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Random dynamical models obtained as a perturbation of the GOY (Gledzer- 
Ohkitani-Yamada) shell model for three-dimensional turbulence are defined. 
Both static (time-independent) and dynamical scaling properties of the ran- 
domly perturbed model are studied. The random static-inviscid manifold, in 
contrast to the dynamical evolution, does not show intermittent scaling laws. 
This behavior is linked to the absence of large deviation in the random-map 
connecting fluctuations of velocities at different scales. The importance of 
inviscid conserved quantities on the intermittent statistics is discussed. Different 
random dynamical perturbations such that only energy is conserved in the 
inviscid and unforced limit are investigated, lntermittency is weakly affected by 
random perturbations. 

KEY WORDS: Fully developed turbulence; intermittency; random maps; 
large deviations. 

1. I N T R O D U C T I O N  

The understanding of the small-scale statistics of three-dimensional fully 
developed turbulence is one of the main open problems of classical physics. 
The phenomenological theory of Kolmogorov (K41) and its sequent multi- 
fractal modification (see ref. 1 for a recent overview) give a qualitatively 
correct description of the main mechanisms acting at very high Reynolds 
numbers. One of the main goals is to understand the origin of scaling 
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laws for structure functions, Sp(r), defined as the moments of velocity 
increments at scale r. Experiments ~2) show that structure functions scale as: 

Sp(r)--~<lv(x+r)-v(x)lP>~<lc~rvlP>,.~r r162 r= l r l  (I) 

if r is chosen in the inertial range, i.e. much smaller then the integral scale 
and much larger than viscous scales. There are strong experimental evi- 
dences that ((p) scaling exponents differ from the Kolmogorov dimensional 
result: ( (p )=  p/3. In the past, different multifractal random models for the 
energy transfer mechanism have been proposed/3"2~ All these models are 
able to fit with good accuracy the intermittent deviations from K41 theory. 
Deviations from K41 law are due to a non-trivial intermittent energy- 
transfer mechanism from large to small scales. In the above approaches one 
basically uses phenomenological and probabilistic ideas without any direct 
link with the dynamical evolution given by the Navier-Stokes equations. 

In order to go beyond the multifractal phenomenological descriptions 
one can approach the problem in two possible ways: 

(i) analytical theory from first principles; 

(ii) direct numerical simulations of the Navier-Stokes equations. 

The difficulties of an analytical theory of fully developed turbulence 
are well known, and are common to all systems with strong nonlinearity 
and nongaussian behavior/l) Moreover, direct numerical simulations of the 
Navier-Stokes equations at very high Reynolds number are rather hard 
since the number N of degrees of freedom necessary to describe the flow 
increases as (Re)% e = 9/4 in the K41 theory. 

On the other hand, since the existence of scaling laws, one can hope 
that the degrees of freedom in fully-developed turbulence are organized in 
a hierarchical way, so that simplified dynamical systems could be relevant 
for the description of small-scale properties. Simplified dynamical model for 
the energy cascade were proposed in the early seventies by Desnyansky and 
Novikov, ~4~ and Gledzer. ~s) The first idea was to have a sort of closure 
scheme which is able to give the Kolmogorov law as a stable fixed point. 

More recently, many authors proposed and studied chaotic shell 
models.(6, 7, s, 9) The basic idea of shell models is to consider a discrete set 
of wave vector (shells) in the Fourier space and to construct a set of 
ordinary differential equations taking into account only few variables, typi- 
cally one or two, for each shell. By denoting un the "velocity" variable in 
the shell n with wave vector kn = k02% where 2 = 2 is the usual choice, we 
can think of lu.I as the velocity increments larvl, at scale r ~ k ~  1. The 
evolution equations for u, are built up according to some natural criteria: 
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(i) the linear term of u. is given by vkZu.; 

(ii) the nonlinear terms for u. are quadratic combinations of the 
form knun, Un,, ; 

(iii) in absence of forcing and viscosity one has conservation of 
energy lUn 12 and the Liouville theorem, i.e. 5Zn Ofi,/aun = 0, so that the 
volume in phase space is conserved; 

(iv) the interactions among shells are local in k-space, i.e. n' and n" 
are close to n. 

The most studied shell model has been introduced by Ohkitani and 
Yamada who used a set of complex variables (Ul,..., un) satisfying the 
equations: 

I b. c,, 1 * d __vk2un+ikn anUn+'Un+2+-2 un lUn+l"~4 un-lun-2 +fnt~n, 4 dt  U. = 

(2) 

where, in order to have energy conservation when v = f = 0, one has: 

a~= 1, bn= --~ and c . =  - ( 1  - e )  (3) 

with n = 1,..., N and boundary conditions: 

b~ =bN=C 1 =c2=aN_ 1 = a N = 0  (4) 

In the inviscid and unforced case one has, besides the energy conservation, 
another conservation law. For e < 1 there exists a helicity-like invariant: 

Hc=E(-1)nk~n ~e) lu . I  2 (5) 
n 

while for e > 1 one has an enstrophy-like (positive-defined) invariant: 

where 

O = kn lu.I 2 (6) 
n 

~(e) = - l n z  I1 - el (7) 

Let us stress that for e = 1/2 one has that H~ is a sort of "shell model 
helicity" similar to the "true" helicity H = I (k x v(k)) �9 v(k) dk conserved in 
the 3d Euler equations. For the value e = 5/4 one has f2~ = Y.. k~ z lu. 12, i.e., 
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a quantity having the same dimension and form of the enstrophy. One 
can assume that the GOY model with such a value of e mimics the 2d 
turbulence, t~~ We note that the number N of shells necessary to reach 
the Kolmogorov scale is rather small: N,,~ln Re.  Therefore, one has a 
dynamical system with a moderate number of degrees of freedom and so 
it is possible to use methods and techniques of deterministic chaos. In 
particular, it is possible to study the intermittency corrections in great 
details and to relate the traditional statistical description (e.g., in term of 
structure functions and statistical properties of the energy dissipation) with 
the dynamical properties in the phase space (e.g., Lyapunov exponents and 
dimensions of the attractor), t6' 7) 

Detailed numerical studies show that the GOY model (2) with e = 1/2 
is able to reproduce in a remarkable way many features observed in 
experiments and/or predicted by phenomenological models (e.g., the multi- 
fractal approach~7)). Among them, the most important one is the presence 
of an intermittent energy transfer leading to non-trivial scaling laws of 
structure functions. Structure functions for shell models are naturally 
defined by considering that on should describe velocity fluctuations at scale 
r =  l/k, ,:  

s,,(/~.) = ( l u .  I p) ~/ , : ;~P) (8) 

Numerical simulations of (2) with the choice of e parameter such as the 
second invariant coincides with the "helicity" (e = 1/2) have the same quan- 
titative degree of intermittency measured in real turbulent flows, i.e., the set 
of ((p) exponents measured from (8) coincides with the intermittent 
exponents found from Navier-Stokes evolution. 

Another study ~ll) concentrated on the static properties of the inviscid 
manifold of (2). GOY shell model has a K41-1ike static inviscid manifold. 
In ref. 11 the authors showed that the K41 static-scaling of Eq. (2) is stable 
under deterministic perturbation obtained by slightly modifying the 
original shell model equations (see next section). This result suggest that 
the origin of interrnittency in shell models must be found in a non-trivial 
dynamical mechanism which intermittently drives away the trajectory from 
the static K41 manifold. 

As for the intermittent dynamical properties of GOY model some 
authors~2, 13, 14) conjectured that the agreement with the experimental data 
is strongly related to the existence of the second (helicity-like) invariant (5). 
In particular, in ref. 14 the authors claim that the intermittency corrections 
disappear if the second invariant is destroyed. They support this claim 
with the numerical computation of a modified shell model with non-local 
interactions. 
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Even if intermittency in shell models can be strongly non-universal, 
we believe that it is certainly worthwhile to understand its origins. The 
dependency of intermittency on the non-linear term structure can help for 
highlighting the physical mechanisms responsible of the non-trivial energy 
transfer. 

In this paper we analyze this issue by studying a class of shell models, 
without the second conservation law, obtained by stochastically perturbing 
the non-linear terms of the original GOY model. 

Let us introduce a random version of the GOY model (2) where an, b, 
and c, are now random coefficients; in order to have the energy conserva- 
tion for v = f = 0  one has to impose the constraint: 

a . + b . + l  +cn+2=O (9) 

In our random version we substitute (3) with: 

a,,(t) = 1, b.(t)= -e~  l(t), and c~(t) = - ( 1 - e .  2(t)) (10) 

where e,,(t) are independent stochastic processes. It is easy to realize that 
if e,,(t) are not fixed in time there are not other conservation laws besides 
energy, in the inviscid non-forced limit case v = f  = 0. In the following we 
assume that en(t)= �89 where Oe, is a gaussian stochastic process 
such that 

Oen(t) = 0 and Oen(t) Oe,,(t')-- tr2O, n, e x p ( . / \  It-t'l)r, / (I1) 

In the limit rn ~ @ one has a quenched disorder. 
Another stochastic shell model for the energy cascade, rather different 

from our model, has been proposed an studied in ref. 15. 
In section 2 we shall discuss the static properties of the shell model in 

the inertial range in the limit of quenched disorder. This problem can be 
reformulated in terms of products of random matrices and can be treated 
analytically. It is rather interesting that, in spite of the disorder, one has 
not anomalous scaling, in agreement with the results obtained in the 
analogous deterministic problem. ~1~ This behaviour is connected to the 
absence of large-deviations, at least in the sense leading to anomalous 
scaling behaviour, in the probability distribution density of the variable 
describing fluctuations of shell-velocities between adjacent scales. 

Section 3 is devoted to the study of the scaling of the structure 
functions obtained from the dynamical rhodel (2), with choice (10, 11) for 
different values of tr and rn, e.g., z ,=cons t ,  or rn "~k~ 2/3 (which has the 
same scaling properties of the eddy turn over times). The differences from 
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the usual GOY model are small and indicate a strong robustness of inter- 
mittent corrections against stochastic perturbation of the non-linear terms 
of model. This result suggests that the origins of intermittency cannot be 
only connected to the presence of a second non-positive defined invariant. 

2. STATIC MANIFOLD PROPERTIES 

In this section we study the scaling properties of the inviscid-static- 
manifolds of model (2) with random coefficients. 

By noticing that model (2) has an inviscid-static-manifold with K41 
scaling, on un ~ k~-1/3, it is natural to try to understand intermittent correc- 
tions starting from the inviscid-static behaviour of the dynamical evolution 
(2). This question was already investigated in ref. 11 for the original GOY 
model. The idea is to recover from the non-linear part of the equations a 
multiplicative process which gives the scaling properties of the static solu- 
tion. In the "infinite" Reynolds number limit (v = f =  0) the static manifold 
of Eq. (2) is: 

e (1 - e )  
Un+2Un+l--2 un+lun-1 T un_lu. 2 = 0  (12) 

which can be written as a one-dimensional complex ratio-map for the 
variables wn = u./u. 3: 

e 1--e 
- -  ( 1 3 )  

w " = 2 + 4 w n  1 

The map describes a "static-cascade," connecting velocity fluctuations at 
different scales through a multiplicative process. 6 It is difficult to quantify 
apriori how many properties of this map are connected to the full time- 
dependent dynamical evolution of model (2). 

Forward iterations of map (13) converges toward the K41 fixed point, 
W K41 = 1/2, for any ee  [0, 2]. 

In ref. 11 non-trivial (chaotic) trajectories for successive iteration of 
the ratio-map were obtained by adding a deterministic small perturbation 
given by another possible shell model, the Novikov-Desnyansky modelJ 4) 
Scaling laws of the static manifold can be obtained as a product of 
successive ratios, q, = u,/u, 1. Structure functions are defined as: 

S~P)= Iq~l p ~ Iwkl p/3 ,.~k; c~p) (14) 
1 =1 

6 This is exactly in the same spirit of phenomelogical random models for the energy cascade 
as the Random-fl-ModeP 3) or the p-model) 2) 
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where w n -~-qnqn-~qn-2" In ref. 11 authors showed that the extended ratio- 
map, obtained by using a linear combination of GOY and Novikov- 
Desnyansky models, develops deterministic chaos, and ( . . . )  in (14) can be 
intended as averages over different initial conditions. The remarkable fact 
presented in ref. 11 is that, although the presence of chaos, structure func- 
tions (14) are asymptotically Kolmogorov-like, i.e., intermittent deviations 
are absent. This absence of intermittency can be connected to the absence 
of large-deviations in the probability distribution density of the variable 
obtained by multiplying n successive map iterations. Indeed, expression 
(14) can be written as: 

Sip) = ( k n~,(n) p/3) ~ k ~r162 with ~,(n)= 1 ~ log2 [wk[ (15) 
nk=l 

and, therefore, non-trivial and intermittent exponents ( ( p ) # p / 3  can be 
obtained only if the probability distribution of instantaneous scaling expo- 
nent, //(y(n)), satisfies large deviations theorem. (~1 Large deviations 
theorem for the normalized sum of n stochastic variables, y(n), says that 
the probability, ll(~,(n)), that 7(n) assumes values in the range [7, ~' + d?] 
is given, for n ~ o% by ref. 1: 

,16, 
k = l  

where S(7) is the Cramer function and has properties similar to the f(00 of 
the multifractal description, t 16) Let us notice that even if equation 16 may 
not be true, large-deviations could still hold in its general form: tiT) 

,17, 
k = l  

where a n is some increasing diverging sequence; pure scaling behaviour is 
obtained only in the case where an ~" n. In the following we shall adopt the 
term large-deviation only for the pure scaling case. From (15) and (16) we 
can define scaling exponents in the limit of an infinite-extended inertial 
range by performing a saddle point estimate: 

s(y)~ 
( ( p ) = - m a x  ?P ~-~-/ (18) 

K41 scaling, ( ( p ) = p / 3 ,  means that large deviation theorem is not 
applicable, i.e., (16) does not hold. A similar behaviour can be found in 



1124 Biferale e t  al. 

sporadic maps, a class of maps where marginally unstable fixed-point 
dominates the asymptotic dynamical behaviour/18) In shell-model ratio- 
map this would mean that K41 stable manifolds (or a submanifold of it) 
should play a marginally attractive role for the dynamics, leading to a 
failure of large deviations theorem and, as a direct consequence, to non- 
intermittent scaling behaviour. 

In the following we show that the absence-of-large-deviations found in 
ref. 11 for deterministic perturbation of (13) is still valid even in the case of 
stochastic perturbation provided that the constraint imposed by non-linear 
dynamical conservation of energy is not broken. 

Inviscid energy conservation imposes a weak structural constraint for 
the choice of the free parameters in the non-linear terms of (2). 

A stochastic quenched perturbation to the non-linear static manifold 
can be introduced by imposing that: 

a. = 1, bn = - - e n _ l , C n  -~- - (1  - e ._2 )  (19) 

where en is a stochastic process. Let us notice that in the GOY model (2) 
with choice (19) conservation of energy is still insured in the inviscid limit, 
while the second inviscid invariant is N ~2n = 1 A, [u, ] 2, where now the { A, } 
depend on the {e,} realization. 

The static inviscid manifold is now defined as: 

e n - -  1 (1 --~n 2) 
U n + 2 l g n + l - - T U n + l b l n  1 4 lg n 1/,/n_2 ~- 0 (20) 

which leads to the random ratio-map for wn = u., /u._ 3: 

w, = 7 +  1 (21) 
4%_ 1 

In what follows most of our analysis have been done by choosing en to 
be identically, independently and uniformly distributed in the interval 
[ g -  W, g+ W], where the central value g has been fixed to g= 1/2. The 
parameter W controls the strength of the stochastic perturbation. We have 
also checked that by slightly varying the probability distribution function 
of e, none of the results hereafter reported change. 

Structure functions for this random-static manifold are defined as in 
(14) with the only difference that now averages ( . . . )  must be intended 
over different realization of the random process. Different en realizations 
mimic the different paths followed by the energy transfer from large to 
small scales in a turbulent flow. 
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2.1. Structure Functions Scaling 

We have compu ted  scaling propert ies  of  the structure functions 
defined in terms of  the r a n d o m  ra t io -map  up to order  12, at  varying W in 
the range [0, 2].  Averages have been done  over  ~ 106 different realizations 
of  (el ,..., en) sequences, and by considering a huge n u m b e r  of  f ragmenta t ion  
steps, n ~ 200. 

In  Fig. 1 we show a log-log plot  of  the structure functions. As it is 
possible to see, there is a clean straight  line behaviour  in perfect agreement  
with the K o l m o g o r o v  non- in termi t tent  predict ion ~(p)=p/3 (Fig. la).  

Fig. 1. (a) Log-log plot of the structure functions S (3q) vs  kn for the random ratio-map (21) 
with e= 0.5 and W= 0.5 (solid lines) - 1.5 (dashed lines), for q = 1 ..... 4. (b) Same of Fig. (a) 
but with W= 2.0. The straight lines indicate the K41 scaling. 

822/88/5-6-9 
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Fig. lb shows that for large value of W the K41 scaling is reached only in 
the limit n ~ ~ (see discussion in Section 2.2). Therefore, we can safely 
conclude that, also by using stochastic perturbation to the GOY static 
manifold, large deviations are absent. This results is stable for different 
choices of We [0, 2] and ge [0, 2]. 

Since the stochastic nature of map (21), the absence of large deviations 
is now much more peculiar than the analogous result in ref. 11 for the 
deterministic case. 

Let us now investigate this problem by using product of random 
matrices theory. (19) By writing wn = 9n/cP~ ~ we have: 

9 . = - ~ 9 .  1+ .1-  (22) 

which can be rewritten as: 

zn =A(n) z~_ 1 (23) 

where: 

zn = , A(n) = 4 (24) 
~Pn ~ 0 

Let us stress that matrices A(n) are correlated. Indeed, the energy 
constraint introduces a dependency of A(n) entries on two successive e 
realizations. From (23) and (14) we have: 

s(nq)~ IWk[ q ~- ~gk q =  ~Onq ~ / ( I Z n  [X~q~ (25) 
, , ~ k - i  / \ \ l z o l / /  

Expression (25) connects the asymptotic properties of the product 
WnWn I ' ' 'Wl  with the asymptotic properties of the random matrices 
product A ( n ) A ( n - 1 ) . . . A ( 1 ) .  In order to characterize the asymptotic 
behaviour of a random matrix products is useful to introduce the concept 
of generalized Lyapunov exponents. 13) Given a sequence of random matrix 
X(1), X(2),..., X(N) the Oseledec and Furstenberg theorem states that the 
limit 

1 
u~lim ~ In IIPNII =2 , ,  

N 
with PN = [I X(k) (26) 

k=l  
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exists with probability 1 and 21 is the maximum Lyapunov exponent�9 
Generalized Lyapunov exponents are defined as: 

�9 1 
L(q) = l l m  ~ In (Ileullq> (27) 

and measure large-fluctuations around the mean value 2~=(d/dq) 
L(q) Iq=0. In particular, in absence of large fluctuations we have L(q)= 
21q. By using (25) we can connect the scaling exponents, (3q, with the 
generalized Lyapunov exponents, L(q): 

( I z . I O  ~ ( l iP.  I10 ~exp(nL(q)) (28) 

with Pn = ~ I ~ =  ~A(k). Comparing (28), (25) and (14) we find: 

L(q) (29) 
r  - -  In 2 

There are some techniques for evaluating the L(q) exponents (~9) in the case 
of products of independent random matrices�9 Recently, in ref. 20 it has 
been shown how to generalize the replica-trick to the case of products of 
matrices generated by a Markov process with a finite number of states. In 
order to apply this result we have slightly modified the probability distribu- 
tion function of a by choosing an to assume only a finite number, say M, 
of possible values in the interval [e - IV, e + W]. With this choice for the 
random variable e we have the M 2 possible matrices: 

A ' " ' ) = t ~  -40 ) with o~,fl=l M ..... (30) 

which correspond to the M 2 states of the Markov chain. 
Energy conservation imposes that if A(n)= A (~'~) than A(n + 1) must 

be one of the M matrices A (y' ~) with y = 1 ..... M. Introducing the matrix 
T(i, j) with i, j =  1, 2 ..... M 2 which defines the Markov conditional prob- 
ability of transition between two states, one can apply the replica-trick 
method for Markov chains (see appendix 1 and ref. 20) and find: 

L(q) = ln(yq) (31 ) 

where yg is the eigenvalue with maximum absolute value of Yq and Yq is 
a matrix M 2 2  q x M 2 2  q obtained from T and A (see appendix 1). Because 
of the size of the matrix Yq there are obvious numerical limitations in the 
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application of this methods for large values of q and M. Relation (3t) is 
valid for any positive and even q, while for odd q's it is correct only if Yq 
has non-negative entries. 

We have applied this method to compute the scaling exponents. We 
found that for e chosen to assume discretized values in [0, 1 ] all scaling 
exponents are strictly Kolmogorov-like, within computer-precision. This 
analytical result confirm robustness of static properties of the GOY model 
under stochastic perturbation. As long as non-linear terms are chosen such 
as to dynamically conserve energy, there are not any intermittent devia- 
tions in the scaling properties of the static manifold. 

In order to understand the origin of the absence of intermittency we 
have relaxed the constraint (19). we have therefore taken matrices A(n): 

A(n) = - 

0 

(32) 

where now en and e'n are i.i.d, variables. Replica-trick for the A(n) 
uncorrelated matrices is now very simple. If ene [0, 1 ] the matrix A has 
non-negative elements and it is easy to see that L( 1 ) is the logarithm of the 
maximum eigenvalue of the matrix: 

A =  4 (33) 

0 

Therefore we obtain: 

~ ' 3 : - L ( 1 ) =  max{Iv, I, Iv21} (34) 
In 2 

where: 

1 1--g 
and v2 = (35) v~ 2 2 

It is interesting to notice that in the above case (34) has the "Kolmogorov 
solution" (3 = 1. On the other hand, higher q values give L(q) exponents 
which deviate from the Kolmogorov straight line behaviour L ( q ) =  q. In 
Fig. 2, we show the log-log plot of structure functions obtained for this 
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Fig. 2. Log-log plot of  the structure functions S ~ vs k .  (dashed lines) for the r andom 
rat io-map with uncorrelated matrices (32). Solid lines are the K41 scaling. 

uncorrelated case. For q > 1 one has small intermittent deviations from the 
Kolmogorov prediction. 

This result indicates that the absence of intermittency in random- 
ratio-map must originate from the correlations introduced by the energy- 
conservation constraint chosen in the original GOY model. 

Let us anticipate that, as we will show in Section (3), dynamical evolu- 
tion of the energy-conserving random-model is nevertheless intermittent. 
Dynamical evolution shows different scaling properties than the static- 
manifold. 

This must be connected, as for the deterministic case, ~u) to complex 
dynamical mechanisms introducing intermittent deviations from the K41 
manifold in the time evolution of the trajectory in the phase space. 

2.2. Probability Distribution Density 

The absence of intermittency can be interpreted from (15) and (16) as 
a lack of large deviation properties for the probability distribution of 

1 n 7(n) = ;  ~ k = l  l~ Iwkl - Let us call Hn00 d7 the probability that 7(n) falls 
in the interval [7, 7 + d  T]. Large deviation theory states that the in the 
limit of n ~ oc there exist a unique limiting curve for the probability 
distribution: 

lim 1 In I-I, ()') S(~) (36) 
n ~ ~ F/ I " I  max n 
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where we have normalized I~.(Y) with its maximum value in order to 
eliminate pre-asymptotic terms. For small deviations from the mean value 
~)m = ( ~ )  the central limit theorem predicts the usual parabolic shape: 

S(),) (~,_y,.)2 with 0-2= lim (n(~--ym) 2) (37) 
20  -2 n ~ 

In Fig. 3 we show that at varying e and W we find instances where 
the limiting curve (36) is not defined and/or instances where the central 
limit theorem is not verified. Indeed, in Fig. 3a the probability distribution 
functions decrease faster than the exponential of n; in Fig. 3b the large 

Fig. 3. (a) Plot of l/nln(l-I~(Y)/1-I~"• for the map  (21) with e = 0 . 5  and W=0.3 .  
(b) The same as in Fig. (a) with W=0.5 .  
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deviation theorem holds but there is a strong violation of the central limit 
theorem and one has the atypical behaviour S(7) ~ [7 - 7m ]. 

We can fit all data by supposing a most general form for the prob- 
ability distribution function: 

P(),) ~: exp ( - n ~  h ~ ' ~  mla) (38) 

where the constants aand fl depend on e and W. For e e [ 0, 2 ] and for any 
value of W we have the Kolmogorov mean value ?m = --1. From (38) we 
can estimate structure as: 

(k~= ) f qy IkqYkno:lTymlfi/cln2d~),.~kn~3q ]wkl q = ( k  q~'(n)) = knP(y)  dy oc n ,j -n n 
1 

(39t 

which can be evaluated in a saddle point approximation k. ~ oo, giving: 

- - (3q=max  (~qT--n ~'-' IT-YmIP~ j (40) 

In the instances where we found ~ > 1 and 1 ~< fl < 2, we can deduce that 
the asymptotic limit must be ( (q) - -q /3  and the leading corrections to this 
non-intermittent behaviour are given by: 

1 ) (41) (~3q =~3q--q~ 0 F/(0t_ 1)/( fl 1) 

Let us notice that in the cases where the large deviations theorem holds 
(0~ = 1), like in Fig. 3b, we have a strong violation of the central limit 
theorem. 

Indeed the Cramer function, S(~,), is not differentiable at the maximum 
and therefore it is not possible to use the saddle point estimate (40). ~211 It 
is easy to realize that in this case the asymptotic scaling properties must be 
Kolmogorov-like. 

Both effects here discussed, i.e., absence of large deviations (0t r 1) and 
failure of central limit theorem ( f l<2) ,  are certainly due to non-trivial 
correlations introduced in the stochastic process by the energy conserva- 
tion constraint. The relevance of this constraint for the presence of a 
"static-intermittency" would suggest that conserved quantities play an 
important role in the generation of complex energy-transfer mechanism. 
In the following section we investigate the dynamical evolution of the 
randomly perturbed GOY model given by (2) with the choices (10, 11). 
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3. D Y N A M I C A L  P R O P E R T I E S  

In this section we discuss the scaling properties of the stochastic GOY 
model  introduced in Section 1. We use the following choice for the r andom 
coefficients: e, , ( t)= 1 / 2 + 3 G ( t ) ,  where 6G(t)  is 
Langevin equation: 

d(~ G 8e ~ 2 ~  

obtained from a linear 

(42) 

where ~/n are independent  white noises, i.e. gaussian processes with 

r/,(t) = 0, t l ,(t)  r lm( t ' )=6 ,mC~( t - t ' )  (43) 

It is easy to see that  this simple stochastic process produces the (11). The 
numerical a lgori thm for (42) is: 

&n(t  + At) = A .  6G(t)  + Bnrl.(t) (44) 

with 

A n = e --At/Vn, Bn = an ~/1 -- e 2 At/r n (45) 

An easy direct computa t ion  shows that  the rule (44) gives (11) if t /At  and 

t ' /At  are integers. Let us note that  An - 1 - A t / r ,  and B ,  ~- an x / ~ A t / % .  In 
our  numerical experiments we used different choices for an and rn : 

Fig. 4, Anomalous scaling exponents for the case g= 0.5 in which all shells are perturbed. 
Different curves correspond to different values of the noise amplitude: a=0.1,..., 0.4, while 
r ~ 10-sr~ad.y in each shell, where redly is the eddy turn-over time of the first shell. The straight 
line corresponds to the Kolmogorov scaling ~p = p/3. 
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(a) perturbations on each shell: a n = a , n = l  ..... N; with equal 
correlation time for each shell: zn = r; 

(b) the same of (a) but with rn proportional  to the eddy turn-over 
time at scale In ~ k . ~ :  vn = Tk;~ 2/3. 

We performed the numerical computations in the above ways with 
different values of a, r and T in order to test the "structural stability" of the 
structure functions anomalous scaling. 

All the results have been obtained with N =  19 number of shells, v = 10 6, 
k0 = 2 4, a = 5 x 10-3(1 + i) and dt = 3 x 10 4, integrating the equations 

Fig. 5. (a) Same as in Fig. 4 but  with a = 0.1 and different choices of the correlation time 
z: r/teddy ~ [2 .  10 3, 5 . 10 J]. (b) Same as in Fig. (a) with a = 0 . 2 .  
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by a slaved Adams-Bashforth algorithm. Time integrations vary up to 10  4 

eddy-turnover times of the largest scale, ~eddy. Several runs have been made 
with N--22, v= I0 7, k0=2 4, f = 5  • 10-3(1 +i)  and dt= 10 --4 to check 
the dependence of the results on the Reynolds number. No relevant 
differences have been detected. 

In Figs. 4~6 we show some typical results for the (p's. It is evident that 
the stochastic-GOY-model scaling exponents are quite different from the 
K41 value (p = p/3. Moreover, the scaling laws for the stochastic model are 
close to those of the non-random model. 

This results are well understood in the case in which the noise correla- 
tion times are well below the lowest inertial eddy turn-over time (Fig. 4). 
The fluctuations of the random perturbation--no matter of their 
amplitude--have weak influence on the system. The dynamical behaviour 
is expected to be similar to that of the usual model with coefficients equal 
to the mean values of the noise (see Fig. 4). 

On the other hand, we get some appreciable quantitative differences 
from the anomalous exponents of the non-random model when we use 
correlation times comparable to the eddy turn-over times and large noise 
amplitude. In this case the increased intermittency (see Fig. 5b and com- 
pare it with Fig. 5a) is probably due to the increased amplitude of the fluc- 
tuations in forward and backward energy transfer. I_~t us notice that with 
such choice of noise-time-correlation there will be scales with quenched 
noise and scales with annealed noise. The "structural stability" of the model 
is properly tested using noise correlation times of type (b). In this case, 
characteristic perturbation times are of the same order of the eddy-turn-over 

Fig. 6. cp obta ined  in the case g =  0.5 of a = 0.1 and  a shell dependen t  3: T, = T(k,/ko)-2/3, 
with T ~ 0 . 1 ,  1, 10 teddy. 
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times for each shell. As one can see in fissure d, there are not appreciable 
differences with the non-random case. 

4. C O N C L U S I O N S  

A class of randomly perturbed GOY models for turbulent flows has 
been introduced and studied. Both static and dynamical scaling properties 
have been investigated analytically and numerically. 

Static and dynamical properties shows very different behaviour with 
respect to the dependence from inviscid conserved quantities. In particular, 
static properties have always Kolmogorov-like scaling unless inviscid 
energy conservations is relaxed. Dynamical properties are intermittent 
and do not show strong dependencies from the presence of conserved 
quantities. 

As for the random-static inviscid manifold, we found that the 
Kolmogorov-like scaling is connected to the failure of large-deviation 
and/or central limit theorem for the random variables obtained from the 
map describing random fluctuations of velocities at successive scales. The 
absence of large deviations is also connected to the physical constraint of 
inviscid energy conservation which, must be imposed in order to stay as 
close as possible to the original Navier-Stokes equations. 

On the other hand, the dynamical evolution of the ordinary equations 
(2) with random coefficients (10) is intermittent. The degree of intermit- 
tency seems to be weakly affected by the details of the random perturba- 
tion. By noticing that as soon as the model is randomly perturbed one of 
the two original inviscid invariant (the helicity-like invariant) is destroyed, 
we conclude that intermittency cannot be only related to the competition 
between the two invariants (energy and helicity). Weak non-universality as 
a function of the perturbation structure are observed only in the case when 
characteristic times of the random perturbation are comparable (or larger) 
than the inertial range eddy-turn-over times. 

Robustness of the dynamical energy transfer mechanism against 
random perturbations is the main result of this paper. 

A. REPLICA TRICK FOR M A R K O V  PROCESS 

The replica trick (19) is one of the most used tool for calculating 
generalized Lyapunov exponents in the case of correlated and uncorrelated 
product of random matrices. The uncorrelated case is particularly simple 
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and it is based on the asymptotic realization for the product, P N ,  of N 
random matrices X~: 

L(q) = lim 1 
N ~  oo N ln( [[PN[I q) 

For even and positive q's we have: 

where 

1 
-- N~lim ~ ln( ]TrPN[ q) (46) 

( ( TrPN)q> = Tr[ ( P~ q) ] = Tr[ X| u (47) 

q times 

x | 1 7 4 1 7 4  ... |  

is the q th direct product, and with ~ we intend the matrix obtained after 
averaging on the stochastic process. From (46) and (47) we obtain: 

L(q) = ln(xq) (48) 

which holds for even q's and where Xq is the eigenvalue of X | with maxi- 
mum modulus. For  odd q's it holds only if matrix X has non-negative 
entries. 

In the case of correlated random matrices we have that the first 
equality in relation (47) still holds, while the second relation is obviously 
broken. In the case of Markov process with a finite number of state is still 
possible to overcome this difficulty, t2~ Using the notation of Section 2.1 we 
define: 

B(i) = A ~q (49) 

and 

T ( i , j ) = ~  ~(M- L)+:,y~M- l)+~, y = 1,..., M (50) 

where T(i, j) defines the Markov conditional probability of transition from 
state i = c t ( M -  1 ) + fl t o j  = ~ ( M -  1 ) + ~ (using these labels for the states the 
energy conservation constraint is automatically satisfied). Therefore we have: 

(P~q)  = A | 
I 

= ~ P(il)B(il) T(il, i2) B(i2) T(i2, i3)'" "O(iN 1) T(iN-l, iN) B(iN) 
/i,/ (51) 



Intermittency 1137 

where with P(il) we indicate the probability that the initial matrix coincide 
with the state i~, and {i~} represents the sum over all the possible realiza- 
tions. By writing 

Yq(~, i;/3, j) = T(i, j)(B(j))~,# (52) 

it is easy to realize that (51) corresponds to the usual matrix product and 
therefore: 

((PNOq)~,/~) = ~ ~, yNq(Oq io; /3, iN) (53) 
i N i 0 

Using (47) and (53) we can finally write: 

L(q)= lim 1 N ~ l n ( I I P |  lim --1 lnTrlYNl=ln[yql  (54) 
N - ~  N 

where l Yq I is the eigenvalue with maximum modulus of the matrix Yq. For 
example in the case M = 2, matrix Yq is: 

1 �89 ~q  0 �89 ~q ~ I 
 Aoq 0 

yq = z �89 Qq 0 �89 ~q 

�89 A 2 Q q 0 �89 A 4Q q / 

(55) 
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