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and INFN, Unitàdi Ricerca di Roma ‘‘La Sapienza,’’ P.le Aldo Moro 2, I-00185 Roma, Italy

~Received 8 May 2002; accepted 11 January 2003; published 4 March 2003!

We present a numerical study of two-dimensional turbulent flows in the enstropy cascade regime,
with different large-scale energy sinks. In particular, we study the statistics of
more-than-differentiable velocity fluctuations by means of two sets of statistical estimators, namely
inverse statisticsand second-order differences. In this way, we are able to probe statistical
fluctuations that are not captured by the usual spectral analysis. We show that a new set of exponents
associated to more-than-differentiable fluctuations of the velocity field exists. We also present a
numerical investigation of the temporal properties ofu measured in different spatial locations.
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I. INTRODUCTION

Many natural phenomena display complex fluctuatio
over a wide range of spatial and temporal scales. Comple
usually manifests in the non-Gaussian properties of proba
ity distribution functions~PDF!. When PDFs at differen
scales do not collapse by a simple rescaling procedure
speaks about intermittency.1 Such nontrivial rescaling prop
erties may be exhibited by PDF tails or peaks, or bot2

When intermittency manifests in the PDF tails, it means t
regions of very intense bursting activity are present. This
typical of three-dimensional turbulent flows, where the v
locity field is strongly intermittent and rough.1

However, there are examples of other important natu
phenomena that develop simple PDF tails but nontrivial P
cores. PDF peaks are associated to laminar fluctuations,
‘‘smooth’’ variations of the field. A physically relevant ex
ample is offered by two-dimensional turbulent flows, whe
the presence of long living coherent structures, e.g., vorti
is very well known~see Fig. 1!. Two-dimensional~2-D! tur-
bulence is characterized by two different transport proces
an inverse energy cascade from the forcing scale to la
scales and a direct enstrophy cascade from the forcing s
to smaller scales.3,4 The inverse energy cascade shows a n
intermittent Kolmogorov 1941 scaling for the veloci
field.5–7 On the contrary, in the direct cascade, nontriv
vorticity fluctuations have been observed in dependence

a!Author to whom correspondence should be addressed. Telephone:139
0832 320720; fax:139 0832 320716; electronic mail: a.lanotte@isac.cn
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the large-scale characteristics of the flow.8–13 In this regime,
the velocity field is differentiable, therefore the standa
analysis~customarily applied in 3-D turbulence!, based on
moments of velocity increments~the so-called structure
functions! is poorly informative. Indeed structure function
are dominated by the differential component of the signa

Sp~r !5^@s~x1r !2s~x!#p&;r p, ~1!

where with s we indicate either theux or the uy velocity
fields component. It is worth stressing that the scaling beh
ior ~1! does not imply that the velocity statistics is trivial. Fo
example, it is well known that in the enstrophy cascade
gime the energy spectrum shows a power lawE(k)}k2a

with a>3, which is the signature of significant more-tha
differentiable velocity fluctuations. Hence, subdominant co
tributions to thes(x1r )2s(x)}r behavior must be presen
and, in principle, detectable. The triviality of the scaling~1!
is just the consequence of not having chosen the suit
observable. Therefore, to extract interesting information
the statistics of smooth signals, new statistical tools
needed.

Recent contributions have shown that laminar events
optimally characterized in terms of their exit-distance sta
tics, also known asinverse statistics.14–18 In a nutshell, in
such approach one ‘‘inverts’’ the usual way of looking
signals. Standard analysis studies the statistics of signa
crements over a certain spatial~or temporal! interval; the
exit-distance approach looks at the statistics of spatial~tem-
poral! intervals necessary to observe a given signal inct
2 © 2003 American Institute of Physics

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



i

m
s
al
w

nc
d
ti
c-
ha

u-

y
t

ra
e

-
a

ity

na
e
,
ll-
a-
, w
n

dent

g of
sta-

ld.
stics
uch
ity
nt,

her
me
see
er-

all
nce
uce
and
na-
um
re-
of

.
ity
n-

hy
evi-
ave
ale

he
en
m
ear
at

of
s a

-

tro-
onlo-
-
eld

r-

to

ec

all
arg

rge

1013Phys. Fluids, Vol. 15, No. 4, April 2003 Inverse velocity statistics in two-dimensional turbulence
ment. Another possibility to study smooth signals is to elim
nate the differentiable contribution by looking atsecond-
order differences~SD!, i.e., „s(x1r )22s(x)1s(x2r )… as
suggested in Ref. 19.

In this paper we considerably extend a previous preli
nary investigation18 of the inverse statistics of velocity field
in the enstrophy cascade regime of 2-D turbulence, and
explore second-order difference statistics on the same flo
We present both exact analytical results for the exit-dista
probability density functions of a 1-D Gaussian signal, an
set of numerical investigations of spatial and temporal sta
tics of 2-D turbulent flows. The main result is the introdu
tion of a set of exponents that characterizes smooth be
iors beyond the energy spectrum slopea @where E(k)
}k2a], and point out the presence of nontrivial contrib
tions to the more-than-differentiable velocity fluctuations.

As it is well known, 2-D turbulence in the enstroph
cascade regime is strongly nonuniversal, i.e., a change in
large-scale forcing and drag mechanism is reflected in a d
tic change in the spectrum slope. Many cases have b
found with spectra slopes going from the classicala523
~plus logarithmic corrections! to a526. Such a strong non
universal behavior has direct consequences on the sm
scale vorticity statistics, from the extremely rough vortic
field predicted by the Kraichnan argument3,4 to the smooth
vorticity field in the casea526. Moreover, up to now, it
was not clear whether nonuniversality of two-dimensio
turbulence could be satisfactorily summarized by the sp
trum dependency or if there is something beyond it, i.e.
there are nontrivial intermittent fluctuations in the sma
scale vorticity dynamics. In particular, the velocity field st
tistics has never been studied in great detail. In this paper
show that both inverse statistics and second-order differe

FIG. 1. A snapshot of the vorticity field. B/W intensity is coded according
the value of the vorticity field from the minima ofv ~black! to the maximum
~white!. DNS have been performed by a standard dealiased pseudosp
algorithm, over a double periodic square domain of sizeL52p, at resolu-
tion 5122, 10242, and 20482. As customary, enstrophy is dissipated at sm
scales with a hyperdissipation of order 4, while energy is removed at l
scales, to avoid piling up on the smallest mode, using different drags~see
Table I!. As to the pumping, we considered a Gaussian, white-in-time la
scale forcing restricted on wave numbers, 4,kf<6.
Downloaded 28 Oct 2004 to 141.108.2.26. Redistribution subject to AIP
-

i-

so
s.
e
a
s-

v-

he
s-
en

ll-

l
c-
if

e
ce

statistics are able to assess in a quantitative and indepen
way the presence of nontrivialanomaloussmall-scale lead-
ing ~subleading! velocity ~vorticity! fluctuations. Such find-
ings have important consequences for our understandin
vortex dynamics and on the statistical behavior. Inverse
tistics measures thepersistency properties of velocity/
vorticity values along a one-dimensional cut of the 2-D fie
The presence of anomalous behavior in the inverse stati
moments have to be connected to the existence of a m
higher probability to observe a strongly persistent veloc
fluctuation than predicted by a simple dimensional argume
based on the spectrum behavior only. This fact is furt
highlighted by a comparison with the statistics of the sa
signal but with random velocity phases. In that case,
below, inverse statistics becomes trivial, i.e., no ‘‘more p
sistent’’ velocity/vorticity events are detected.

The paper is organized as follows. In Sec. II, we rec
some known results on 2-D turbulent flows in the prese
of a drag mechanism at large scales. In Sec. III, we introd
the main observable, i.e., the inverse structure functions
the second-order difference structure functions: we first a
lyze Gaussian stochastic signals with a given spectr
E(k);k2a, where we are able to establish some exact
sults. Then in Sec. IV, we present the spatial statistics
laminar fluctuations of velocity field,u, obtained by direct
numerical simulations~DNS! of two-dimensional turbulence
In Sec. V, we perform a temporal analysis of the veloc
field on fixed spatial locations. Section VI is devoted to co
clusive remarks.

II. TWO-DIMENSIONAL TURBULENCE

As far as the inertial range of scales for the enstrop
cascade of two-dimensional turbulence is concerned, pr
ous experimental, theoretical, and numerical studies h
shown that the statistics is strongly influenced by large-sc
phenomena. Indeed,more than smoothspectra, i.e.,E(k)
;k2a with a.3, depending on the characteristics of t
forcing and of the large-scale dissipation, have be
reported.8–11Recently, new results have clarified the proble
in the case of the large-scale energy sink given by a lin
~Eckman! friction.9,10,12 The presence of an energy sink
large scales is conceptually justified by the necessity
avoiding the pile-up of energy on the gravest mode a
result of the inverse energy cascade,5 and it is physically
motivated in terms of the friction to which a fluid is sub
jected in the Eckman layer.20,21

The strong influence of large-scale physics in the ens
phy cascade range is believed to be a consequence of n
cal interactions~in Fourier space!. Another property associ
ated to the enstrophy cascade is the velocity fi
smoothness.

Let us now fix the notation. In terms of the scalar vo
ticity v5“Ãu, the equation of motion can be written as

] tv1u"“v5~21!1qnqDqv1~21!12rbrD2rv1F,
~2!

tral
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1014 Phys. Fluids, Vol. 15, No. 4, April 2003 Biferale et al.
wherenq andbr(q,r>0) are the coefficients of the gene
alized dissipations, namely the hyperdissipative and the
pofriction terms, respectively. The former removes enstro
at small scales, while the latter dissipates energy at la
scales. In particular, we used a hyperdissipation of ordeq
54 and various choices for the hypofriction exponentr. We
also made some tests by using standard dissipationq@1#
without detecting any important differences: these results
not shown and in the sequel we report only those forq54. F
is the vorticity source term acting at large scales. In Fig
we show a typical snapshot of the vorticity field obtained
the direct numerical simulation of Eq.~2!. As one can see the
vorticity field is characterized by filamental structures ove
wide range of scales.

According to the classical prediction,3,4 the velocity field
should exhibit a Batchelor–Kraichnan spectrum,E(k)
;k23

„ln(k)…21/3. The dimensional estimate has been o
served in a bunch of numerical and experimen
measurements.22,23 However, there are numerous situatio
where different velocity spectra have been measured:8–12

E(k);k2a, with the exponenta larger than 3 and depende
on the large-scale forcing and friction. In the case of line
friction ~r50!, it is known that vorticity statistics is intermit
tent. In such a case, it has been recently clarified9,10,12that, at
scales small enough, vorticity behaves as a passive sca12

In particular, this has led to a quantitative understanding
the friction effects on the spectrum slope. By assuming
smoothness of the small scales velocity field and usin
simple mean field argument, it has been shown9,10 that a
5312b0 /l, wherel is the Lagrangian Lyapunov expone
andb0 is the drag coefficient; in other words, by increasi
the drag coefficient, the spectrum becomes steeper. Actu
in order to exactly compute the spectrum slope, one has t
beyond the simple mean field analysis and consider the
tribution of a finite time Lyapunov exponent~for details, see
Refs. 9, 10, and 12!.

Except for the situation with a large-scale linear frictio
there is no general theory for the scaling properties ofD
turbulent flows in the presence of different large-scale d
mechanisms~see Ref. 24 for a recent attempt in this dire
tion!.

III. INVERSE AND DIRECT STATISTICS FOR SMOOTH
SIGNALS

Let us introduce the inverse statistics and the seco
order difference structure functions. We start applying th
to the analysis of stochastic one-dimensional signals wit
given spectrumE(k);k2a. In particular, we conside
smooth random signals built as follows:

s~x!5(
k

ŝ~k!ei ~kx1uk!, ~3!

where uŝ(k)u2;k2a and uk are random phases, uniforml
distributed in@0,2p!. For the sake of simplicity, we limit ou
discussion to signals with 3<a,5 ~i.e., to smooth signals
but only one time differentiable!, for which we are able to
establish some exact results. Note that for such signals,
Downloaded 28 Oct 2004 to 141.108.2.26. Redistribution subject to AIP
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ments of differences over any incrementr always possess a
differentiable scaling~1!, while moments of orderp<21 do
not exist.

A. Inverse statistics

For a generic one-dimensional signals(x), looking at
inverse statistics consists in measuring moments of the
tance,r (ds), necessary to observe in the signal a double e
~forward and backward! through a barrierds.

We fix a value for the signal fluctuations,ds, then we
pick at random a pointx0 and measure the first forwar
(us(x01r f)2s(x0)u>ds) and backward (us(x02r b)
2s(x0)u>ds) exit from the barrier,r (ds). Then we put
r (x0 ,ds)5r b1r f . See Fig. 2 for a schematic view of th
method. Repeating the observations for many points,$x0%,
and for different barrier heights, we can define the inve
structure functions14 as

T~p!~ds!5^r p~ds!&;dsx~p!, ~4!

where the average is taken with respect to the random ch
of the pointx0 ~see the note in Ref. 25!.

For the case of simple signals such as~3!, the scaling
exponents of inverse statistics moments can be derive
follows. If 3<a,5, the signal increment can be written as

s~x1r !2s~x!;
ds~x!

dx
r 1c~x!r h. ~5!

Here we have only kept the two most important scaling
haviors: O(r ) because of the differentiability andO(r h)
from the spectrum exponent. The scaling exponent 1<h
,2 is related to the spectrum slope by the dimensional r
tion a5112h, while c(x) is a continuous function ofx. By
studying the exit event, in the limit of a small barrier heigh
we may observe two different kinds of events. The first, w
probability one, is the differentiable scalingr (ds);ds. The
second, observed at those points where the first deriva
vanishes, is the subleading behavior,O(r h), in ~5!

One may estimate the probability of this second situat
as follows. With 3<a,5 the first derivative is a self-affine
signal with Hölder exponentj5(h21),1, which vanishes

FIG. 2. Schematic representation of the exit-distance method.Xi andXj are
two points picked at random andr i and r j are the corresponding exit dis
tances from the barrierds.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1015Phys. Fluids, Vol. 15, No. 4, April 2003 Inverse velocity statistics in two-dimensional turbulence
on a fractal set of dimensionD512j522h. Therefore, the
probability to see the subleading termO(r h) dominating the
exit event in~5! is given by the probability to pick at random
a point on a fractal set of dimensionD, i.e.,

P@r;~ds!1/h#;r 12D5~ds!121/h. ~6!

Taking into account both events, we end with the followi
bifractal prediction for inverse statistics moments:

T~p!~ds!;~ds!xbf~p!, xbf~p!5min
h

S p,
p

h
112

1

hD .

~7!

From ~7!, we conclude that laminar differentiable fluctu
tions influence the inverse statistics only up to moments
order p51; for largerp, the PDF is dominated by the sub
dominant behavior,@s(x1r )2s(x)#;r h. In other words,
the extrema of the signal play the role of singularities for
inverse statistics: close to the extrema, events with m
longer exit distances are observed whends→0. For one-
dimensional signals s~3! the prediction is verified with high
accuracy~see Fig. 3!.

In the general multiaffine case, signal increments sc
asd rs(x);r h(x) with probability Pr(h);r 12D(h), where the
function D(h) can be interpreted as the fractal dimension
the set where the Ho¨lder exponenth is observed.26

For such a signal, it is possible to obtain14,15 a link be-
tween the inverse statistics exponents,x(p), and the fractal
dimension,D(h):

x~p!5min
h

S p112D~h!

h D . ~8!

In the case of the smooth signal~3!, one can see that~8!
coincides with the bifractal prediction~7!, as soon as we
write D(h)522h for h[min@1,(a21)/2#.

B. Second-order difference structure functions

Another way to eliminate the trivial differential scalin
and extract some statistical information from smooth sign
has been suggested in Ref. 19. The idea is to consider
ments of the second-order differenceD rs[@s(x1r )1s(x
2r )22s(x)#, so as to eliminate the differentiable contrib

FIG. 3. Scaling exponentsx(p) of the inverse statistics for the 1-D signa
~3! with a54. The solid line gives the bifractal behavior. Moments ha
been computed using 103 realizations of the signal~3! with 217 modes; for
each realization 212 points have been taken at random.
Downloaded 28 Oct 2004 to 141.108.2.26. Redistribution subject to AIP
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tion d rs}r . For the signals under investigation, we have th
at the leading orderD rs;r h with 1<h,2, and moments
behave as

SSD
~p!~r ![^uD rsup&;r z p. ~9!

In the monofractal case~globally self-similar signals!, one
expectszp5ph. The analysis done for the same stochas
1-D signal of~3! with h51.5, confirms this expectation~see
Fig. 4!.

In the general case, i.e., when many more-th
differentiable fluctuations are present, the scaling expone
zp are nontrivially related to the distribution of theh expo-
nents. The difficulty to give a multifractal prediction forD rs
increments stems from the fact that it is a three-point qu
tity, depending on the simultaneous fluctuations betwe
(x,x2r )and (x,x1r ). Therefore, to draw the multifracta
picture, we would need, in addition, a complete control
the spatial correlations. This is, in principle, feasible,27,28but
it is left for future investigation.

IV. SPATIAL STATISTICS IN 2-D SMOOTH VELOCITY
FIELDS

Let us now analyze the inverse and second-order dif
ence statistics of the two-dimensional velocity field obtain
by DNS of the Navier–Stokes equation~2!. We performed
four different sets of numerical experiments, with period
boundary conditions on a spatial grid of 10242 collocation
points. In all of them, we considered a Gaussian forci
d-correlated in time, with support in a restricted band
wave numbers 4,kf<6.

In three out of four simulations, we used an Eckm
linear friction, i.e., r50 in ~2! with different coefficients
~simulations A,B,C, in the following!. In the fourth run, we
used a hypodiffusive term at large scales,r52 ~referred to as
case D in what follows!. Table I is a summary of the DNS
parameters, together with the best-fit spectrum exponena
for all runs. In addition, to check the importance~if any! of
finite Reynolds number effects in our results, we repea
one out of the four runs at the resolution of 20482 collocation
points.

In Fig. 5 we show the averaged velocity spectrum
runs B, C, and D~run A gives a slope almost coincident wit

FIG. 4. Scaling exponentzp of the SD statistics for the 1-D signal~3! with
the same parameters as in Fig. 3, the straight line shows the expecte
havior zp5hp with h51.5. The inset shows the local slope forp54.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1016 Phys. Fluids, Vol. 15, No. 4, April 2003 Biferale et al.
that of run D!. By comparing them, it is evident that th
spectrum slope depends on both the drag coefficient~runs A,
B, and C! and on the drag mechanism~run D!.

Evidently, we are in the presence of large-scales effe
that somehow affect small-scale velocity fluctuations.
want now to quantify this statement by using the inve
statistics analysis. First, we compare the inverse struc
functions measured on several snapshots of the DNS,
those obtained after randomization of all velocity phases
the same frames. The rationale for this test is to investig
the importance of correlations between fluctuations at dif
ent wave numbers and therefore the ‘‘information’’ conte
brought by coherent structures in 2-D turbulent flows.

If we look at a one-dimensional cut of the velocity fiel
before and after phases randomization, it is rather difficul
distinguish the original DNS field from that one with ra
domized phases. This is due to the steepness of the spec
i.e., only a few modes dominate the real-space configurat
Despite the apparent similarity, big differences arise wh
looking at inverse moments.

Because of the limited numerical resolution, the on
quantitative statements one can give are for relative sca
properties. Therefore, we measure scaling laws of the inv
statistics by plotting all momentsT(p)(du) versus a reference
one, sayT(2)(du). This is the same technique called ESS29

fruitfully applied in the analysis of 3-D turbulent data wit

TABLE I. Drag parametersr, br , spectrum slopea, and the real space
subleading scaling exponent,h5(a21)/2 for the various numerical experi
ments. The value of eacha has been obtained by a best fit in the regi
uku'(20– 100) ~see Fig. 5!. By performing the fit in the regionuku
'(15– 60), slightly larger values ofa are obtained. These discrepancies c
be associated to the interplay between the inverse cascade of energy a
friction acting on it, which contaminates the upper part of the spectrum

DNS label r br a h

A 0 0.01 3.26~8! 1.14
B 0 0.10 3.4~1! 1.2
C 0 0.30 3.7~1! 1.35
D 2 14.0 3.26~8! 1.13

FIG. 5. A log–log of the energy spectra for two different drag coefficie
with the Eckman linear friction, run B~middle! and run C~bottom!, and
with a hypofriction, run D~top!. Straight lines correspond to the best
power laws,k23.4, k23.7 andk23.26, respectively. Run A is not shown be
cause it is almost indistinguishable from run D.
Downloaded 28 Oct 2004 to 141.108.2.26. Redistribution subject to AIP
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the aim of reabsorbing some finite-size effects and extrac
scaling information also at moderate resolution. Therefo
we concentrated on the following relative scaling properti

T~p!~du!}~T~2!~du!!x~p!/x~2!.

In Figs. 6~a! and 6~b! we summarize our findings. Invers
moment exponents,x~p!/x~2!, measured on the turbulen
fields with randomized phases follow the bifractal predicti
~7! with the value ofh extracted from the spectrum~see
Table I!. Conversely, the longitudinal and transversal inve
statistics moments without phases randomization sh
anomalous scaling laws, which deviate from the bifractal l
~7!. In Figs. 6~a! and 6~b!, we show the curvex(p)/x(2) for
both randomization and nonrandomized transversal exit
ments for runs C and D. Forp,1, the statistics of the ran
domized data and that of the turbulent data almost coinc
being those moments~with 0,p,1) dominated by the
laminar fluctuationsu(x1r )2u(x);r . To better appreciate
differences in the scaling curves, we show in the in
of Figs. 6~a! and 6~b! the local slopes ofT(4)(du) vs
T(2)(du), for the randomized and nonrandomized data.

The following scenario can be drawn. Inverse statist
of velocity increments in 2-D turbulent data is intermitten
i.e., the probability to observe at small scales a very smo
velocity realization is much higher than predicted by using
dimensional argument based on the spectrum only. Thi

the

FIG. 6. x(p)/x(2) for exit moments obtained in run C~a! and run D~b!
~s!, compared with the same data after phases randomization~3!. In both
figures, the solid line corresponds to the bifractal prediction. The valueh
used for the theoretical prediction are obtained from the spectrum sca
exponents~see Table I!, namelyh51.35~run C! andh51.13~run D!. Errors
on scaling exponents have been computed according to the fluctuatio
the local slopes. In each inset, it is shown the local slope ofT(4)(du) vs
T(2)(du) for the true signal~s! and the randomized one~3!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1017Phys. Fluids, Vol. 15, No. 4, April 2003 Inverse velocity statistics in two-dimensional turbulence
connected to a nontrivial phase correlation of the small-sc
velocity field, as proven by the return to the simple bifrac
distribution after phase randomization. Concerning the
gree of universality of smoother-than-differentiable fluctu
tions we observe, within error bars, the same degree of
termittency for the relative scaling exponentsx(p)/x(2) at
changing the large-scale drag mechanism/coefficient. T
cannot exclude some subtle dependency on the large-s
physics for higher moments.

Concerning the convergence of the results with Reyno
number, we repeated run B at resolution 20482.

In Fig. 7~a!, a first check is done by comparing the e
ergy spectra at the two numerical resolutions. In Fig. 7~b! we
compare, for the turbulent signal, the ESS plots of the m
mentT(4)(du) versus the reference oneT(2)(du), at the two
resolutions. In the inset, the comparison of the local slo
confirms the quality of the numerical convergence of
results. Within the fluctuations of the local scaling exp
nents, simulations at 20482 collocation points fully repro-
duce the results of the run at 10242, giving a strong indica-
tion that at the working resolution there are no importa
Reynolds effects.

For the second-order difference statistics, analogous
sults have been found, that is a monofractal behavior for
randomization field and an anomalous behavior for the

FIG. 7. ~a! A log–log plot of the energy spectra for run B at the tw
resolutions 10242 and 20482. In ~b!, a log–log plot of the moment
T(4)(du) vs T(2)(du) for the true signal:~s! at resolution 10242, ~1! at
resolution 20482 ~the two curves have been shifted for plotting purposes!. In
the inset, the local slopes of the curves, the same symbols as before, i.e~s!
at resolution 10242, ~1! at resolution 20482.
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bulent one. In Figs. 8~a! and 8~b!, we show the scaling ex
ponentszp for run C and run D. Longitudinal and transvers
components, within the errors coincide. The SD analy
confirms that the statistics of laminar events for the 2-D t
bulent velocity field displays a multifractal structure.

Concerning the case of runs with linear friction, it
interesting to compare the results of the second-order dif
ence moments with some recent analytical results.30 In Ref.
30, it is argued that in the presence of linear Eckman fricti
the second- and third-order~standard! structure functions be-
have as S2(r )5^du2(r )&;ar21br21(a23) and S3(r )
5^(du(r ))3&;dr31era, a.3 being the spectrum slope
anda,b,d,e some constants. From these results, it is eas
extract the exponents of the SD moments, i.e.,z2

A5a21 and
z3

A5a. For instance, in the case of run B, these would
z2

A52.4 andz3
A53.4. Actually, our data give the following

values:z252.5260.20 and 3.6260.20, which are, however
compatible with the error bars on the estimated scaling
ponents. For a comparison, we report in Fig. 9 the SD str
ture functions of orderp52,3 with the predicted slopes o
Ref. 30. The other runs give compatible results.

V. TEMPORAL STATISTICS

As is well known, in 3-D turbulence we can recast t
temporal behavior of the velocity field into the spatial d
main via the Taylor hypothesis~frozen turbulence hypoth
esis!: the effect of large scales is just that of a unifor
sweeping, which does not modify the small-scale structu

FIG. 8. ~a! Second-order difference exponents,zp , obtained in run~C! ~s!
and after randomization~3!; ~b! the same, but for run D. The straight line
correspond to the monofractal behaviorzp5h̃p with h̃51.55 ~run C! and
h̃51.20 ~run D!.
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1018 Phys. Fluids, Vol. 15, No. 4, April 2003 Biferale et al.
and their energy content. In two dimensions, the absence
time hierarchy rules out such a possibility.3,4,23 This is also
evident by looking at snapshots from numerical simulatio
which show that the time evolution of the dynamics is dom
nated by long-living structures~see Fig. 1!. For such a reason
it is nontrivial to predict the velocity temporal statistics co
lected in a fixed spatial location.

We performed a DNS of~2! with a large-scale, time-
dependent forcingF, of constant amplitude at wave numbe
4,kf<6. We performed a long time integration of the 2-
N–S equations, at resolution 5122 and collected statistics fo
hundreds large eddy-turnover times, estimated asteddy

'1/v rms ~for details on the numerical simulation see the n
in Ref. 31!. After the system reached a stationary state,
collected the time evolution of the velocity fields at som
specific spatial locations with a sampling timetsamp'2.5
31023teddy. Some observations are noteworthy. The fi
one concerns theergodicityof the velocity fieldu(x,t). Tem-
poral signals at different spatial locations possess diffe
probability distribution functions. In particular, the range
variations of the local rms valuesurms(x0 ,t) is so wide that
we cannot average time histories recorded at different po
It is difficult to say if waiting long enough one would re
cover, as expected, some stable ergodic properties. With
statistics it is safe to report results only on local average

In particular, we chose two typical spatial situation
one,pin , of a probe situated in the core of a vortical stru
ture; the other,pout, of a probe situated in a laminar regio
This means that notwithstanding the turbulent evolution
the field, the motion of the vortices is so slow that prob
almost maintain their respective ‘‘character’’~in andout of a
vortex! all the simulation long.

The time series recorded by the two probes display v
different behaviors@see Fig. 10~a!#. To have a better under
standing, it is useful to consider the frequency spectraE(v̄)
of the signals, calculated from the temporal Fourier tra
form of the stationary time correlation function, e.g.,
C@ux(p),t#5^ux(p,t1t)ux(p,t)&.

In Fig. 10~b!, we can observe the spectra of the tw
probes. At variance from the spatial spectra, it is not poss

FIG. 9. A log–log plot of the SD structure functions of orderp52 ~top! and
p53 ~low!, respectively. The continuous line scale with the exponentsz2

A

5a21 andz3
A5a.
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to extract a clear scaling behavior. One can only identify
exponential decay, and a peak region located at the freque
v̄ (L)'0.51/teddy @here and in the sequel ‘‘~L!’’ stands for
‘‘large scale’’#. It is easy to recognize thatT(L), defined as
T(L)[1/v̄ (L), is the typical time scale associated to t
large-scale structures, either estimating it from the vortic
content of the largest structuresT(L)'1A^v2& or from their
typical revolution time. In other words, Fig. 10~b! tells us
that in each spatial point the time evolution is governed
the typical oscillation frequency of the forced large-sca
structures. This is confirmed by the comparison of t
probes’ spectra with that built from the time correlation
the Fourier transformed velocity fieldû(k,t) at a given mode
k, belonging to the forced wave number band. Indeed,
spectra poses a peak frequencyv̄ (L).

Let us now investigate direct and inverse statistics
u(t). Direct structure functions behave trivially for bot
probes, Sp(t)5^@u(x0,t1t)2u(x0,t)#p;cptp, where u
can be either one of the components (ux ,uy) or the velocity
modulus.

Since inverse moments do not possess good sca
laws, we refrain from giving any quantitative stateme
while we concentrate on some qualitative properties show
by PDF’s of temporal inverse events measured at the
probes,pin andpout.

In Fig. 11, for the probepin , we plot various PDFs
P@tdu /^t(du)&#, at varyingdu, all rescaled with their mean

FIG. 10. ~a! A time record of thex component of the velocity field of thepin

probe~dotted line! and thepout probe~solid line!; ~b! a log–log plot of the
frequency spectra of the following signals:~a! Epin(v̄) of the probe near a
coherent structure;~b! Epout(v̄) of the laminar one;~c! Ekf

(v̄) of the time
evolution at a particular Fourier modek, in forced wave-number bandukf u
5(4;6#.
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1019Phys. Fluids, Vol. 15, No. 4, April 2003 Inverse velocity statistics in two-dimensional turbulence
value^t(du)&. First we notice that PDFs collapse very we
indicating the absence of intermittency. Second, between
peak and the exponential tails at larget, each probability
density function exhibits, on a wide range of scales, a po
law behaviorP(tdu);(tdu)2g with an estimated exponen
g'21. On the other hand, PDFs measured on the pr
outside the vortex,pout, show a different behavior~the inset
of Fig. 11!. In particular, there is not any clear power la
behavior. This indicates that very large exit events beco
less and less probable outside the vortex; we interpret th
the absence of very smooth fluctuations in the vortex ba
ground.

Although qualitative, the inverse statistics properties
low us to characterize the different temporal statistical
haviors associated to different fluid regions.

VI. CONCLUSION

To summarize, we studied inverse statistics moments
signals with a more than smooth spectrum, i.e., signals
are differentiable, and with nontrivial stochastic sublead
fluctuations. We have shown that statistical velocity prop
ties of 2-D turbulent flows are not simply described in ter
of the spectrum slope. From the exit-distance analysis,
possible to highlight a whole spectrum of smoother-th
differentiable fluctuations. These, being connected with la
nar events, are the strongest statistical signature of the la
scale coherence. Experiments with different methods
removing/pumping energy at large scales should be
formed, to investigated the importance of large-scale str
tures in the inverse statistics of flows with different spect
We have quantified laminar fluctuations also by us
second-order differences, i.e., direct velocity increments s
tracted of their differentiable behavior. We have found also
this case that more-than-differentiable fluctuations are
simply described by one single exponent.

As a final remark, we stress that inverse statistics p
vide a completely new statistical indicator with respect to
standard direct statistics observables. We have shown
such method is necessary in all those cases where nont
fluctuations are subleading with respect to the differentia

FIG. 11. Exit-time probability density functionsP(tdu) measured on the
statistics of the probepin . The curves, calculated for different exit barrie
du, are normalized by their first moment. In the inset, the same for the p
pout . In each figure, the straight line is the power law behaviortdu

21.
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contributions. Obviously, the same kind of analysis repor
here can be extended to other temporal signals, applying
method to a broad class of natural phenomena. As an
ample, we just mention possible applications in situatio
common to climatology or meteorology, where estimati
the probability of persistent velocity configurations, or of a
other dynamical variable, is relevant. As a perspective,
important generalization is the investigation of multidime
sional signals by studying the statistics ofD-dimensional
volumes between equispaced isosurfaces.
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