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We present a numerical study of two-dimensional turbulent flows in the enstropy cascade regime,
with different large-scale energy sinks. In particular, we study the statistics of
more-than-differentiable velocity fluctuations by means of two sets of statistical estimators, namely
inverse statisticsand second-order differencedn this way, we are able to probe statistical
fluctuations that are not captured by the usual spectral analysis. We show that a new set of exponents
associated to more-than-differentiable fluctuations of the velocity field exists. We also present a
numerical investigation of the temporal propertiesuofmeasured in different spatial locations.
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I. INTRODUCTION the large-scale characteristics of the ff5W? In this regime,
the velocity field is differentiable, therefore the standard

Many natural phenomena display complex fluctuationsanalysis(customarily applied in 3-D turbulengebased on

over a wide range of spatial and temporal scales. Complexithoments of velocity incrementéthe so-called structure

usually manifests in the non-Gaussian properties of probabilfunctions is poorly informative. Indeed structure functions

ity distribution functions(PDF. When PDFs at different are dominated by the differential component of the signal:

scales do not collapse by a simple rescaling procedure one

speaks about intermittenéySuch nontrivial rescaling prop- Sy(r)={[S(x+1)—s(x)]P)~rP, (1)

erties may be exhibited by PDF tails or peaks, or Both. P

When intermittency manifests in the PDF tails, it means tha@vhere withs we indicate either thei,

regions of very intense bursting activity are present. This igje|4s component. It is worth stressing that the scaling behav-
typllcallof three-dlmen.smnal'turbulent flows, where the V€-ior (1) does not imply that the velocity statistics is trivial. For
locity field is strongly intermittent and roudh. example, it is well known that in the enstrophy cascade re-
However, there are examples of other important naturagime the energy spectrum shows a power IBgk)ok™ @
phenomena that develop simple PDF tails but nontrivial PDRyiih a=3, which is the signature of significant more-than-
cores. PDF peaks are associated to laminar fluctuations, i.gjifferentiable velocity fluctuations. Hence, subdominant con-
“smooth” variations of the field. A physically relevant ex- tiputions to thes(x+r)—s(x)r behavior must be present
ample is offered by two-dimensional turbulent flows, wheregnq, in principle, detectable. The triviality of the scalifiy
the presence of long living coherent structures, e.g., vorticesg just the consequence of not having chosen the suitable
is very well known(see Fig. 1 Two-dimensional2-D) tur-  observable. Therefore, to extract interesting information on
bulence is characterized by two different transport processegie statistics of smooth signals, new statistical tools are
an inverse energy cascade from the forcing scale to larggfeeded.
scales and a direct enstrophy cascade from the forcing scale Recent contributions have shown that laminar events are
to smaller scaled The inverse energy cascade shows a nonoptimally characterized in terms of their exit-distance statis-
intermittent Kolmogorov 1941 scaling for the velocity tics, also known asnverse statistics*~*® In a nutshell, in
field>~" On the contrary, in the direct cascade, nontrivialsuch approach one “inverts” the usual way of looking at
vorticity fluctuations have been observed in dependence osignals. Standard analysis studies the statistics of signal in-
crements over a certain spati@r temporal interval; the

dAuthor to whom correspondence should be addressed. Telephde: eXit'distance approach looks at the StatiStif:s of SPM'
0832 320720; fax:-39 0832 320716; electronic mail: a.lanotte@isac.cnr.it poral) intervals necessary to observe a given signal incre-

or the u, velocity
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statistics are able to assess in a quantitative and independent
way the presence of nontrivi@homaloussmall-scale lead-

ing (subleading velocity (vorticity) fluctuations. Such find-
ings have important consequences for our understanding of
vortex dynamics and on the statistical behavior. Inverse sta-
tistics measures thepersistency properties of velocity/
vorticity values along a one-dimensional cut of the 2-D field.
The presence of anomalous behavior in the inverse statistics
moments have to be connected to the existence of a much
higher probability to observe a strongly persistent velocity
fluctuation than predicted by a simple dimensional argument,
based on the spectrum behavior only. This fact is further
highlighted by a comparison with the statistics of the same
signal but with random velocity phases. In that case, see
below, inverse statistics becomes trivial, i.e., no “more per-
sistent” velocity/vorticity events are detected.

The paper is organized as follows. In Sec. Il, we recall
FIG. 1. Asnapshot of the vorticity field. B/W intensity is coded according to some known results on 2-D turbulent flows in the presence
the yalue of the vorticity field from the minima of (black) t_o the maximum ofa drag mechanism at |arge scales. In Sec. Ill, we introduce
(white). DNS have been performed by a standard dealiased pseUdOSpeCtrt Ie main observable, i.e., the inverse structure functions and
algorithm, over a double periodic square domain of $ize2, at resolu- o ! ) )
tion 512, 1024, and 2048. As customary, enstrophy is dissipated at small the second-order difference structure functions: we first ana-
scales with a hyperdissipation of order 4, while energy is removed at largdyze Gaussian stochastic signals with a given spectrum
scales, to avoid piling up on the sm_allest mode, u§ing diﬁ_ere_nt c{sxgs E(k)~k~ %, where we are able to establish some exact re-
Table I).As to the pumping, we considered a Gaussian, white-in-time Iarge—sults. Then in Sec. IV, we present the spatial statistics of
scale forcing restricted on wave numbers; k<6. : - ! - . . ;

laminar fluctuations of velocity fieldy, obtained by direct
numerical simulationéDNS) of two-dimensional turbulence.
ment. Another possibility to study smooth signals is to elimi-In Sec. V, we perform a temporal analysis of the velocity
nate the differentiable contribution by looking aecond- field on fixed spatial locations. Section VI is devoted to con-
order differences(SD), i.e., (s(x+r)—2s(x)+s(x—r)) as  clusive remarks.
suggested in Ref. 19.

In this paper we considerably extend a previous prelimi-
nary investigatiotf of the inverse statistics of velocity fields
in the enstrophy cascade regime of 2-D turbulence, and also
explore second-order difference statistics on the same flowd: TWO-DIMENSIONAL TURBULENCE
We present both exact analytical results for the exit-distance N
probability density functions of a 1-D Gaussian signal, and a As far as the_lnertlgl range of scale_s for the enstrophy
set of numerical investigations of spatial and temporal statisgascade OT two—dlmensmngl turbulence is _concerngd, previ-
tics of 2-D turbulent flows. The main result is the introduc- Y% experimental, theoretical, and numerical studies have

tion of a set of exponents that characterizes smooth behaghown that the statistics is strongly influenced by large-scale

iors beyond the energy spectrum slope [where E(k) phke_n;)me_:r;]a. Inge(ejdnored_than smr?otrshpectra, _i.e_.,E(kz h
«k~2], and point out the presence of nontrivial contribu- <~ WIth a=3, depending on the characteristics of the

tions to the more-than-differentiable velocity fluctuations. forcing a_?? of the large-scale dissipation, have been
As it is well known, 2-D turbulence in the enstrophy reportedd 11 Recently, new results have clarified the problem

cascade regime is strongly nonuniversal, i.e., a change in tH@EtEe casfe. of th‘;_l'g}{gﬁﬁca'e energy sfmk given by a ll(lnear

large-scale forcing and drag mechanism is reflected in a dras- ckman friction. e presence of an energy sink at

tic change in the spectrum slope. Many cases have be groe .scales iS. conceptually justified by the necessity of
found with spectra slopes going from the classiaai —3 avoiding the pile-up of energy on the gravest mode as a

(plus logarithmic correctiofso a=—6. Such a strong non- result of the inverse energy cascadand it is physically

universal behavior has direct consequences on the smafIUOt'Vated in terms of the friction to which a fluid is sub-

H 21
scale vorticity statistics, from the extremely rough vorticity Jected in the Eckman layéf.

field predicted by the Kraichnan argum&hto the smooth The strong influence of large-scale physics in the enstro-
vorticity field in the casew=—6. Moreover, up to now, it phy cascade range is believed to be a consequence of nonlo-

was not clear whether nonuniversality of two-dimens:ionalCal interaction(in Fourier space Another property associ-

turbulence could be satisfactorily summarized by the spece-mad to the enstrophy cascade is the velocity field

trum dependency or if there is something beyond it, i.e., jfsmoothness. i .

there are nontrivial intermittent fluctuations in the small- . . Let us now fix the nqtaﬂon. In Ferms of the spalar vor-
scale vorticity dynamics. In particular, the velocity field sta- ticity »=VXu, the equation of motion can be written as
tistics has never been studied in great detail. In this paper, we g0 +u-Vo=(-1)" %A% +(-1)'""B,A Pw+F,
show that both inverse statistics and second-order difference (2
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wherevy and 8,(q,p=0) are the coefficients of the gener- s A

alized dissipations, namely the hyperdissipative and the hy-

pofriction terms, respectively. The former removes enstrophy -

at small scales, while the latter dissipates energy at large

scales. In particular, we used a hyperdissipation of ocder

=4 and various choices for the hypofriction expongniVe ss!

also made some tests by using standard dissipaifdn l——A

without detecting any important differences: these results are too 355

not shown and in the sequel we report only thosegferd . F /

is the vorticity source term acting at large scales. In Fig. 1, .

we show a typical snapshot of the vorticity field obtained by -

the direct numerical simulation of E(R). As one can see the

vorticity field is characterized by filamental structures over a Xi Xj

wide range of scales. ) i -

According to the classical predictidif,the velocity field E,\I,S'pzo'i,igh;gaetf; ?;Zi?;a;?r; zfnfjhre] ng?gﬂcrfe?;xf:g )é‘xﬁ‘ e

should exhibit a Batchelor—Kraichnan spectrur(k) tances from the barriefs.

~k~3(In(k)) Y. The dimensional estimate has been ob-

served in a bunch of numerical and experimental

measurement&:? However, there are numerous situations

where different velocity spectra have been measéiréd:

E(k)~k™ ¢, with the exponent larger than 3 and dependent

on the large-scale forcing and friction. In the case of linea

friction (p=0), it is known that vorticity statistics is intermit-

tent. In such a case, it has been recently clariftéd?that, at

scales small enough, vorticity behaves as a passive $éalar.  For a generic one-dimensional sigrsflx), looking at

In particular, this has led to a quantitative understanding ofnverse statistics consists in measuring moments of the dis-

the friction effects on the spectrum slope. By assuming théancer(Js), necessary to observe in the signal a double exit

smoothness of the small scales velocity field and using #&orward and backwandthrough a barrie®s.

simple mean field argument, it has been shdtfirthat « We fix a value for the signal fluctuationss, then we

=3+2B¢/\, where\ is the Lagrangian Lyapunov exponent pick at random a poink, and measure the first forward

and 8, is the drag coefficient; in other words, by increasing(|s(xo+r:) —S(Xo)|=6s) and backward |6(Xg—T})

the drag coefficient, the spectrum becomes steeper. Actually; s(xo)|=8s) exit from the barrier,r(8s). Then we put

in order to exactly compute the spectrum slope, one has to gd’xy,8s)=rp+r;. See Fig. 2 for a schematic view of the

beyond the simple mean field analysis and consider the disnethod. Repeating the observations for many poifxg},

tribution of a finite time Lyapunov exponeffor details, see and for different barrier heights, we can define the inverse

Refs. 9, 10, and 12 structure function$ as

Except for the situation with a large-scale linear friction, _

there is no general theory for the scaling properties Bf 2 TP(89)=(r?(8s))~ 55X, “

turbulent flows in the presence of different large-scale dragvhere the average is taken with respect to the random choice

mechanismgsee Ref. 24 for a recent attempt in this direc- of the pointx, (see the note in Ref. 25

tion). For the case of simple signals such (&8, the scaling
exponents of inverse statistics moments can be derived as
follows. If 3=a<?5, the signal increment can be written as

Y

ments of differences over any incremenalways possess a
differentiable scalingl), while moments of ordep<—1 do
Jhot exist.

A. Inverse statistics

IIl. INVERSE AND DIRECT STATISTICS FOR SMOOTH ds(x)

SIGNALS S(X+1)=s(X)~—¢
Let-US introduce the inVerS-:e statistics and the Seconqﬂere we have on|y kept the two most important Sca”ng be_

order difference structure functions. We start applying themhaviors: O(r) because of the differentiability an®(r")

to the analysis of stochastic one-dimensional signals with &om the spectrum exponent. The scaling exponesthl

given spectrumE(k)~k™“. In particular, we consider <2 js related to the spectrum slope by the dimensional rela-

r+c(x)rh. (5

smooth random signals built as follows: tion a= 1+ 2h, while c(x) is a continuous function of. By
A _ studying the exit event, in the limit of a small barrier height,
s(X)= EK S(k)e'tkxr o, (3 we may observe two different kinds of events. The first, with

probability one, is the differentiable scalingss)~ 8s. The
where |8(k)|>~k™ ¢ and 6, are random phases, uniformly second, observed at those points where the first derivative
distributed in[0,27). For the sake of simplicity, we limit our vanishes, is the subleading behavio(r"), in (5)
discussion to signals with<8a<5 (i.e., to smooth signals One may estimate the probability of this second situation
but only one time differentiabje for which we are able to as follows. With 3= «<5 the first derivative is a self-affine
establish some exact results. Note that for such signals, maignal with Hdder exponent=(h—1)<1, which vanishes
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FIG. 3. Scaling exponentg(p) of the inverse statistics for the 1-D signal
(3) with a=4. The solid line gives the bifractal behavior. Moments have
been computed using 1@ealizations of the signaB) with 21" modes; for
each realization Z points have been taken at random.

FIG. 4. Scaling exponers, of the SD statistics for the 1-D signés) with
the same parameters as in Fig. 3, the straight line shows the expected be-
havior z,=hp with h=1.5. The inset shows the local slope for4.

tion ,se«r. For the signals under investigation, we have that

on a fractal set of dimensidd=1— {=2—h. Therefore, the at the leading orded,s~r" with 1<h<2, and moments

probability to see the subleading te@{r") dominating the

exit event in(5) is given by the probability to pick at random behave as
a point on a fractal set of dimensid i.e., SPUr)=(|A,s|P)~r ?». (9)
P[r~(8s)¥M~r1=P=(gs)t~1h (6) In the monofractal caséglobally self-similar signals one

expectsz,=ph. The analysis done for the same stochastic

Taking into account both events, we end with the following 1-D signal of(3) with h=1.5, confirms this expectatidsee

bifractal prediction for inverse statistics moments:

Fig. 4).
. p 1 In the general case, i.e., when many more-than-
(P) ~ (P) = — - — . . . .
TH(85)~ (89, xpr(P) mhln( P, h +1 h)' differentiable fluctuations are present, the scaling exponents

(7) z,, are nontrivially related to the distribution of theexpo-
) ] ) nents. The difficulty to give a multifractal prediction fars
From (7), we conclude that laminar differentiable fluctua- jncrements stems from the fact that it is a three-point quan-
tions influence the inverse statlst_|cs only up to moments Ofity, depending on the simultaneous fluctuations between
orderp=1; for largerp, the PDF is dominated by the sub- (y y_ ryand &,x+r). Therefore, to draw the multifractal

dominant behavior[s(x+r)—s(x)]~r". In other words, nhicryre we would need, in addition, a complete control of
the extrema of the signal play the role of singularities for they,o spatial correlations. This is, in principle, feasibigébut
inverse statistics: close to the extrema, events with much is left for future investigation.

longer exit distances are observed whési—0. For one-

dimensional S|g.nals ) the prediction is verified with high IV. SPATIAL STATISTICS IN 2-D SMOOTH VELOCITY
accuracy(see Fig. 3. FIELDS

In the general multiaffine case, signal increments scale
as 5,5(x) ~r"® with probability P,(h) ~r1~P™  where the Let us now analyze the inverse and second-order differ-
function D(h) can be interpreted as the fractal dimension ofénce statistics of the two-dimensional velocity field obtained
the set where the Hder exponent is observed® by DNS of the Navier—Stokes equati¢®). We performed
For such a signal, it is possible to obt4if® a link be-  four different sets of numerical experiments, with periodic
tween the inverse statistics exponentép), and the fractal boundary conditions on a spatial grid of 182eollocation
dimension,D (h): points. In all of them, we considered a Gaussian forcing,
S-correlated in time, with support in a restricted band of
X(p)=min(p+1_D(h)). (g Wwave numbers 4 k;<6.

h h In three out of four simulations, we used an Eckman
linear friction, i.e., p=0 in (2) with different coefficients
(simulations A,B,C, in the following In the fourth run, we
used a hypodiffusive term at large scalgs 2 (referred to as
case D in what follows Table | is a summary of the DNS
parameters, together with the best-fit spectrum exponent
for all runs. In addition, to check the importan@éany) of

Another way to eliminate the trivial differential scaling finite Reynolds number effects in our results, we repeated
and extract some statistical information from smooth signal®ne out of the four runs at the resolution of 2848llocation
has been suggested in Ref. 19. The idea is to consider moints.
ments of the second-order differendgs=[s(x+r)+s(x In Fig. 5 we show the averaged velocity spectrum for
—r)—2s(x)], so as to eliminate the differentiable contribu- runs B, C, and Orun A gives a slope almost coincident with

In the case of the smooth sign@), one can see thdB)
coincides with the bifractal predictiofi7), as soon as we
write D(h)=2—h for h=min[1,(a—1)/2].

B. Second-order difference structure functions
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TABLE |. Drag parameterp, B,, spectrum slopey, and the real space
subleading scaling exponetts= (a— 1)/2 for the various numerical experi-
ments. The value of each has been obtained by a best fit in the region
|k|~(20-100) (see Fig. 5 By performing the fit in the regiork|
~(15-60), slightly larger values af are obtained. These discrepancies can

be associated to the interplay between the inverse cascade of energy and the
friction acting on it, which contaminates the upper part of the spectrum.

DNS label

By

a

h

A
B
C
D

NOOO |

0.01

0.10

0.30
14.0

3.268)
3.41)
3.70)
3.268)

1.14
1.2

1.35
1.13

PVx(2)

Biferale et al.

18 b

1.6

14

un C

that of run D. By comparing them, it is evident that the 25} 2 w2 ]
spectrum slope depends on both the drag coeffi¢rent A, Rl Cam " !
B, and Q and on the drag mechanisfrun D). znsyr 2] L

Evidently, we are in the presence of large-scales effects |14 , ?
that somehow affect small-scale velocity fluctuations. We
want now to quantify this statement by using the inverse
statistics analysis. First, we compare the inverse structure 0s |
functions measured on several snapshots of the DNS, with
those obtained after randomization of all velocity phases on %, p > 3 ’ s s
the same frames. The rationale for this test is to investigate (b) p
the importance of correlations between fluctuations at differ- . o
ent wave numbers and therefore the “information” content™C- & x(p)/x(2) for exit moments obtained in run @ and run D(b)

. (O), compared with the same data after phases randomiz@atipnin both

brought by coherent strqctureg in 2-D turbulent ﬂOV_VS- ) figures, the solid line corresponds to the bifractal prediction. The valle of

If we look at a one-dimensional cut of the velocity field, used for the theoretical prediction are obtained from the spectrum scaling
before and after phases randomization, it is rather difficult txponentésee Table), namelyh=1.35(run C) andh=1.13(run D). Errors
distinguish the original DNS field from that one with ran- on scaling exponents havg been (?omputed according to the fluctuations of

. .. the local slopes. In each inset, it is shown the local slop@® su) vs
domized phases. This is due to the steepness of the SPECHrU®)( sy for the true signalO) and the randomized orex).
i.e., only a few modes dominate the real-space configuration.

Despite the apparent similarity, big differences arise when

looking at inverse moments. _ , the aim of reabsorbing some finite-size effects and extracting
Because of the limited numerical resolution, the onlygcaiing information also at moderate resolution. Therefore,

quantitr?\tive statements one can give are for relative §caling,e concentrated on the following relative scaling properties:
properties. Therefore, we measure scaling laws of the inverse
T(p)(é‘u)m(T(z)( 5u))x(p)/x(2)_

statistics by plotting all moment&P)(5u) versus a reference
one, sayT*)(su). This is the same technique called ESS, |, Figs. 6a) and &b) we summarize our findings. Inverse
fruitfully applied in the analysis of 3-D turbulent data with oment exponentsy(p)/x(2), measured on the turbulent
fields with randomized phases follow the bifractal prediction
(7) with the value ofh extracted from the spectrurtsee
Table |). Conversely, the longitudinal and transversal inverse
statistics moments without phases randomization show
anomalous scaling laws, which deviate from the bifractal law
(7). In Figs. 8a) and Gb), we show the curve(p)/x(2) for
both randomization and nonrandomized transversal exit mo-
ments for runs C and D. F@g<1, the statistics of the ran-
domized data and that of the turbulent data almost coincide

P)x(2)
o
o
2
o

un D

E(k)

10°® being those moment$with 0<p<1) dominated by the

ool laminar fluctuationsu(x+r)—u(x)~r. To better appreciate
differences in the scaling curves, we show in the inset

10"2100 = = of Figs. §a) and Gb) the local slopes ofT(™(su) vs

T@)(u), for the randomized and nonrandomized data.
The following scenario can be drawn. Inverse statistics
FIG. 5. A log—log of the energy spectra for two different drag coefficients of velocity increments in 2-D turbulent data is intermittent,
with the Eckman linear friction, run Bmiddie) and run C(bottom, and o “tha probability to observe at small scales a very smooth
with a hypofriction, run D(top). Straight lines correspond to the best fit . L. . . . .
power laws k34 k=37 andk 3% respectively. Run A is not shown be- Velocity realization is much higher than predicted by using a

cause it is almost indistinguishable from run D. dimensional argument based on the spectrum only. This is

k
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FIG. 7. (8 A log—log plot of the energy spectra for run B at the two correspond to the monofractal behavkyiﬁp with h=1.55 (run © and

FIG. 8. (a) Second-order difference exponerts, obtained in rur(C) (O)

resolutions 1024 and 2048. In (b), a log—log plot of the moment N=120(run D).

TA(8u) vs TA)(u) for the true signal(O) at resolution 1024 (+) at
resolution 2048 (the two curves have been shifted for plotting purppsies
the inset, the local slopes of the curves, the same symbols as befo€)).e., hulent one. In Figs_ @) and 8b), we show the sca|ing ex-

at resolution 1024 (+) at resolution 2048 ponentsz, for run C and run D. Longitudinal and transversal
components, within the errors coincide. The SD analysis
confirms that the statistics of laminar events for the 2-D tur-
connected to a nontrivial phase correlation of the small-scalgulent velocity field displays a multifractal structure.
velocity field, as proven by the return to the simple bifractal Concerning the case of runs with linear friction, it is
distribution after phase randomization. Concerning the deinteresting to compare the results of the second-order differ-
gree of universality of smoother-than-differentiable fluctua-ence moments with some recent analytical resilts. Ref.
tions we observe, within error bars, the same degree of in30, it is argued that in the presence of linear Eckman friction,
termittency for the relative scaling exponentép)/x(2) at  the second- and third-ordéstandardl structure functions be-
changing the large-scale drag mechanism/coefficient. Thisave as S,(r)=(su?(r))~ar?+br2*(@=3) and Sy(r)
cannot exclude some subtle dependency on the large-scate((su(r))3)~dr3+er?, a>3 being the spectrum slope,

physics for higher moments. anda,b,d,e some constants. From these results, it is easy to
Concerning the convergence of the results with Reynoldgxtract the exponents of the SD moments, 8= a—1 and
number, we repeated run B at resolution 2048 Z3=a. For instance, in the case of run B, these would be

In Fig. 7(@), a first check is done by comparing the en- z;=2.4 andz;=3.4. Actually, our data give the following
ergy spectra at the two numerical resolutions. In Fip) We  values:z,=2.52+0.20 and 3.62 0.20, which are, however,
compare, for the turbulent signal, the ESS plots of the mocompatible with the error bars on the estimated scaling ex-
mentT*)(su) versus the reference oifé?(su), atthe two  ponents. For a comparison, we report in Fig. 9 the SD struc-
resolutions. In the inset, the comparison of the local slopesure functions of ordep=2,3 with the predicted slopes of
confirms the quality of the numerical convergence of theRef. 30. The other runs give compatible results.
results. Within the fluctuations of the local scaling expo-
nents, simulations at 204&ollocation points fully repro-
duce the results of the run at 1324iving a strong indica-
tion that at the working resolution there are no important  As is well known, in 3-D turbulence we can recast the
Reynolds effects. temporal behavior of the velocity field into the spatial do-

For the second-order difference statistics, analogous remnain via the Taylor hypothesi€rozen turbulence hypoth-
sults have been found, that is a monofractal behavior for thesis: the effect of large scales is just that of a uniform
randomization field and an anomalous behavior for the tursweeping, which does not modify the small-scale structures

V. TEMPORAL STATISTICS

Downloaded 28 Oct 2004 to 141.108.2.26. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1018 Phys. Fluids, Vol. 15, No. 4, April 2003 Biferale et al.

10 v
100 F =
5
>
102 g
= B
) s
] 4 >
® 10 2
@ 2
10®
108} 1 : : ' :
s 0 10 20 30 40 50
1010 L . . (@ oddy
-2 -1 0
10 10 10 108
r P
10 e

FIG. 9. Alog-log plot of the SD structure functions of orger 2 (top) and
p=3 (low), respectively. The continuous line scale with the expone@ts 10° |
=a—1 andz3=a.

5 10°
o2
and their energy content. In two dimensions, the absence of a 10* |
time hierarchy rules out such a possibifit}?® This is also 10 .
evident by looking at snapshots from numerical simulations, :
which show that the time evolution of the dynamics is domi- 10° 10 102 10°
nated by long-living structuresee Fig. 1. For such a reason (b) ©
Itis noptanl to pred!ct the v_eIOC|ty temporal statistics col- FIG. 10. (a) A time record of thex component of the velocity field of the,,
lected in a fixed spatial location. probe(dotted ling and thep,,, probe(solid line); (b) a log—log plot of the

We performed a DNS of2) with a large-scale, time- frequency spectra of the following signals) E,,(w) of the probe near a
dependent forcing, of constant amplitude at wave numbers coherent structure(b) Epq,(w) of the laminar one(c) Ey (w) of the time
4<k;<6. We performed a long time integration of the 2-D evolution at a particular Fourier mode in forced wave-number barié;|
N-S equations, at resolution 512nd collected statistics for =(4:6].
hundreds large eddy-turnover times, estimated tagy,
~ 1/wns (for details on the numerical simulation see the note
in Ref. 31). After the system reached a stationary state, wdo extract a clear scaling behavior. One can only identify an
collected the time evolution of the velocity fields at someexponential decay, and a peak region located at the frequency
specific spatial locations with a sampling timg,ms~2.5 Z(L)~O.51teddy [here and in the sequel(L)” stands for
><10*3teddy. Some observations are noteworthy. The first‘large scale”]. It is easy to recognize that"), defined as
one concerns thergodicityof the velocity fieldu(x,t). Tem- T=1/0), is the typical time scale associated to the
poral signals at different spatial locations possess differernarge-scale structures, either estimating it from the vorticity
probability distribution functions. In particular, the range of content of the largest structuré’éL)ml\KwZ) or from their
variations of the local rms valuas,{Xq,t) is so wide that typical revolution time. In other words, Fig. ) tells us
we cannot average time histories recorded at different pointshat in each spatial point the time evolution is governed by
It is difficult to say if waiting long enough one would re- the typical oscillation frequency of the forced large-scale
cover, as expected, some stable ergodic properties. With ostructures. This is confirmed by the comparison of the
statistics it is safe to report results only on local averages. probes’ spectra with that built from the time correlation of

In particular, we chose two typical spatial situations:the Fourier transformed velocity fielo(k,t) at a given mode
one, p;,, of a probe situated in the core of a vortical struc-k, belonging to the forced wave number band. Indeed, all
ture; the otherp,,, of a probe situated in a laminar region. spectra poses a peak frequenay).

This means that notwithstanding the turbulent evolution of  Let us now investigate direct and inverse statistics of
the field, the motion of the vortices is so slow that probesu(t). Direct structure functions behave trivially for both
almost maintain their respective “charactdifi andoutof a  probes, Sy(7)=([u(Xg,t+ 7) —u(Xg,t)]P~c,7°, where u

vortex) all the simulation long. can be either one of the components (u,) or the velocity
The time series recorded by the two probes display verynodulus.
different behaviorgsee Fig. 10a)]. To have a better under- Since inverse moments do not possess good scaling

standing, it is useful to consider the frequency spekfia) laws, we refrain from giving any quantitative statement,
of the signals, calculated from the temporal Fourier transwhile we concentrate on some qualitative properties showed
form of the stationary time correlation function, e.g., of by PDF’'s of temporal inverse events measured at the two
Cluy(p), 7]=(uy(p,t+ 7)u,(p,1)). probes,pi, and poyt.

In Fig. 10b), we can observe the spectra of the two In Fig. 11, for the probep,,, we plot various PDFs
probes. At variance from the spatial spectra, it is not possibl®[ 75,/{ 7(5u))], at varyingdu, all rescaled with their mean
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contributions. Obviously, the same kind of analysis reported
here can be extended to other temporal signals, applying the
method to a broad class of natural phenomena. As an ex-
ample, we just mention possible applications in situations
common to climatology or meteorology, where estimating
the probability of persistent velocity configurations, or of any
other dynamical variable, is relevant. As a perspective, an
important generalization is the investigation of multidimen-
sional signals by studying the statistics Bfdimensional
volumes between equispaced isosurfaces.
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