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Understanding and modeling the dynamics of multiscale systems is a problem of considerable interest both for
theory and applications. For unavoidable practical reasons, in multiscale systems, there is the need to eliminate
from the description the fast and small-scale degrees of freedom and thus build effective models for only the
slow and large-scale degrees of freedom. When there is a wide scale separation between the degrees of freedom,
asymptotic techniques, such as the adiabatic approximation, can be used for devising such effective models,
while away from this limit there exist no systematic techniques. Here, we scrutinize the use of machine learning,
based on reservoir computing, to build data-driven effective models of multiscale chaotic systems. We show that,
for a wide scale separation, machine learning generates effective models akin to those obtained using multiscale
asymptotic techniques and, remarkably, remains effective in predictability also when the scale separation is
reduced. We also show that predictability can be improved by hybridizing the reservoir with an imperfect model.
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I. INTRODUCTION

Machine learning techniques are impacting science at an
impressive pace from robotics [1] to genetics [2], medicine
[3], and physics [4]. In physics, reservoir computing [5,6],
based on echo-state neural networks [7–9], is gathering much
attention for model-free, data-driven predictions of chaotic
evolutions [10–14]. Here, we scrutinize the use of reservoir
computing to build effective models for predicting the slow
degrees of freedom of multiscale chaotic systems. We also
consider hybrid reservoirs, blending data with predictions
based on an imperfect model [15] (see also Ref. [16]).

Multiscale chaotic systems represent a challenge to both
theory and applications. For instance, turbulence can eas-
ily span over four (six) decades in temporal (spatial) scales
[17], while climate time scales range from hours of atmo-
sphere variability to thousands of years of deep ocean currents
[18,19]. These huge ranges of scales stymie direct numeri-
cal approaches, making modeling of fast degrees of freedom
mandatory, with slow ones being usually the most interesting
to predict. In principle, the latter are easier to predict: The
maximal Lyapunov exponent (of the order of the inverse of
the fastest time scale) controls the early dynamics of very
small perturbations appertaining to the fast degrees of free-
dom that saturate with time, letting the perturbations on the
slow degrees of freedom grow at a slower rate controlled by
the typically weaker nonlinear instabilities [20–22]. However,
owing to nonlinearity, fast degrees of freedom depend on, and
in turn, impact on the slower ones. Consequently, improperly
modeling the former severely hampers the predictability of the
latter [23].

*Corresponding author: francesco.borra@uniroma1.it
†Corresponding author: massimo.cencini@cnr.it

We focus here on a simplified setting with only two time
scales, i.e., on systems of the form

Ẋ = 1

τs
Fs(X , x),

ẋ = 1

τ f
F f (x, X ),

(1)

where X and x represent the slow and fast degrees of free-
dom, respectively. The time scale separation between them is
controlled by c=τs/τ f . The goal is to build an effective model
for the slow variables, Ẋ = Feff (X ), to predict their evolution.
When the fast variables are much faster than the slow ones
(c � 1), multiscale techniques [24,25] can be used to build
effective models. Aside from such a limit, systematic methods
for deriving effective models are typically unavailable.

In this article, we show that reservoir computers trained on
time series of the slow degrees of freedom can be optimized to
build (model-free data-driven) effective models able to predict
the slow dynamics. Provided the reservoir dimensionality is
high enough, the method works both when the scale sepa-
ration is large, basically recovering the results of standard
multiscale methods, such as the adiabatic approximation, and
when it not so large. Moreover, we show that even an imper-
fect knowledge of the slow dynamics can be used to improve
predictability, also for smaller reservoirs.

The material is organized as follows. In Sec. II we present
the reservoir computing approach for predicting chaotic sys-
tems; moreover, we provide the basics of its implementation
also considering the case in which an imperfect model is
available (hybrid implementation). In Sec. III we present
the main results obtained with a specific multiscale system.
Section IV is devoted to discussions and perspectives. In Ap-
pendix A we give further details on implementation, including
the choice of hyperparameters. Appendix B presents the
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adiabatic approximation for the multiscale system considered
here. In Appendix C we discuss and compare different hybrid
schemes.

II. RESERVOIR COMPUTING FOR CHAOTIC SYSTEMS
AND ITS IMPLEMENTATION

Reservoir computing [5,6] is a brain inspired approach
based on a recurrent neural network (RNN), the reservoir
(R)—i.e., an auxiliary high dimensional nonlinear dynamical
system naturally suited to deal with time sequences—
(usually) linearly coupled to a time dependent lower di-
mensional input (I), to produce an output (O). To make O
optimized for approximating some desired dynamical ob-
servable, the network must be trained. Reservoir computing
implementation avoids backpropagation [26] by only training
the output layer, while R-to-R and I-to-R connections are
quenched random variables. Remarkably, the reservoir com-
puting approach allows for fast hardware implementations
with a variety of nonlinear systems [27,28]. Choosing the
output as a linear projection of functions of the R state, the
optimization can be rapidly achieved via linear regression.
The method works provided R-to-R connections are designed
to force the R state to only depend on the recent past history
of the input signal, fading the memory of the initial state.

A. Predicting chaotic systems with reservoir computing

When considering a chaotic dynamical system with state
s(t ) = [X (t ), x(t )], with reference to Eqs. (1), the input sig-
nal u(t ) ∈ IRDI is typically a subset of the state observables,
u(t )=h(s(t )). For instance, in the following we consider
functions of the slow variables, X , only. When the dimen-
sionality, DR, of the reservoir is large enough and the R-to-R
connections are suitably chosen, its state, r(t ) ∈ IRDR , be-
comes a representation—an echo—of the input state s(t )
[6,9,12], via a mechanism similar to generalized synchroniza-
tion [12,29]. In this configuration, dubbed open loop [30]
[Fig. 1(a)], the RNN is driven by the input and, loosely
speaking, synchronizes with it. When this is achieved, the
output v(t ) ∈ IRDO can be trained (optimized) to fit a desired
function of s(t ), for instance, to predict the next outcome of
the observable, i.e., v(t + �t ) = u(t + �t ). After training,
we can close the loop by feeding the output as a new input to
R [Fig. 1(b)], thus obtaining an effective model for predicting
the time sequence. For the closed loop mode to constitute an
effective (neural) model of the dynamics of interest, we ask
the network to work for arbitrary initial conditions, i.e., not

FIG. 1. Sketch of reservoir computing. (a) The components and
their connections; (b) the two modes of operation: Open loop for
synchronizing the reservoir to the input and for training; closed loop
for prediction.

only right after the training: A property dubbed reusability
in Ref. [12]. For this purpose, when starting from a random
reservoir state, a short synchronization period in open loop
is needed before closing the loop. For the method to work
requires some stability property which cannot, in general, be
granted in the closed loop configuration [30].

B. Implementation

Reservoir neurons can be implemented in different ways
[5]; we use echo state neural network [9], mostly following
[10–12]. Here, we assume DR �DI =DO and the input to
be sampled at discrete time intervals �t . Both assumptions
are not restrictive, for instance, in the hybrid implementation
below we will use DO �= DI and the extension to continuous
time is straightforward [5]. The reservoir is built via a sparse
(low degree, d), random graph represented via a DR × DR

connectivity matrix WR, with the nonzero entries uniformly
distributed in [−1, 1], scaled to have a specific spectral ra-
dius ρ = max{|μi|} with μi being the matrix eigenvalues. The
request ρ < 1 is sufficient, though not strictly necessary [31],
to ensure the echo state property [7,8] in open loop, namely
the synchronization of r(t ) with s(t ). We distinguish training
and prediction. Training is done in open loop mode using an
input trajectory u(t ) with t ∈ [−Ts, Tt ], where Tt is the training
input sequence length and Ts is the length of initial transient to
let the r(t ), randomly initialized at t = −Ts, synchronize with
the system dynamics. After being scaled to be zero mean and
unit standard deviation, the input is linearly coupled to the
reservoir nodes via a DR × DI matrix WI , with the nonzero
entries taken as random variables uniformly distributed in
[−σ, σ ]. In open loop mode the network state r(t ) is
updated as

r(t + �t ) = tanh[WRr(t ) + WI u(t )]. (2)

In the above expression the tanh is applied elementwise
and can be replaced with other nonlinearities. The output is
computed as v(t + �t ) = WOr�(t + �t ) with the DR × DO

matrix WO obtained via linear regression by imposing WO =
arg minW {∑0�t�Tt

||v(t ) − u(t )||2 + αTr[WW T ]} to ensure
the output to be the best predictor of the next input observable.
The term proportional to α is a regularization, while r� is a
function of the reservoir state. Here, we take r∗

i (t ) = ri(t ) if
i is odd and r∗

i (t ) = r2
i (t ) otherwise [32]. Once WO is deter-

mined, we switch to prediction mode. Given a short sequence
of measurements, in open loop, we can synchronize the reser-
voir with the dynamics (2), and then close the loop letting
u(t ) ← v(t ) = WOr�(t ) in Eq. (2). This way Eq. (2) becomes
a fully data-driven effective model for the time signal to be
predicted. The resulting model, and thus its performances,
will implicitly depend both on the hyperparameters (d, ρ, and
σ ) defining the RNN structure and the I-to-R connections and
on the length of the training trajectory (Tt ). The choices of
these hyperparameters are discussed in Appendix A.

C. Hybrid implementation

So far we assumed no prior knowledge of the dynamical
system that generated the input. If we have an imperfect
model for approximately predicting the next outcome of the
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observables u(t ), we can include such information in a hybrid
scheme by slightly changing the input and/or output scheme
to exploit this extra knowledge [15,16]. The idea of blending
machine learning algorithms with a physics informed model
is quite general and it has been exploited also with methods
different from reservoir computing; see, e.g., Refs. [33–35].

Let ℘[u(t )] = û(t + �t ) be the estimated next outcome of
the observable u(t ) according to our imperfect model. The
idea is to supply such information in the input by replacing
u(t ) with the column vector (u(t ),℘[u(t )])T , thus doubling
the dimensionality of the input matrix. For the output we
proceed as before. The whole scheme is thus as the above one
with the only difference being that WO is now a DR × DI/2.
The switch to the prediction mode is then obtained using
(WOr�(t ),℘[WOr�(t )])T as input in Eq. (2).

It is worth noticing that other hybrid schemes are possi-
ble; e.g., in Ref. [15] the output has the form v(t + �t ) =
WO(r�(t ),℘[u(t )])T , namely a combination of the predic-
tion based on the network and on the physical model. In
Appendix C we comment further on our choice and we com-
pare it with the scheme proposed in Ref. [15].

III. RESULTS FOR A TWO TIME SCALES SYSTEM

We now consider the model introduced in Ref. [36] as a
caricature for the interaction of the (fast) atmosphere and the
(slow) ocean. It consists of two Lorenz systems coupled as
follows:

⎧⎨
⎩

Ẋ = a(Y − X ),
Ẏ = RsX − ZX − Y − εsxy,
Ż = XY − bZ,

(3)

⎧⎨
⎩

ẋ = ca(y − x),
ẏ = c(R f x − zx − y) + ε f Y x,
ż = c(xy − bz),

(4)

where Eqs. (3) and (4) describe the evolution of the slow
and fast variables, respectively. We fix the parameters as in
Ref. [36]: a = 10, b=8/3, Rs =28, R f =45, εs =10−2, and
ε f =10, while for the time scale separation parameter, c, we
use c=10 (as in Ref. [36]) and c=3. The former corresponds
to a scale separation such that the adiabatic approximation al-
ready provides good results (see below). Moreover, for c=10,
the error growth on the slow variables is characterized by
two exponential regimes [36]: The former with rate given by
the Lyapunov exponent of the full system λ f ≈11.5, and the
latter by λs ≈0.85, controlled by the fast and slow instabilities,
respectively. This decomposition can be made more rigorous
as shown in Ref. [37] for a closely related model.

We test the reservoir computing approach inputting the
slow variables, i.e., u(t ) = [X (t ),Y (t ), Z (t )]. In open loop,
we let the reservoir synchronize with the input; subsequently
we perform the training and optimize WO as explained earlier.
Then, to test the prediction performance we consider 104

initial conditions, for each of which we feed the slow variables
to the network in open loop and record, from t =−Ts to t =0,
the one step (log10)error E (t )= log10 ‖v(t ) − u(t )‖, with v(t )
being the one-step network forecast (output).

Initially, the average (log10)error 〈E (t )〉 decreases linearly
as shown in the gray regions of Figs. 2(a) and 3(a), which
is a visual proof of the echo state property. Then, it reaches
a plateau—the synchronization error ES—which can be in-
terpreted as the average smallest (log10)error on the initial
condition and the one step error prediction.

FIG. 2. Prediction error growth for a single realization of a network of DR =500 neurons. (a) Average (over 104 initial conditions)
(log10)error 〈E (t )〉 vs time during synchronization (open loop, gray region) and prediction (closed loop) for c=10 and �t =0.1: The yellow
shaded area circumscribes the twin and random twin model predictions (see text); reservoir computer prediction (solid, black curve) compared
with that of the truncated model (purple, dotted curve), of the model fast variables replaced by their average (blue, dash dotted curve) and
model (5) (red, dashed curve). The inset shows the same (closed loop only) for �t =0.01. (b) An instance of a prediction experiment, showing
the reference (dash dotted, light blue curves) evolution of the X (top) and Z (bottom) variables of the coupled Lorenz model (3) together with
the prediction obtained via the reservoir (black, solid curve) and the adiabatic model (dashed, red curve). For details on hyperparameters see
Appendix A6.
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FIG. 3. Same as Fig. 2 for the case c = 3.

At the end of the open loop, after synchronization, we
switch to the prediction (closed loop) configuration and com-
pute the (log10)error growth between the network prediction
and the reference trajectory. Moreover, we take the output
variables at the end of the open loop and use them as initial
conditions for other models (discussed below) which are used
as a comparison. First, we consider the perfect model with an
error on the initial condition, i.e., Eqs. (3) with the slow vari-
ables set equal to the network-obtained values at t = 0, i.e., at
the end of the open loop. By construction, the network does
not forecast the fast variables, which are thus initialized either
using their exact values from the reference trajectory (twin
model), which is quite “unfair,” or random values (random
twin) from the stationary measure on the fast attractor with
fixed slow variables. Then we consider increasingly refined
effective models for the slow degrees of freedom only: A
“truncated” model, Ẋ =FT (X ), obtained from Eqs. (3) by
setting εs =0; a model in which we replace the fast variables
in Eqs. (3) with their global average; the adiabatic model in
which fast variables are averaged with fixed slow variables,
which amounts to replacing εsxy in the equation for Ẏ with
(see Appendix B for details on the derivation)

εs〈xy〉X = (1.07+0.26Y/c) �(1.07+0.26Y/c) , (5)

where � denotes the Heaviside step function.
In Fig. 2 we show the results of the comparison between

the prediction obtained with the reservoir computing ap-
proach and the different models above described for c = 10,
with sampling time �t = 0.1 [and �t = 0.01 in the inset of
Fig. 2(a)]. Figure 2(a) shows that eliminating the fast degrees
of freedom (truncated model) or just considering their average
effect leads to very poor predictions, while the prediction of
the reservoir computer is comparable to that of the adiabatic
model (5), as qualitatively shown in Fig. 2(b) (whose top
and bottom panels show the evolution of the slow variables
X and Z for the reference trajectory and the predictions ob-
tained via the reservoir and adiabatic model). Remarkably, the
reservoir-based model seems to even slightly outperform the
twin model, a fact we understand as follows: By omitting fast

components, one does not add fast decorrelating fluctuations
to those intrinsic to the reference trajectories, thus reducing
effective noise. Notice that the zero error on fast components
of the twin model is rapidly pushed to its saturation value by
the error on the slow variables. The sampling time �t =0.1 is
likely playing an important role during learning by acting as a
low passing filter. Indeed the comparison with the twin model
slightly deteriorates for �t =0.01 [see Fig. 2(a) inset].

Figure 3 shows the results for c=3. Here, the poor scale
separation spoils the effectiveness of the adiabatic model (5)
while the prediction obtained via the reservoir computing ap-
proach remains effective, as visually exemplified in Fig. 3(b)
and quantified in Fig. 3(a). Notice that, however, the network
predictability deteriorates with respect to the previous case
and the twin model does better, though the reservoir still
outperforms the random twin model. This slight worsening
is likely due to the fact that discarded variables are not fast
enough to average themselves out, making the learning task
harder. Nevertheless, the network remains predictive.

A. Which effective model has the network built?

We now focus on the cases c=10 and �t =0.01, for which
we can gain some insights into how the network works by
comparing it to the adiabatic model (5). The sampling time
is indeed small enough for time differences to approximate
derivatives. In Fig. 4 we demonstrate that the network in fact
generates an effective model akin to the adiabatic one (5).
Here we show a surrogate of the residual time derivative of
Y , meaning that we removed the truncated model derivative,
as a function of Y :

�˜̇Y = Y (t + �t ) − Y (t )

�t
− YT (t + �t ) − Y (t )

�t
. (6)

The expression in Eq. (6) provides a proxy for how the net-
work has modeled the term −εsxy in Eqs. (3). The underlying
idea is as follows. We let the network evolve in closed loop,
at time t it takes as input the forecasted slow variables v(t )=
[X̂ (t ), Ŷ (t ), Ẑ (t )], and it outputs the next step forecast v(t +
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FIG. 4. Residual derivatives (6) vs Y for c=10 and �t =0.01,
computed with the network (black dots), the multiscale model (5)
(yellow, dashed line), and the full dynamics (gray dots). For details
on hyperparameters see Appendix A6.

�t )= [X̂ (t +�t ), Ŷ (t +�t ), Ẑ (t +�t )]. We then use v(t ) as
input to the truncated model, and evolve it for a time step �t
to obtain [XT (t + �t ),YT (t + �t ), ZT (t + �t )]. Equation (6)
is then used to infer how the network models the coupling
with the fast variables. Evolving by one time step v(t ) using
Eqs. (5) and then again employing (6) we, obviously, obtain
the line −1.07 − 0.26Y [dashed in Fig. 2(c)]. The network
residual derivatives (black dots in Fig. 4) distribute on a nar-
row stripe around that line. This means that the network, for
wide scale separation, performs an average conditioned on
the values of the slow variables. For c = 10, such conditional
average is equivalent to the adiabatic approximation (5), as
discussed in Appendix B. For comparison, we also show the
residual derivatives (6) computed with the full model (3), (4)
(gray dots), which display a scattered distribution, best fitted
by Eq. (5). For c = 3, while the adiabatic approximation is
too rough, remarkably the network still performs well even
though it is more difficult to identify the model it has built,
which will depend on the whole set of slow variables (see
Appendix B for a further discussion).

B. Predictability time and hybrid scheme

So far we focused on the predictability of a quite large
network [DR =500 as compared to the low dimensionality of
Eqs. (3) and (4)]. How do the network performances depend
on the reservoir size DR?

In Fig. 5 we show the DR dependence of the average
(over reservoir realizations and initial conditions) predictabil-
ity time, Tp, defined as the first time the error on the prediction
reaches the threshold value �∗ = 0.4〈||X ||2〉1/2. For DR �
450, the predictability time saturates, while for smaller reser-
voirs it can be about threefold smaller and, in addition, with
large fluctuations mainly due to unsuccessful predictions, i.e.,
instances in which the network is unable to properly model
the dynamics (see Fig. 6). Remarkably, implementing the
hybrid scheme, even with a poorly performing predictor such
as the truncated model, the forecasting ability of the network

FIG. 5. Average predictability time, Tp, normalized with the slow
finite size Lyapunov exponent λs (left scale) and with the (fast)
maximal Lyapunov exponent λ f (right scale), versus reservoir size
DR (hyperparameters for the hybrid implementation are the same as
the reservoir only approach which are discussed in Appendix A6) for
reservoir only (purple circles) and hybrid scheme (green squares),
system parameters c=10 and �t =0.1. Error bars denote statistical
standard deviation over 20 independent network realizations, each
sampling 103 initial conditions. Inset: Tpλs vs synchronization aver-
age (log10)error 〈ES〉. The slope of the black line is −1 corresponding
to the slow perturbation growth rate λs.

improves considerably (as also shown in Fig. 5). In partic-
ular, with the hybrid scheme, saturation is reached earlier
(for DR � 300) and, for smaller reservoirs, the predictability
time of the hybrid scheme is longer. Moreover, the hybrid
scheme is less prone to failures even for small DR; hence
fluctuations are smaller (see Fig. 6). Note that the chosen
hybrid design ensures that the improvement is only due to
reservoir capability of building a better effective model, re-
ducing the average synchronization (log10)error 〈ES〉 (see the
insets of Fig. 5 and 6, and the discussion in Appendix C),
and thus the error on the initial condition of the slow vari-
ables. Indeed, in the inset of Fig. 5 we also show the slope
predicted on the basis of the slow perturbation growth rate,
λs [36].

The above observations boil down to the fact that the
difference between the hybrid and reservoir only approach
disappears at increasing DR as the same plateau values for
both synchronization error and predictability time are reached.
In other terms, if the reservoir is large enough, adding the extra
information from the imperfect model does not improve the
model produced by the network. These conclusions can be
cast in a positive message by saying that using a physically
informed model allows for reducing the size of the reservoir
to achieve a reasonable predictability and hence an effec-
tive model of the dynamics with a smaller network, which
is important when considering multiscale systems of high
dimensionality.

We remark that in Fig. 5 the predictability time Tp was
made nondimensional either using the growth rate of the slow
dynamics λs (left scale of Fig. 5), or using the Lyapunov ex-
ponent λ f of the full system (right scale) which is dominated
by the fast dynamics. For large networks the predictability
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FIG. 6. Nondimensional predictability time Tpλs of 20 network
realizations (each averaged over 104 initial conditions), in reservoir
only (purple circles) and hybrid scheme (green squares), as a function
of the reservoir size DR. The solid curves display the average over all
realizations, already presented in Fig. 3. Notice that, in the reservoir
only scheme, a number of outliers are present for DR � 400; these
correspond to “failed” networks that make poor medium term predic-
tions or even fail to reproduce the climate. Remarkably, such failures
are not observed in the hybrid scheme. Inset: 〈ES〉, i.e., the average
(over network realizations and 104 initial conditions for each real-
ization) (log10)error at the end of the open loop versus the reservoir
size DR for the reservoir only (purple curve) and the hybrid (green
curve) scheme, respectively. Symbols display the synchronization
error in each network realization. Notice that there are no realizations
with strong departure from the average as observed in the main
panel for the predictability time: This shows that the predictability
performance is not always likened to the synchronization error (see
text for a further discussion). Data refer to the cases c = 10 and
�t = 0.1. For hyperparameters see Appendix A6.

time is as large as 5 (finite size) Lyapunov times, which cor-
responds to about 70 Lyapunov times with respect to the full
dynamics. Such a remarkably long predictability with respect
to the fastest time scale is typical of multiscale systems, where
the maximal Lyapunov exponent does not say much for the
predictability of the slow degrees of freedom [20–22].

Figures 2(a), 3(a), and 5 (inset) (see also the inset of
Fig. 6) show that it is hard reaching synchronization error
below 10−2. Even when this happens it does not improve
the predictability, as the error quickly (even faster than the
Lyapunov time) rises to values O(10−2). Indeed, such an error
threshold corresponds to the crossover scale between the fast-
and slow-controlled regime of the perturbation growth (see
Fig. 2 in Ref. [36]). In other terms, pushing the error below
this value requires the reservoir to (partially) reconstruct also
the fast component dynamics.

C. Role of the synchronization error

In the previous section, we have used the average pre-
dictability time, Tp, as a performance metrics. If we interpret
the synchronization error (at the end of the open loop) as the
error on the initial conditions, since the system is chaotic,
we could naively think that reducing such an error always

enhances the predictability. Consequently, one can expect the
size of such error to be another good performance metrics. In
the following, we show that this is only partially true.

Obviously, to achieve long term predictability the small-
ness of the synchronization error is a necessary condition.
Indeed the (log)error at the end of the open loop cycle, ES ,
puts an upper limit to the predictability time as

Tp �
1

λs
[log10(�∗) − ES], (7)

as confirmed by the solid line in the inset of Fig. 5. How-
ever, it is not otherwise very informative about the overall
performance. The reason is that the value of ES , which can
also be seen as the average error on one step predictions,
does not provide information on the structural stability of
the dynamics. Indeed, for a variety of hyperparameter values,
we have observed low ES resulting in failed predictions: In
other terms the model built by the network is not effective in
forecasting and in reproducing the climate. In these cases, the
network was unable to generate a good effective model, as
shown in Fig. 6: This typically happens for relatively small
DR in the reservoir only implementation.

In a less extreme scenario, the error ES can be deceptively
lower than the scale at which the dynamics has been properly
reconstructed. This latter case is relevant to the multiscale
setting since, as outlined at the end of the previous section,
fast variable reconstruction is necessary to push the initial
error below a certain threshold. In some cases, we did observe
the synchronization error falling below the typical value 10−2

but immediately jumping back to it, implying unstable fast
scale reconstruction [for instance, see c = 3, �t = 0.01 in
Fig. 3(a)].

As a consequence of the two above observations, ES is an
unreliable metric for hyperparameter landscape exploration as
well. We also remark that, even if fast scales were modeled
with proper architecture and training time, and ES could be
pushed below the crossover with an actual boost in perfor-
mance, such improvements would not dramatically increase
the predictability time of the slow variables, since they are
suppressed by the global (and greater, as dominated by the
fast degrees of freedom) Lyapunov exponent. This situation
as discussed above is typical of multiscale systems.

IV. CONCLUSIONS

We have shown that reservoir computing is a promising
machine learning tool for building effective, data-driven mod-
els for multiscale chaotic systems able to provide, in some
cases, predictions as good as those that can be obtained with
a perfect model with error on the initial conditions. Moreover,
the simplicity of the system allowed us to gain insights into the
inner work of the reservoir computing approach that, at least
for large scale separation, is building an effective model akin
to that obtained by asymptotic multiscale techniques. Finally,
the reservoir computing approach can be reinforced by blend-
ing it with an imperfect predictor, making it perform well
also with smaller reservoirs. While we have obtained these
results with a relatively simple two-timescale model, given
the success of previous applications to spatially extended sys-
tems [11], we think the method should work also with more
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complex high dimensional multiscale systems. In the latter,
it may be necessary to consider multireservoir architectures
[38] in parallel [11]. Moreover, reservoir computing can be
used to directly predict unobserved degrees of freedom [39].
Using this scheme and the ideas developed in this work it
would be interesting to explore the possibility to build novel
subgrid schemes for turbulent flows [40,41] (see also Ref. [16]
for a very recent attempt in this direction based on reservoir
computing with hybrid implementation); preliminary tests
could be performed in shell models for turbulence for which
physics only informed approaches have been only partially
successful [42].
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APPENDIX A: DETAILS ON THE IMPLEMENTATION

1. Intrareservoir (R-to-R) connectivity matrix WR

The intrareservoir connectivity matrix, WR, is generated
by drawing each entry from the same distribution. Each el-
ement is the product of two random variables Wi j = a ∗ b : a
being a real uniformly distributed random number in [−1, 1]
and b taking values 1 or 0 with probability Pd = d/DR and
1 − Pd , respectively. Consequently, each row has, on average,
d nonzero elements. Since DR � d , the number of non-null
entries per row is essentially distributed according to a Pois-
son distribution. As a last step, the maximal eigenvalue (in
absolute value) ρmax(W ) of the resulting matrix W is com-
puted and the matrix is rescaled elementwise so that its new
spectral radius matches the target value ρ, i.e.,

WR = W
ρ

ρmax(W )
.

2. Input-to-reservoir (I-to-R) connectivity matrix WI

The input to reservoir matrix WI is generated in such a way
that each reservoir node is connected to a single input. For this
purpose, for each row j, a single element n j , uniformly chosen
between 1 and the input dimension DI , is different from zero.
This means that the reservoir node j is only connected to the
nth

j input node. The connection strength is randomly chosen in
[−σ, σ ] with uniform distribution.

3. Optimization of the output matrix WO

The output matrix WO is obtained via optimization. As
explained in Sec. II B, WO should be chosen so that the output
v(t ) = WO r∗(t ) is, on average, as close as possible to the
input signal u(t ). Incidentally, we remark that the use of r∗
instead of simply r is relevant to achieve accurate forecasting
and is heuristically motivated by the need to add some non-
linearity in the network [7]. The particular choice we adopted,

r∗
i = ri or r2

i for i odd or even, respectively, was suggested in
Refs. [10,12] in view of the symmetries of the Lorenz model.

As for the optimization of WO, we require that it should
minimize the cost function

L = 1

Tt

∑
0�t�Tt

‖WO r∗(t ) − u(t )‖2 + α tr
[
WO W T

O

]
, (A1)

where T denotes the transpose and Tt is the length of the
training input, whose choice is discussed below. We point
out that the sum appearing in Eq. (A1) is a delicate quantity:
We have observed that moderate errors compromise the final
performance. For this reason, the Kahan summation has been
employed in order to boost numerical accuracy. The solution
of the minimization of Eq. (A1),

W opt
O so that

dL
dW T

O

∣∣∣∣
W opt

O

= 0,

is

W opt
O = 〈u ⊗ r∗T 〉 (α IDR + 〈r∗ ⊗ r∗T 〉)−1,

where 〈·〉 denotes the empirical average 1
Tt

∑
t , ⊗ denotes the

outer product, and IDR denotes the DR × DR identity matrix.
The addendum proportional to α in Eq. (A1) is the Tikhonov
term, which is an L2 regularization on WO. The Tikhonov reg-
ularization improves the numerical stability of the inversion,
which could be critical if the ratio between the largest and
the smallest (in absolute value) eigenvalues, ρmax and ρmin, is
too large and the latter would behave as a (numerical) null
eigenvalue [43], as it is the case for the dynamics we are
studying. Here we have used α = 10−8.5, which empirically
was found to lead to log10(ρmax/ρmin) ≈ 10.

4. Synchronization time and length of the training
input trajectory

All results presented in this article have been obtained
using training trajectories of length Tt = 500. We remark that
using values 100 � Tt � 1000 one can hardly notice qualita-
tive differences. At low training times, failures can be very
diverse, ranging from tilted attractors to periodic orbits or
spurious fixed points. The chosen values of Tt have been tested
to be in the range that guarantees long term reconstruction of
the attractor with proper hyperparameters. As for the synchro-
nizing length, we have chosen Ts = 4. Such value is about four
times larger than the time actually needed to achieve the best
possible synchronization indeed, as shown in the gray shaded
areas of Figs. 2(a) and 3(a), the error E saturates to ES in about
a time unit.

5. Numerical details

The whole code has been implemented in python3, with
linear algebra performed via numpy. Numerical integration of
the coupled Lorenz model was performed via a fourth order
Runge Kutta scheme.

6. Fixing the hyperparameters

The architecture of a generic network is described by a
number of parameters, often dubbed hyperparameters, e.g.,
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the number of layers, activation functions, etc. While a proper
design is always crucial, in the reservoir computing paradigm,
this issue is especially critical due to the absence of global
optimization via backpropagation. The reservoir-to-reservoir
and input-to-reservoir connectivity matrices, as discussed
above, are quenched stochastic variables, whose distribution
depends on four hyperparameters:

Net ∼ P(σ, ρ, d, DR),

namely, the strength of the I-to-R connection matrix σ , the
spectral radius ρ of the R-to-R connection matrix, the degree
d of the R-to-R connection graph, and the reservoir size DR.
Once the distribution is chosen, there are two separate issues.

The first is that, for a given choice of (σ, ρ, d ), the network
should be self-averaging if its size DR is large enough. Indeed,
we see from Fig. 6 that the variability between realizations
decreases with DR, as expected.

The second issue is the choice of the triple (σ, ρ, d ). In
general, the existence of a large and nearly flat (for any reason-
able performance metrics) region of suitable hyperparameters
implies the robustness of the method. As for the problem
we have presented, such a region exists, even though, in the
case �t = 0.1, c = 10, moderate fine-tuning of the hyperpa-
rameters did improve the final result, allowing one to even
(moderately) outperform the fully informed twin model, as
shown in Fig. 2(a).

It is important to remark that the characteristics of the re-
gions of suitable hyperparameters depend on the used metric.
Here, we have focused on medium term predictability, i.e.,
we evaluate the error between forecasted and reference slow
variables at a time (after synchronization) that is much larger
than one step �t but before error saturation (corresponding
to trajectories completely uncorrelated). Requiring a too short
time predictability, as discussed in Ref. [12], typically is not
enough for reproducing long time statistical properties of the
target system (i.e., the so called climate), as the learned at-
tractor may be unstable even if the dynamical equations are
locally well approximated. If both short term predictability
and climate reproduction are required, the suitable hyperpa-
rameter region typically shrinks. The metric we used typically
led to both predictability and climate reproduction, at least for
reservoir sizes large enough.

In order to fix the parameters, two techniques have been
employed. The first is the standard search on a grid (for a rep-
resentative example, see Fig. 7): A lattice is generated in the
space of parameters; then each node is evaluated according to
some cost function metrics. If such function is regular enough,
it should be possible to detect a suitable region of parameters.
While this default method is sound, it may require one to train
many independent networks, even in poorly performing re-
gions. Each network cannot be too small for two reasons: The
first is that small networks suffer from higher inter-realization
fluctuations; the second is that we cannot exclude that optimal
(σ, ρ, d ) have a loose dependence on the reservoir size DR. As
further discussed below we found a mild dependence on the
network degree d , provided it is not too large; thus in Fig. 7
we focused on the dependence on ρ and σ .

The second technique is the no gradient optimization
method known as particle swarming optimization (PSO)
[44]. PSO consists in generating n (we used n = 10)

FIG. 7. Performance grid for c = 3, �t = 0.1, N = 350, and
d = 5. Colors code error between forecasted and reference trajectory
at time t = 5 after closing the loop, which if the metrics here used
f = ‖X forecast (t = 5) − X true(t = 5)‖ (averaged over 100 points of
the attractor) for a single realization of the network for a given value
of parameters (ρ, σ ). To highlight the suitable parameter region, a
cutoff has been put at f = 1.

tuples of candidate—the particles—parameters, say pi =
(ρi, σi, di ), i = 1, . . . , n. At each step, each candidate is
tested with a given metrics f . Here, we used the average (over
50–100 initial conditions) error on the slow variables after
t = 2, 4, 5 (depending on the parameters) in the close loop
configuration. Then, at each iteration k of the algorithm, each
candidate is accelerated towards a stochastic mixture of its
own best performing past position

p∗
i (k) = arg min

pi (s)
{ f (pi(s))|s < k}

and the overall best past performer

p∗(k) = arg min
p∗

i (k)
{ f (p∗

i (k))|i = 1, . . . , n}.

Particles are evolved with the following second order time
discrete dynamics:

pi(k + 1) = pi(k) + vi(k),

vi(k + 1) = wvi(k) + φ1
i (k) [p∗

i (k) − pi(k)]

+φ2
i (k) [p∗(k) − pi(k)],

with φ
j
i (k) ∈ [0, 1] being random variables and w ∈ [0, 1]

representing a form of inertia, as implemented in the python
library pyswarms. After a suitable amount of iterations, p∗
should be a valid candidate. The advantage of PSO is that,
after a transient, most candidate evaluations (each of which
require one to initialize, train, and test at least one network)
should happen in the good regions. It is worth pointing out
that, unless self-averaging is achieved thanks to large enough
reservoir sizes, internetwork variability adds noise to limited
attractor sampling when evaluating f and, therefore, fluctua-
tions may appear and trap the algorithm in suboptimal regions
for some time. Moreover, the algorithm itself depends on
some hyperparameters that may have to be optimized them-
selves by hand.

In our study, PSO has been mainly useful in fixing param-
eters in the (�t = 0.1, c = 10) case and to observe that d is

052203-8



EFFECTIVE MODELS AND PREDICTABILITY OF … PHYSICAL REVIEW E 102, 052203 (2020)

TABLE I. Hyperparameters used in the simulations: �t is the
sampling time, c is the time scale separation of the multiscale Lorenz
model Eqs. (3) and (4), σ is the input-to-reservoir coupling strength,
ρ is the spectral radius of the reservoir-to-reservoir connectivity
matrix, and d is its degree. For the hybrid implementation, discussed
in Sec. II C and Appendix C, we used the same hyperparameters.

�t = 0.1 �t = 0.01

c = 3
d = 5
σ = 2
ρ = 0.35

d = 5
σ = 2.5
ρ = 0.25

c = 10
d = 5
σ = 1.8
ρ = 0.34

d = 5
σ = 0.8
ρ = 0.68

the parameter which affects the performance the least. Some
gridding (especially in ρ and σ ) around the optimal solution
is useful, in general, as a cross-check and to highlight the
robustness (or lack thereof) of the solution.

In Table I we summarize the hyperparameters used in our
study.

APPENDIX B: MULTISCALE MODEL FOR THE TWO
TIME SCALES COUPLED LORENZ SYSTEMS

In this Appendix we show how Eq. (5) was derived. Fol-
lowing the notation of Eqs. (1), we will denote with X and
x the slow (X,Y, Z ) and fast (x, z, y) variables, respectively.
Our aim is to provide a model of the fast variables in Eqs. (3)
in terms of the slow ones. When the scale separation is very
wide, we can assume that x equilibrates, i.e., distributes ac-
cording to a stationary measure, for each value of the slow
variables X—adiabatic principle—and we call the expected
values with respect to such a measure 〈·〉X . We stress that the
adiabatic approach requires a wide scale separation (c � 1)
in order to work. In this limit, since only Y enters the dy-
namics of the fast variables, solely the value of Y will matter
in building the adiabatic approximation, i.e., 〈·〉X ≡ 〈·〉Y . In
general, for moderate scale separation, this is not the case and
a “closure” of the fast variables depending on the whole set
of slow variables would be required, which is a much harder
task.

In order to model 〈xy〉X , we first impose stationarity, i.e.,
〈ẋ〉X = 0, which, applied to the third line of Eqs. (4), yields

〈xy〉X = b〈z〉X . (B1)

Inserting the result (B1) in the equation for Y in Eqs. (3)
we obtain Ẏ = RsX − ZX − Y − εs b 〈z〉X . Now we need to
determine 〈z〉X . For this purpose, we notice that the equation
for ẏ in Eqs. (4) can be rewritten as

ẏ = c[Rx − zx − y] with R = R f + ε f

c
Y. (B2)

Exploiting the adiabatic principle we assume Y (the slow
variable) as fixed so that Eqs. (4) with the second equation
substituted with Eq. (B2) become the standard Lorenz model,
apart from an inessential change of time scale. Thus we can
now evolve the standard Lorenz model and compute 〈z〉R

[where R is just to recall the R dependence that will be re-

FIG. 8. 〈z〉R vs R numerically computed in the standard Lorenz
system (symbols). Notice that the curve is well approximated, in the
range of interest, by the piecewise linear function in Eqs. (B3); see
legend.

flected in a Y dependence via Eq. (B2)], which is shown in
Fig. 8. As one can see 〈z〉R depends on R approximately as
follows:

〈z〉R ≈
⎧⎨
⎩

0, R < 1,

R − 1, 1 � R � 24.74,

0.976R − 3.614, R � 24.74.

(B3)

We recall that Rc = 24.74 is the critical value at which the
fixed point

z∗ = (R − 1)�(R − 1) (B4)

(where � is the Heaviside step function) loses its stability.
Remarkably, 〈z〉R remains close to z∗ also for R > Rc. The
second expression in Eqs. (B3), or equivalently Eq. (B4),
yields

〈xy〉Y = b[R f − 1 + (ε f /c)Y ]�[R f − 1 + (ε f /c)Y ]. (B5)

Using the numerical values of the constants (b = 8/3, R f =
45, and ε f = 10), the above expression provides the estimate
〈xy〉Y ≈ (117.33 + 26.67Y/c) �(117.33 + 26.67Y/c), while
using the third expression of Eqs. (B3) yields model (5) that
we used to compare with the network, i.e.,

〈xy〉Y = (107.5+26.04Y/c) �(107.5+26.04Y/c). (B6)

For c = 10, the latter expression is very close to the (nu-
merically obtained) conditional average 〈xy|Y 〉 [Fig. 9(a)],
confirming that the scale separation is wide enough for the
adiabatic approximation to work almost perfectly. We notice
that for c = 10 the typical range of variation of Y is such that
R mostly lies in the region of the third branch of Eqs. (B3),
explaining the validity of the approximation.

Conversely, for the case c = 3, as shown in Fig. 9(b) the
approximation is much cruder and important deviations are
present especially for large positive values of Y . Indeed, in
general,

〈xy〉X �= 〈xy|X〉,
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FIG. 9. Numerically computed conditional averages (symbols)
〈xy|Y 〉 for (a) c = 10 and (b) c = 3 and the corresponding multiscale
(adiabatic) averages 〈xy〉Y given by Eqs. (B6) (solid curve). For
c = 10 the two curves overlap.

i.e., multiscale average obtained via the adiabatic principle
and the conditional average are not equivalent since, in gen-
eral, 〈ẋ|X〉 �= 0. In this case the values of all slow variables
will matter in building a proper effective model, a hard task
even for the simple Lorenz model here considered. How-
ever, as shown in Fig. 3, even in this case the reservoir
computing approach is quite performing even though it is
not straightforward to decipher the model it was able to
devise.

APPENDIX C: DISCUSSION ON VARIOUS HYBRID
SCHEME IMPLEMENTATIONS

The hybrid scheme discussed in Sec. II C allows for high-
lighting the properties of the reservoir, but it is just one among
the possible choices. Here, we briefly discuss three general
schemes.

Let us assume, for simplicity, that our dynamical system,
with state variables s = (s1, . . . , sn), is described by the equa-
tion s(t + 1) = f (s(t )), which is unknown. Here, without loss
of generality, we use discrete time dynamics and that we want
to forecast the whole set of state variables; this is just for
the sake of simplicity of the presentation. Provided we have

FIG. 10. Average (over 104 initial conditions) predictability
times are shown for reservoir only and two hybrid implementations
(�t = 0.1 and c = 10). The green line corresponds to the hybrid
scheme (C2), blue lines to the hybrid scheme (C3), and purple lines
to the reservoir only baseline.

an imperfect model, s(t + 1) ≈ f m(s(t )), for its evolution, we
have basically three options for building a hybrid scheme.

A first possibility is to approximate via machine learning
only the part of the signal that is not captured by the model
f m(s(t )). In other terms, one writes a forecast as

ŝ(t + 1) = f m(s(t )) + δn(s(t )), (C1)

where the residual δn is given by the network, and can
be learned from a set of input-output pairs {s(t ), s(t + 1) −
f m(s(t ))}0

t=−T according to some supervised learning algo-
rithm. In our framework, the hybrid network should be trained
with the usual input but with target output given by the differ-
ence between the true value of s(t + 1) and the model forecast
f m(s(t )).

A second possibility is to add the available model predic-
tion f m(s(t )) to the input s(t ), obtaining an augmented input
(s(t ), f m(s(t ))) for the network. In this case, the forecast reads
as

ŝ(t + 1) = f n(s(t ), f m(s(t ))). (C2)

Clearly, if the model based prediction is very accurate, the
network will try to approximate the identity function. The
network should be trained with a set of input-outputs pairs
{[s(t ), f m(s(t ))], s(t + 1)}0

t=−T . This is the approach we have
implemented in this article, in order to evaluate the perfor-
mance of the reservoir.

A third possibility is to combine the two previous options,
which is the approach followed in Ref. [15]. In this case, the
forecast is obtained as

ŝ(t + 1) = A f m(s(t )) + Bδn(s(t ), f m(s(t ))), (C3)

where the matrices A and B should be optimized, along with
δn. This last option is a special case of the second scheme, de-
scribing a residual multilayered neural network with a linear
output layer.

For the sake of completeness, in Fig. 10 we show how this
last architecture compares with the one we used in Figs. 5
and 6 in terms of predictability. It consists in taking the opti-
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mized linear combination of the predictions from the hybrid
net and the imperfect model. Namely, one augments the r∗
array as r̃∗ = (r∗, f m) and then optimizes WO to achieve v(t +
1) = ŝ(t + 1) ≈ WOr̃∗(t ). As one can see, the main effect

is to slightly shift the predictability-vs-size curve leftward,
meaning that optimal performance can be achieved with a
slightly smaller network. However, the improvement quickly
disappears when the reservoir size increases.
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