IDR. Then, we present the data analysis performed in
7~ 174, between the inertial and the dissipative range. high-Reynolds number turbulent flows and in synthetic mul-

The very existence of the IDR is relevant for the under-tiaffine signalq9]. Finally, we summarize the evidence sup-
standing of many theoretical and practical issues. Amongorting a nontrivial IDR and discuss possible further inves-
them we cite: the modelizations of small scales for optimiz-tigations.
ing large eddy simulations and the validity of the refined Fluctuations of viscous cutoff are particularly important
Kolmogorov hypothesi$l]. for all those regions in the fluid where the velocity field is

A nontrivial IDR is connected to the presence of intermit- locally smooth, i.e., the local fluctuating Reynolds number is
tent fluctuations in the inertial range. Namely, anomalousmall. In this case, the matching between nonlinear and vis-
scaling law characterized by the exponefitp) can be ex- cous terms happens at scales much larger than the Kolmog-
plained by assuming that velocity fluctuations in the inertialorov scale,7q~ v~ %4 It is natural, therefore, to look for
range are characterized by a spectrum of different local scabbservables that have been subjected to mainly laminar
ing exponentss,v=v(t+7)—v(t)~ 7", with the probabil- events. A possible choice is to measure #-time mo-
ity to observe at scaler a value h given by P_.(h) ments through a set of velocity thresholds. More precisely,
~ 727D This is the celebrated multifractal picture of the given a reference initial timé, with velocity v(t,), we de-
energy cascade which has been confirmed by many indepefine 7(Sv) as the first time necessary to have an absolute
dent experimentkl]. The nontrivial dissipative statistics can variation equal todv in the velocity data, i.elv(ty) — V[t
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+7(8v)]|=év. By scanning the whole time series we recover
the probability density functions of(dv) at varying év
from the typical large scale values down to the smallest dis-
sipative values. Positive moments«{fév) are dominated by
events with a smooth velocity field, i.e., laminar bursts in the
turbulent cascade. Let us define the inverse structure func-,;
tions as

1

1 1
© 10° 107 10° 0.01 041

=5
=
-

2p(6v)=(TP(év)). (2

According to the multifractal description we suppose that,
for velocity thresholds corresponding to inertial range values o
of the velocity differenceséTdvzvm< 5v<vM55T0v, the A - '
following dimensional relation is valid,v~ 7"— 7(6v) 0.1 !
~ 8v'M. The probability to observe a value for the exit dv

time is given by inverting the multifractal probability, i.e.,  FiG. 1. Inverse-SE,(6v). The straight line shows the dissi-
P(7~ v~ svI3~PMIN “Made this ansatz, the prediction pative range bahavioidashed ling 3, ,(év)~ dv, and the inertial
for the inverse-SF2 ,(év) evaluated for velocity thresholds range nonintermittent behaviddotted ling 3 ,(6v)~(8v)3. The
within the inertial range is inset shows the direct structure functi®g(r) with superimposed

the intermittent slope(1)=0.39.

hmax
Ep(5V)~f dhovIPH3-DMIN_ s xsP) (3

Pmin data as a function of the available range of velocity thresh-
) ) olds év. This data set has been measured in a wind tunnel at
where the RHS has been obtained by a saddle point, Re, ~2000.
. Let us first make a technical remark. If one wants to com-
Xsp(P)= rr:1|n{[p+ 3-D(h)/h}. (4) pare the prediction&3) and(5) with the experimental data, it

is necessary to perform the average over the time-statistics in

Let us now consider the IDR properties_ For e@rthe a Welghted way. This is due to the fact that by Iooking at the
saddle point evaluatiort4) selects a particulah=hy(p) exit-time statistics we are not sampling the time-series uni-
where the minimum is reached. Let us also remark that fronformly, i.e., the higher the value ef(5v) is, the longer it is
Eq. (1) we have an estimate for the minimum value assumedletectable  in the time series. Let wus call
by the velocity in the inertial range given a certain singular-71(6V),72(6V), ... ,7n(6V) the string of exit time values
ity h: vi(h)= 5Td(h)V~Vh/(l+h)- Therefore, the smallest ve- obtalne_d by analyzmg the velocity str|.ng data con;ecunvely
locity value at which the scalingﬁp(év)fvﬁvxw(”) still for a given év. N is the number of times for whicld,v

holds depends on bothw and h. Namely, dv.(p) reaches a given threshold. It is easy to realiz@| that the
. , OV s o
~ hsP1hs(P)  The most important consequence is that forsequentlal time average of any observable based on exit-time

Sv<vn(p) the integral(3) is not any more dominated by Stauistics, (°(ov))=(UN)Z 7, is connected to the
the saddle point value but by the maximumvalue stil ~ Uniformly-in-time multifractal average((-))=/dh(-), by

dynamically alive at that velocity difference hisv)=—1  the relation
—log(v)/log(év). This leads forév< dv,(p) to a pseudoal- N o
i , p
e (P(o)=3, Py —= '<T< ) " ©
~ Syip+3=D[h(sv)]}/h(sv) i=1 )t
2p(6v)~év ) (5) E 7

The presence of thip-dependent velocity range, intermedi-

ate between the inertial rangg,(6v)~ ov*s#”), and the far  \yhere 7/=]L,7; takes into account the nonuniformity in
dissipative scaling,%p(6v)~ovP, is the IDR signature. time. Let us now go back to Fig. 1. One can see that the
Then, it is easy to show that inverse-SF should display aRcaling is very poor. Indeed, it is not possible to extract any
enlarged IDR. Indeed, for the usudifectstructure functions  quantitative prediction about the inertial range slope. For this
the saddle poinhg(p) value is reached foh<<1/3. This  reason, we have only drawn the dimensional non-intermittent
pushes the IDR to a range of scales very difficult to observg|ope and the dissipative slope as a possible qualitative ref-
experimentallyf4]. On the other hand, as regards the inversegrences. On the other han@hset of Fig. 1 the scaling be-
SF, the saddle point estimate of positive moments is alwaygavior of the direct structure function$ov(7)|)~ 7D is
reached forhy(p)>1/3. This is an indication that we are guite clear in a wide range of scales. This is a clear evidence
probing the laminar part of the velocity statistics. Therefore,of |DR's contamination into the whole range of available
the presence of the IDR must be felt much earlier in theye|ocity values for the Inverse-SF cases. Similar results
range of available velocity fluctuations. Indeed,R{(p)  shown are found for higher orderX, structure functions.
>1/3, the typical velocity field at which the IDR shows upis  |n order to better understand the scaling properties of
given by ovp(p)~ v"sPIENsPLthat is much larger than 3,(8v) we investigate a synthetic multiaffine field obtained
the Kolmogorov valuesv, ~v*'* In Fig. 1 we plotS;(6v) by combining successive multiplications of Langevin dy-
evaluated on a string of high-Reynolds number experimentatamics[9]. The advantage of using a synthetic field is that
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FIG. 2. Inverse-SE(48v) vs v for the synthetic signals not FIG. 3. Data collapse of the inverse-SE;(dv), obtained by
smoothed (NS) and smoothed with time windowssT=4.8 the rescaling7) for the smoothed synthetic signdisith time win-
X 1074, 3x1075, 2x 1078, the straight line is obtained from the dows: sT=4.8x107%, 3x 107>, 2x107%) and the experimental

inverse multifractal predictiofy).

one can control analytically the scaling properties of direct
structure functions in order to have the same scaling law

data(EXPT). The two straight lines have the dissipatigelid line)
and the inertial rangédashed ling slope.

rediction,xs,(q), in Table | has been obtained by imposing

observed in experimental data. An IDR can be introduced in'max~ 5.

the synthetic signals by smoothing the original dynamics on
a moving time-window of size5T. Imposing a smoothing

time-window is equivalent to fixing the Reynolds numbers,
Re~ 6T~ *2. The purpose to introduce this stochastic multi-
affine field is twofold. First we want to reach high Reynolds
numbers to test the inverse-multifractal form@a. Second,

we want to test that the very extended IDR observed in the

Let us now go back to the most interesting question about
the statistical properties of the IDR. In order to study this
question we have smoothed the stochastic figlt), by
performing a running-time average over a time-wind@,
Then we compare Inverse-SF scaling properties at varying
Reynolgs numbers, i.e. for different dissipative cutoff: Re
>~ 6T %

experimental data, see Fig. 1, is also observed in this sto- | "€ expressiof) predicts the possibility to obtain a data
chastic field. This would support the claim that the experi-collapse of all curves with different Reynolds numbers by

mental result is the evidence of an extended IDR.
In Fig. 2 we show the inverse-SE,;(Sv), measured in

the multiaffine synthetic signal at high-Reynolds numbers. In[2p(ov)] In(év/U)
The observed scaling exponent(1), is in agreement with

the prediction4). The same agreement also holds for higher
moments. In Table I, we compare the best fit to g ov)
measured on the synthetic field with the inversion formulaR
(4). As for the comparison between the theoretical expecta-
tion (4) and the synthetic data let us note the following tio
points. First, i 9] it was proved that the signal possesses thel_h
given direct-structure functions exponents for positive mo-
ments, i.e., thef(p) exponents are in a one-to-one corre-
spondence with thé(h) curve for h<1/3. Nothing was

proved for observables feeling tihe>1/3 interval and there-

fore the agreement between the inversion forngdjand the

numerical results cannot be found analytically. Second, be-
cause the synthetic signal is defined by using Langevin proi
cesses, the less singulaexponents expected to contribute
to the saddle-point4) is h=0.5. Therefore, the theoretical

rescaling the inverse-SF as folloy,3]:

Tin(eTioTe) V2 T in(eTieTy)’ @

where U and 6T, are adjustable dimensional parameters.
Within the same experimentébr syntheti¢ set up they are
eynolds number independefie., 5T independent

The rationale for the rescal&) stems from the observa-

n that, in the IDRh4(p) is a function of In¢v)/In(v) only.
erefore, identifying Rev 1, the relation(7) directly fol-

lows from (5). This rescaling was originally proposed as a
possible test of IDR for direct structure functions[2] but,

as already discussed above, for the latter observable it is very
difficult to detect any IDR due to the extremely small scales
involved [4].

Figure 3 shows the rescaling7) of the Inverse-SF,
1(6Vv), for the synthetic field at different Reynolds num-
bers and for the experimental signals. As it is possible to see,
the data-collapse is very good for both the synthetic and
experimental signal. This is a clear evidence that the poor

TABLE |. Comparison betweelys,(p) measured in the syn- scaling range observed in Fig. 1 for the experimental signal

thetic signal and the multifractal predictiod). The synthetic signal  ~gn pe explained as the signature of the IDR. The same be-
has aD(h) function which leads to the same set of experimentalp3vior holds for higher momentsot shown.

Z(p) for direct structure functions.

It is interesting to remark that for a self-affine signal

[D(h)=6(h—1/3)], the IDR is highly reduced and the
inverse-SF, scaling trivially as,(8v)~(év)3", do not

p 1 2 3 4 5
Xsyn( p) 2.324)
Xsp( p) 2.32

4.408) 6.388) 8.31) 10.12 bring any new information.
4.34 6.34 8.35 10.35 In conclusions we have shown that exit-time moments,

2,(6v), are dominated by the laminar part of the energy
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cascade: they depend only on the parbg¢h) which falls to  different predictions. Analyzing different experimental data-

the right of its maximum , i.,eh>1/3. Theseh’s values are sets, at different Reynolds numbers, could also make it pos-

not testable by the direct structure functions. Inverse-SF arsible to better explor® (h) for h>1/3. This is an important

the natural tool to test any model concerning velocity fluc-question which opens a new problem. Indeed, doubts about

tuations less singular than the Kolmogorov valie~ 7' the universality of thes®(h) values may be raised on the
By analyzing high-Reynolds data and synthetic fields, wepasis of the usual energy cascade picture. For example, as

have proved that the extension of the IDR ®p(4v) is  discussed above, in the Langevin synthetic-data a good

magnified. The rescaling7) based on the assumptidd)  agreement between the multifractal prediction and the nu-

gives a good data collapse for different Reynolds numbersyerical data is obtained by impositg,,,.= 0.5, similarly in

This is a clear evidence of the IDR. true turbulent data othér,,,, values could appear depending

.Many questions are still open. First, the {inalysug of %n the physical mechanism driving the energy transfer at
wider set of experimental data could make it possible tQarge scales

quantify the agreement of the data-collapse with the predic-
tion based on Eqd91) and (5). Indeed, it is easy to realize We acknowledge useful discussions with R. Benzi, G.
that, by using different parameterization for the onset of theBoffetta, A. Celani, M.H. Jensen, P. Muratore Ginanneschi,
viscous range, one would have predicted the existence of aand M. Vergassola. We also thank Y. Gagne for the access to
extended IDR for (dv) but with a slightly different res- the experimental data. This work has been partially sup-
caling procedur¢5]. The quality of experimental data avail- ported by INFM (Contract PRA-TURBQ® and by the EU
able to us is not high enough to distinguish between the twametwork (Contract No. FMRX-CT98-0175
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