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Abstract

The dynamics of very heavy particles suspended in incompressible flows is studied in the asymptotics in which their response time is much
larger than any characteristic time of fluid motion. In this limit of very large Stokes numbers, particles behave as if suspended in a δ-correlated-in-
time Gaussian flow. At those spatial scales where the fluid velocity field is smooth, following Piterbarg [L.I. Piterbarg, The top Lyapunov exponent
for stochastic flow modeling the upper ocean turbulence, SIAM J. Appl. Math. 62 (2002) 777] and Mehlig et al. [B. Mehlig, M. Wilkinson,
K. Duncan, T. Weber, M. Ljunggren, Aggregation of inertial particles in random flows, Phys. Rev. E 72 (2005) 051104], the two-particle dynamics
is reduced to a nonlinear system of three stochastic differential equations with additive noise. This model is used to single out the mechanisms
leading to the preferential concentration of particles. Scaling arguments are used to predict the large Stokes number behavior of the distribution
of the stretching rate and of the probability distribution function of the longitudinal velocity difference between two particles. As for the fractal
character of the particle distribution, strong numerical evidence is obtained in favor of saturation of the correlation dimension to the space
dimension at large Stokes numbers. Numerical results at finite Stokes number values reveal that this model catches some important qualitative
features of particle clustering observed in more realistic flows.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dust, impurities, droplets, air bubbles, and other finite-size
particles transported by incompressible flows are commonly
encountered in many natural phenomena and industrial
processes. A salient feature of such suspensions is the presence
of strong inhomogeneities in the spatial distribution of particles.
This phenomenon is dubbed ‘preferential concentration’ (see,
e.g., [1]). Such inhomogeneities affect the probability to
find particles close to each other, and thus influence their
possibility to collide or to interact biologically, chemically,
or gravitationally. Examples showing the importance of the
phenomenon are rain initiation by droplet coalescence in warm
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clouds [2] or planet formation by dust accretion in the solar
system [3]. Engineering applications encompass optimization
of spray combustion in diesel engines [4] and in rocket
propellers [5].

Particles with a finite size and a mass density different from
that of the carrier fluid have inertia. They do not evolve as
simple point-like fluid tracers and are termed ‘inertial particles’.
It can be shown that if their size is below the smallest active
scale of the flow (e.g. the Kolmogorov length scale in turbulent
flows), the particles are subject to drag, buoyancy, added mass,
etc. (see, e.g., [6]). Here we are interested in the limit where
particles are not only very small, but also much denser than
the surrounding fluid. They then interact with the fluid only
through a Stokes viscous drag whose characteristic time (made
dimensionless by normalizing it with the typical time scale
of the carrier flow) is referred to as the ‘Stokes number’ St.
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Experiments [1,7] and numerics [8–10] show that the degree
of inhomogeneity in the spatial distribution of the suspended
particles is a non-trivial function of the Stokes number with a
maximum at St ≈ 1.

Quantifying analytically this dependence is an open
question. Tools of dissipative dynamical systems are of
great use for the investigation of those spatial scales on
which the carrier flow is smooth. Indeed, in contrast to
tracers in incompressible fluids, inertial particles dynamics
is dissipative due to their friction with the fluid. In the
position–velocity phase space, their trajectories converge to
a dynamically evolving attracting set which is generically
multifractal [11,12]. The particle spatial distribution, obtained
by projecting this singular set onto the physical space, can
also be multifractal [13]. Many observables introduced in
the framework of dynamical systems, such as correlation
dimension, Lyapunov exponents, or stretching rates, bring
important information on particle concentration. Little is known
about the dependence of these observables on the Stokes
number. Several attempts in determining it have been made in
simplified settings: small Stokes number asymptotics [14,15],
Gaussian flows with finite [16–18,13] and zero correlation time
[19,24,20–23].

In this paper we focus on inertial particles in the limit of
very large Stokes numbers. In Section 2 we show that in this
limit, no matter the actual nature of the underlying carrier
flow provided it is statistically homogeneous and isotropic,
the particles do behave as if suspended in a time-uncorrelated
Gaussian flow. This result was derived independently in [25]. In
Section 3, the approach of [19,21] is applied to write the relative
motion of two suspended particles as a three-dimensional
(random) dynamical system. This reduced dynamics is related
to different observables quantifying inhomogeneities in the
particle distribution. Some heuristic understanding of this
model is provided.

In Section 4 we extend the scaling arguments developed
in [23] to the large Stokes number behavior of velocity
differences and of the stretching rate. Predictions are confirmed
by numerical experiments which reveal algebraic tails with
exponent −3 for the probability distribution function (pdf)
of the longitudinal velocity difference between particles. A
heuristic argument explaining this behavior is provided. The
fractal (correlation) dimension is then investigated numerically
in Section 5. Evidence is given that it saturates to the space
dimension at sufficiently large values of the Stokes number.

Beside the physical relevance in the large St asymptotics,
spatially smooth Gaussian carrier flows without time correla-
tions are valuable models for systematic investigations. We thus
study in Section 6 small and intermediate values of the Stokes
number. In contrast to the quadratic behavior observed in more
realistic flows [15,13,17], it is observed that for St � 1 the
deviation from a uniform distribution is linear in St. However,
the general qualitative picture is nonetheless in accordance with
observations in real flows. In particular, simulations show that
deviations from uniformity are strongest at intermediate values
of the Stokes number. As a δ-correlated flow has no structure,
this observation questions the phenomenological explanation of
particle clustering often found in the literature (see, e.g., [1]).
Section 7 is devoted to concluding remarks and summarizes the
main findings. Appendix A provides some details on the numer-
ical methods.

2. Model dynamics at large Stokes numbers

For suspensions that are so dilute that collisions, hydrody-
namic interactions between particles and retro-action of the par-
ticles on the flow can be disregarded, the equations governing
the evolution of a spherical particle with density ρ different
from that of the carrier fluid ρ f have been derived in [6]. It was
assumed there that the particle radius a is much smaller than
the Kolmogorov scale η and that the particle Reynolds number
is very small. This implies that the flow surrounding the particle
can be approximated by a pure Stokes flow.

In the present paper, we consider impurities that are much
heavier than the carrier fluid (ρ � ρ f ) in the absence of gravity.
The time evolution of the particle position X(t) then takes the
simple form:

d2X
dt2 = −

1
τ

[
dX
dt

− u(X(t), t)
]

, (1)

where τ = (2 a2 ρ)/(9νρ f ) is the particle response time, the
so-called ‘Stokes time’, and ν denotes the kinematic viscosity
of the carrier fluid.

We are interested in particles with substantial inertia,
meaning that τ � τ f , where τ f denotes the largest
characteristic time of the carrier flow. In a first approximation,
such particles relax so slowly to the fluid flow that, along their
paths, the local structure of the fluid velocity field changes
several times in the interval of time τ . Thus, on the typical
time scales of particle motion, the effective fluid velocity field
behaves as a time-uncorrelated process. This can be shown
formally by rescaling the time as s = t/τ , so that Eq. (1)
becomes

d2X
ds2 = −

dX
ds

+ τu(X(τ s), τ s). (2)

Now, the correlation time of the velocity field being finite and
smaller than τ f by definition of the latter, the central-limit

theorem yields τ 1/2ui (x, τ s)
law
∼ ũi (x, s) when τ � τ f , where

ũ is a δ-correlated Gaussian process and where the relation
law
∼

designates equivalence in probability law. With this expression
and with transforming s back to the physical time t , (2) yields:

d2X
dt2 = −

1
τ

[
dX
dt

− ũ(X(t), t)
]

. (3)

Hence, particles with very large inertia behave as if suspended
in a Gaussian, δ-correlated in time carrier velocity field. For the
sake of notation simplicity, we shall omit the tilde on the fluid
velocity and refer to u as a δ-correlated carrier flow.

In many real flows, the small-scale properties can be
understood by considering a spatially smooth, statistically
homogeneous and isotropic velocity field. These spatial
properties carry over to the limiting (Gaussian) process, whose
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correlation 〈ui (x, t) u j (y, t ′)〉 = Di j (x − y) δ(t − t ′) , is thus
given by

Di j (r) = 2D0 δi j − di j (r), (4)

di j (r) = D1((d + 1)r2 δi j − 2 rir j ) + o(r2), (5)

where r = |r| and d is the space dimension. The constants D0
and D1 measure the intensity of the velocity and of its gradient,
respectively. They define two time scales of the velocity field.
Considering particles with very large inertia implies that τ is
much larger than these two time scales.

Note that the approximation of the fluid velocity by a
δ-correlated noise has been rigorously derived for the first
time in [24] in the case of Gaussian carrier flows. The case
of turbulent flows has been considered recently with great
detail in [25]. Such velocity fields with zero time correlation
belong to the so-called ‘Kraichnan ensemble’ [26] and have
been studied extensively in the last decade in passive scalar
transport theory [27]. They are generally much more tractable
than other random flows because of the Gaussianity and the δ-
correlation in time. In particular, Eq. (3) together with (4) and
(5) lead to closed equations for particle density correlations
in the position–velocity phase space. In spite of such a
simplification, a straightforward solution of these equations
cannot be obtained with the standard techniques generally used
in studying Fokker–Planck systems.

3. Two-particle dynamics

According to (3), the two-particle separation R = X′
− X

evolves as

d2R
dt2 = −

1
τ

(
dR
dt

− δu
)

, (6)

where δu = u
(
X′(t), t

)
− u (X(t), t). For spatially smooth

flows, the velocity difference δu can be approximated at small
scales by σ (t) R, where σi j (t) = (∂ui/∂x j )(X(t), t) is the
strain matrix along the trajectory X(t). In the asymptotics of
St � 1, the velocity correlation functions are given by (4) and
(5). Thus, σ is to leading order a Gaussian random matrix with
correlation given by (see, e.g., [27]):

〈σi j (t)σkl(t ′)〉 = 2δ(t − t ′)

× D1[(d + 1)δikδ jl − δi jδkl − δilδ jk]. (7)

The two-particle dynamics (6) can then be recast in terms of
the following system of stochastic differential equations in the
position–velocity phase space (R, V):

dR = V dt,

dV = −
1
τ

V dt +
1
τ

dσ R. (8)

Here and henceforth we make use of the Ito formalism.
The two-point motion, given by (8) together with the

correlation (7), depends on two time scales only: τ , the particle
response time, and D−1

1 , the inverse of the typical velocity
gradient (or equivalently the turnover time associated to the
smallest length scale of the flow). Rescaling the physical time t
by one of these two characteristic times, the resulting dynamics
depends on a single non-dimensional parameter, the Stokes
number St ≡ D1τ . In most real flows, D−1

1 is of the same order
as the correlation time of the fluid flow. The asymptotics of
large inertia hence requires us to consider St � 1. For turbulent
carrier flows, both D−1

1 and the correlation time are typically
proportional to τη, the eddy turnover time associated to the
Kolmogorov scale η. The limit of large inertia thus implies that
St ' Sη = τ/τη � 1, i.e. the Stokes number as it is normally
defined in the literature is considered much larger than unity.

3.1. Reduced dynamics

In contrast to tracers, the dynamics of inertial particles has to
be considered in the full (2 × d)-dimensional position–velocity
phase space. However, in both two and three dimensions, the
number of variables necessary to describe the relative motion
of two particles can be reduced to three, namely the particle
distance R = |R| and the velocity component V‖ in the
direction of R and |V⊥| in the directions perpendicular to it.
The relative velocity is thus decomposed as V = V‖ R̂ + V⊥

with R̂ = R/|R|. This reduction was used in [19] and in [21]
(see also [23]) for d = 2 and for d = 3 respectively. In terms of
the non-dimensional velocity differences X and Y defined as

X ≡
τ

R
V‖ =

τ

R2 R · V and Y ≡
τ

R
|V⊥| =

∣∣∣ τ

R
V − X R̂

∣∣∣
the original (2×d)-dimensional dynamics (8) reduces for d = 2
to

dR = X Rds, (9)

dX = −

(
X + X2

− Y 2
)

ds +
√

2St dB1, (10)

dY = − (Y + 2XY ) ds +
√

6St dB2. (11)

Here the rescaled time is s = t/τ and the Bi ’s denote two
independent Brownian motions. In d = 3 the equations for R
and X are the same, while Y is a solution of

dY = −

(
Y + 2XY −

4St
Y

)
ds +

√
6St dB2. (12)

In deriving these Langevin equations, one makes use of the
specific form (7) for the correlation of the strain matrix σ . Note
that the positivity of Y has to be ensured by supplementing the
system with reflective boundary conditions on the plane Y = 0.

While in the original system the noise depends on the
particle relative distance R, it is now additive. However, the
drift terms in the reduced system are nonlinear and differ
in two and three dimensions. The term ∝ 1/Y , which is
present whenever d ≥ 3, can be interpreted as a geometrical
constraint on the reduced dynamics that prevents the velocity
difference between the two particles from becoming exactly
parallel to their separation (i.e. Y = 0). This occurs on a spatio-
temporal set of co-dimension d − 1. In two dimensions, an
arbitrary vector that evolves in time generically intersects this
set at discrete times. The geometrical constraint and hence the
singular term are therefore absent.
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Note that the difference between d = 2 and d = 3 is
more apparent than substantial. Indeed, with the change of
variables {X, Y } → {X,Y = Y 2

} both the two- and the three-
dimensional case can be written as

dX = −

(
X + X2

− Y
)

ds +
√

2St dB1,

dY = −2 (Y + 2XY − αd St) ds + 2
√

6St Y1/2dB2,

where αd=2 = 3 while αd=3 = 7. This formulation involving a
multiplicative noise term will not be used in the following as it
is more convenient to work with the additive noise formulation
(9)–(12).

3.2. Statistical characterization of two-point motion

As a consequence of (9), time integration of the
non-dimensional longitudinal velocity difference X yields
exponential growth of the inter-particle separation R in physical
space:

R(s) = R(0) exp
(∫ s

0
X (s′) ds′

)
. (13)

The Oseledets theorem ensures that, under the ergodicity
hypothesis on the dynamics, the separation behaves as
R ∝ exp(λ t) = exp(λτ s) at large times, λ being the
important measure of particle relative motion. For instance, a
positive Lyapunov exponent means that the particle dynamics
is chaotic [11]. As shown in [19,21], a straightforward
consequence of (13) is that the Lyapunov exponent can be
expressed in terms of the reduced variables as

λ = lim
t→∞

µ(t), where µ(t) =
1
t

∫ t/τ

0
X (s′) ds′. (14)

If the reduced dynamics is ergodic (see discussion in the next
subsection) one has λ = 〈X〉/τ , where the angular brackets
denote averages with respect to the realizations of the noises B1
and B2. At large but finite physical time t , the stretching rate
µ(t) gets more and more sharply distributed around λ. More
precisely, it obeys a large deviation principle and its pdf p(µ, t)
takes the asymptotic form (see, e.g., [27,28])

ln p(µ, t)
t

∼ −
1
τ

H(τµ) when t → ∞, (15)

where H is a convex function attaining its minimum equal to 0
for µ = λ. The rate function H measures the large fluctuations
of µ, which are important to quantify particle clustering. Even
if the Lyapunov exponent is positive, the finite-time stretching
rate can be negative with a non-zero probability. This indicates
that, although on average particles separate exponentially, they
may spend a long time close to each other—a sign of a non-
trivial clustering behavior.

The statistics of the stretching rate gives information on
the separation probability P2(r), i.e. the probability that the
distance R between two particles is less than r . This quantity
is expected to behave as a power law at small distances:

P2(r) ∝ rD2 as r → 0. (16)
The exponent D2 is usually referred to as the correlation
dimension of the spatial distribution of particles [29,30].
When the particles distribute uniformly, D2 equals the space
dimension d. Discrepancies from a uniform distribution
appearing when D2 < d are a signal of preferential
concentration. The small-separation behavior (16) implies
that the generalized Lyapunov exponent Λ of order −D2
vanishes (see, e.g., [28]), i.e.

Λ(−D2) ≡ lim
t→∞

1
t

ln
〈
[R(t)/R(0)]−D2

〉
= 0. (17)

From (14), (15) and (17) one obtains that the correlation dimen-
sion is related to the rate function of the stretching rate through
a Legendre transformation [27]: minρ [D2 ρ + H(ρ)] = 0.

Another useful quantity for characterizing inhomogeneous
particle distributions is the approaching rate κ(r). It is defined
as the flux of particles that are separated by a distance less
than r and approach each other, i.e. their longitudinal velocity
difference X (t) is negative:

κ(r) =
1
τ

〈R Xθ(−X) θ(r − R)〉 , (18)

where θ denotes the Heaviside function. As discussed in [18],
κ(r) can be related to the binary collision rate in the framework
of the so-called ‘ghost collision scheme’ [18,31]. This approach
consists in counting collision events while allowing particles
to overlap instead of scattering. At small separations the
approaching rate behaves as a power law (see [18] for details):

κ(r) ∝ rγ as r → 0. (19)

All the quantities introduced here, of course, depend on the
only parameter of the dynamics, the Stokes number St. Their
behavior in the limit St � 1 will be examined in Section 4 by
means of scaling arguments applied to the reduced dynamics.

3.3. Qualitative picture

For two dimensions, the general picture of the drift in the
(X, Y )-plane is shown in Fig. 1(a). Neglecting the effects of
the gradient of the fluid velocity field (i.e. disregarding the
noises in (10) and (11)), we are left with the drift term only.
As shown in [19], the trajectories of the (X, Y )-plane are then
circles passing by two fixed points. The unstable fixed point at
(−1, 0) corresponds to V‖ = −R/τ , a relation between relative
velocity and separation that is conserved by the dynamics. This
relation leads to an exponential convergence of the trajectories
of different particles to each other in physical space. The
stable fixed point at (0, 0) corresponds to a vanishing velocity
difference and a constant spatial separation between the two
particles. In this case, two particles have relaxed to the fluid
motion and are then simply carried together by a uniform carrier
flow with vanishing gradients. When the noise is neglected, this
stable point attracts all trajectories except those located on the
half-line Y = 0 with X < −1. The trajectories starting in the
vicinity of this half-line perform very large circular loops before
finally converging to the stable fixed point. Those starting
exactly on the half-line escape to X = −∞ in a finite time; their
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Fig. 1. Drift of the reduced system in the (X, Y )-plane for d = 2 (a) and d = 3 (b). X is the non-dimensional longitudinal velocity difference between two
suspended particles; Y is the modulus of the non-dimensional velocity difference perpendicular to the particle separation.
longitudinal velocity difference is so large that the particles may
cross each other within a finite time and their separation R
vanishes in a time smaller than τ . Anyway, this happens with
zero probability when noise is added. The presence of even a
very small diffusion in the Y -direction prevents particles from
remaining exactly on the Y = 0 line and thus from escaping to
infinity.

In the presence of noise, particles spend a large fraction of
time in the vicinity of the stable fixed point (0, 0). There, both
X and Y are very small, so that the dynamics of X and Y
decouple and can be well approximated by two independent
Ornstein–Uhlenbeck processes. When the noise contribution
is sufficiently large, the trajectory can escape this linearized
regime around the stable fixed point. In particular, the noise
can push the trajectory to the left of the unstable fixed point
with a small value of Y . There the drift acts as an accelerative
term towards more negative values of X and finally dominates
the diffusion. The trajectory then spends some time in the half-
plane (X < −1) before looping back to the positive-X half-
plane when Y becomes sufficiently large. As we will see in
Section 4.1, such events are responsible for power-law tails
with exponent −3 in the pdf of X . Moreover, these loops
provide a mechanism for bringing back to the right of the stable
fixed point those trajectories that went away from its left. The
presence of this flux implies that 〈X〉 > 0. Although such
events lead to a positive Lyapunov exponent λ = 〈X〉 /τ > 0,
trajectories typically perform loops in the half-plane where
X < 0 and thus the stretching rate µ, given by the time integral
of X , can be very large negative. Note that during such events,
the inter-particle distance R reaches very small values which is
a signature of preferential concentration.

As stated in the previous subsection, mapping the reduced
dynamics to the statistical properties of two-particle relative
motion requires assuming that the former is ergodic. Even if
such a property has been confirmed numerically, we have at the
moment no rigorous proof of the fact that ensemble averages
with respect to the velocity realizations can be replaced by time
averages along particle trajectories. We however give a rather
crude heuristic understanding why ergodicity can be reasonably
assumed in two dimensions. The deterministic loops performed
by the trajectories are completely determined by their stay in
the neighborhood of the origin where the noise dominates.
We expect this two-fold dynamics to provide a rapid loss of
memory in the particle dynamics. Such mixing properties could
ensure ergodicity of the dynamics.

For three dimensions, the general picture of the drift in
the (X, Y ) plane is given by Fig. 1(b). In contrast to the
two-dimensional case, there is no unstable fixed point, but a
unique stable fixed point that in the absence of noise attracts all
trajectories. For sufficiently large values of the Stokes number,
trajectories spiral towards the stable point, which is located in
the first quadrant, at X ≈ Y ≈ (2St)1/3 when St → ∞.
Like in two dimensions, the trajectories spend a large fraction
of time in its neighborhood. They thus spend more time in
the half-plane (X > 0) than in the half-plane (X < 0); this
clearly implies that λ = 〈X〉 /τ > 0, so that the motion
is expected to be chaotic in three dimensions as well. Unlike
in two dimensions the line Y = 0 acts as a repeller. All
trajectories starting there escape its vicinity with a transverse
acceleration dY/ds ∝ s1/2. They reach order unity values of
Y in an algebraically fast time. Despite these differences, the
mechanism leading to preferential concentration is essentially
the same as for d = 2. In particular, the trajectories which after
a strong fluctuation of the noise reach the half-plane X < −1
are accelerated to more negative values of X before looping
back to the stable fixed point.
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4. Scaling behavior in the asymptotics St → ∞

The behavior of the statistical quantities related to the two-
particle motion is investigated in this section for the limit for
St = D1τ � 1. Following the scaling arguments developed
in [23], we approach this limit by keeping C = D1/τ

2 constant.
The limiting dynamics for St → ∞ in two dimensions is then
given by

dX̄ = −

(
X̄2

− Ȳ 2
)

dt +
√

2C dB1,

dȲ = −2 X̄ Ȳ dt +
√

6C dB2, (20)

where t is the original physical time, X̄ ≡ X/τ and Ȳ ≡ Y/τ .
In three dimensions, the Ȳ drift contains an additional term
of the form 4C/Ȳ . The scaling arguments presented in the
following are valid in both two and three dimensions, and are
confirmed by numerical experiments.

In order to obtain the scaling behavior of various quantities,
we note that for St → ∞ with C fixed, all statistical quantities
can equivalently be derived from (10) and (11) or from (20).
They only depend on the Stokes number in the former case and
on the constant C in the latter. Assuming a smooth dependence
on the two parameters, we derive closed differential equations
for the quantities of interest. These equations yield the large St
behavior of the observed quantities.

4.1. Probability distribution function of the longitudinal
velocity

The pdf p(x; St) = 〈δ(x − X)〉 of the non-dimensional
longitudinal velocity difference X is related to the pdf p̄(x̄; C)

of X̄ by

p(x; D1 τ) =
1
τ

p̄
(

x
τ

;
D1

τ 2

)
,

where the factor 1/τ is due to the Jacobian of the transformation
from X to X̄ . The equality still holds when differentiating both
sides with respect to D1 or to τ . This allows us to write p̄(x̄; C)

as a solution of the partial differential equation

p̄ + x̄
∂

∂ x̄
p̄ + 3C

∂

∂C
p̄ = 0,

which admits solutions that can be written p̄(x̄; C) =

C−1/3q(C−1/3 x̄). Here q is an arbitrary differentiable function.
The pdf of the longitudinal velocity difference can thus be
written as

p(x; St) ≈ St−1/3q(St−1/3x). (21)

Hence, at large Stokes numbers, the non-dimensional velocity
difference X typically takes values of the order of St1/3. The
same argument can be applied for estimating the order of
magnitude of the approaching rate κ defined in (18). This
however does not give any information on the way κ depends
on the particle distance r . Eq. (21) implies that the velocity
difference V = |V| decreases as D1St−2/3 when St → ∞.

As seen from Fig. 2, simulations of the reduced dynamics in
two dimensions (see Appendix A.1) for details on the numerical
Fig. 2. Probability density function p(x; St) of the non-dimensional
longitudinal velocity difference X for various values of the Stokes number St in
two dimensions. Inset: same in log–log coordinates.

method) show that the pdfs of X for different values of the
Stokes number collapse. This confirms the scaling relation (21).
The pdf of X has a peak for x > 0 which is a signature of the
flux of probability from x < 0 to x > 0 induced by the loops
of the (X, Y ) trajectories described in the previous section.

The inset of Fig. 2 shows the distributions of X for several
large values of St in log–log coordinates. The pdfs of the
velocity difference display power-law tails with exponent −3
over two decades for both positive and negative values of X .
This is again a signature of the very large loops characteristic
of the dynamics in the (X, Y ) plane. The observed power-law
tails can be heuristically explained for large values of St by
considering the limiting dynamics (20). Here the loops reaching
large negative values of X are circles passing by (0, 0). We
now make a very crude approximation of the dynamics which
is sketched in Fig. 3. When the trajectories are within a distance
order unity of (0, 0), the noise dominates and X̄ and Ȳ behave
as two independent Brownian motions. At distances from the
origin larger than unity, the drift dominates and the trajectories
are circles. We turn to estimate the cumulative distribution
function P<(x) = Prob (X̄(s) < x) for x � −1. Two separate
contributions to P< have to be considered: (i) the probability to
start a large loop that goes to the left-hand side of x and (ii) the
fraction of time spent at X < x during such a loop.

We first estimate contribution (i). To start a large loop that
reaches values of X̄ smaller than x , the trajectory must be
at X̄ ≈ −1 with Ȳ sufficiently small. More precisely, the
trajectory must be below the circle touching X̄ = x when
exiting the region where the noise dominates. This circle,
which is represented by dots in Fig. 3, is defined by X̄2

+

(Ȳ + x)2
= x2; for X̄ = −1 and x large, one has Ȳ ∝

(−x)−1. The probability to start a large loop is thus given
by the probability that the two-dimensional Brownian motion
(starting, for instance, at the origin) exits the circle of radius 1
from the infinitesimal interval X̄ = −1 and 0 ≤ Ȳ ≤ (−x)−1.
This probability is clearly ∝ (−x)−1.
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Fig. 3. Sketch of the simplified dynamics in the (X̄ , Ȳ ) plane. A typical
trajectory performing a large loop is represented as a bold line. At distances
less than unity from the origin (striped area), the noise dominates and the
trajectory is approximated by a pure Brownian motion. At larger distances, the
drift dominates and the trajectories perform circular loops. In order to reach
values of X̄ smaller than x � −1, the trajectory must exit the striped area with
Ȳ = O(1/|x |).

We next estimate contribution (ii) that results from the
fraction of time spent at X̄ < x on a sufficiently large loop.
It is easily checked from (20) that when neglecting noise and
rescaling time by a factor ∝ R−1 the circular trajectories of
radius R become circles with radius of order unity. This implies
that the trajectories spend a time of order (−x)−1 in the half-
plane X̄ < x , whence a second contribution ∝ (−x)−1.

Lumped together, the two contributions (i) and (ii) imply
that P<(x) ∝ (−x)−2. Hence the pdf of the longitudinal
velocity difference has a power-law tail with exponent −3 at
large negative values. During the large loops, the trajectories
in the (X̄ , Ȳ ) plane also reach large positive values of X̄ and
of Ȳ . This gives again a fraction of time ∝ x−1 spent at both
X̄ > x � 1 and Ȳ > x � 1. We hence have the same algebraic
tail with exponent −3 for the pdf of both the longitudinal and
the transversal velocity difference at large positive values.

This argument cannot be straightforwardly applied to
the three-dimensional case. Firstly, the probability for the
trajectories to enter a large loop cannot be estimated by
linearizing the dynamics in the vicinity of the fixed point.
Secondly, the numerical simulations of the reduced system are
generally unstable for d > 2 (see Appendix A.2). At present,
we do not know whether or not the power-law behavior ∝ |x |

−3

for the pdf of X also holds in three dimensions.

4.2. The Lyapunov exponent and the stretching rate

As a direct consequence of (21), the Lyapunov exponent
given by 〈X〉 /τ behaves as

λ ≈ α C1/3
= α D1 St−2/3, (22)
Fig. 4. Lyapunov exponent λ as a function of the Stokes number St in log–log
coordinates in both two and three dimensions.

where α =
∫

dz zq(z) is a constant. This result was obtained
in [23] where it is shown that it holds even for compressible
flows. Fig. 4 confirms numerically the power-law behavior (22)
in both two and three dimensions. Note that the asymptotic
regime is reached only for rather large values of St (typically
larger than 100).

We now apply the scaling arguments of [23] to the rate
function H of the large deviations of the stretching rate µ

defined in (14). As for X , the asymptotic form for the pdf of µ

given in (15) is equated with the pdf obtained from the system
depending only on C . After differentiating this equation with
respect to D1 and τ , we obtain that H(ρ = τµ; St) obeys the
following partial differential equation:

ρ
∂

∂ρ
H + 3 St

∂

∂St
H = H.

From this relation the scaling form

H(µτ ; St) ≈ St1/3h
(

St−1/3µτ
)

(23)

can be derived. This asymptotic behavior for the rate function
of the large deviations of the stretching rate is confirmed by
two-dimensional numerical experiments (see Fig. 5).

We have seen in the previous subsection that the Lyapunov
exponent tends to zero as St−2/3 in the limit St → ∞. From
the St1/3 prefactor in the asymptotic form (23) and assuming,
for instance, that H is a quadratic function, it is easily checked
that the typical fluctuations of the stretching rate are O(St−5/6).
When St � 1 the stretching rate thus becomes more and
more sharply distributed around the Lyapunov exponent, and,
as expected, the dynamics indeed tends to be less and less
intermittent.

5. Saturation of the correlation dimension

Particles with infinite inertia (St = ∞) need an infinite time
for their velocity to relax to that of the fluid flow. In other terms
they have a ballistic dynamics: they move freely maintaining
their initial velocity. Hence such particles distribute uniformly
in phase space [16]. The correlation dimension of their spatial
distribution (defined in Section 3.2) equals the space dimension,
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i.e. D2 = d . Furthermore, as the velocities of the particles
become uncorrelated, the exponent γ characterizing the small-
scale behavior of the approaching rate (see (19)) is expected to
coincide with the correlation dimension. Thus, for St � 1 one
has D2 ' γ ' d .

The scaling strategy devised in the previous section can
only catch leading-order behavior of the correlation dimension,
i.e. D2 = d . It hence cannot distinguish between the following
two possible behaviors: (a) asymptotic convergence of D2 to
d which is determined by subleading terms in the asymptotic
form of H , and (b) saturation of D2 to d for Stokes numbers
larger than a critical value StĎ. Based primarily on numerical
analysis, we now present evidence for the latter.

Such a saturation can be understood by considering the
particle motion in the full position–velocity phase space.
As stated in the Introduction, the inertial particle dynamics
is dissipative in phase space and the particle trajectories
converge to a random attractor. This dynamically evolving
set is typically characterized by a multifractal measure with
a spectrum of dimensions Dq [29,30,13]. In particular, the
correlation dimension D2 in phase space is the straightforward
generalization of D2. It can be defined through the small-scale
algebraic behavior of the probability P2(r) to find two particles
at a distance less than r in phase space:

P2(r) ∼ rD2 for r → 0.

To evaluate a distance in phase space we make use of the
Euclidean norm

√
|R|2 + |V/D1|2, where we choose to divide

V by the typical gradient D1 of the fluid flow in order to obtain
a quantity with dimension of a length scale.

Clearly, particle positions are obtained by projecting from
the (2 × d)-dimensional phase space onto the d-dimensional
physical space. It is then tempting to apply rigorous results that
have been obtained on the projection of fractal sets [32,33]. In
particular, it can be shown that for almost all projections, the
correlation dimension of the projection of a random fractal set
is the minimum of the correlation dimension of the object in the
full space and of the dimension of the subspace onto which it is
projected. In our case, this would lead to

D2 = min{d,D2}. (24)

In the limit of large Stokes numbers, the particle motion
becomes ballistic and thus D2 → 2d . This, together with the
projection formula (24), suggests that there exists a critical
value StĎ of the Stokes number such that D2(St) = d for all
St ≥ StĎ. However, determining whether D2 saturates above
StĎ or whether it approaches d asymptotically, depends on the
genericity of the projection from phase space onto the physical
space. Unfortunately, there is a priori no reason for assuming
some kind of isotropy in phase space which would justify the
validity of (24).

We are therefore led to investigating this issue numerically.
A first idea was to estimate D2 and D2 as the average
local slopes of P2(r) and P2(r), respectively. Such naive
measurements lead to what is summarized in Fig. 6 that
contradicts the projection formula (24). In particular, it is
Fig. 5. Rate function of the stretching rate µ (or finite-time Lyapunov
exponent).

Fig. 6. Correlation dimension in physical space D2 (empty squares) and in
phase space D2 (empty circles) as a function of St. The solid curve represents
the prediction based on the projection formula (24). The exponents were
obtained by averaging the local slopes (logarithmic derivatives) of the pair
separation probability. Errors in determining such exponents are of the order
of the size of the symbol. See text and Fig. 7 for a discussion on the behavior
of the local slopes.

observed that D2 < D2 even when D2 < d. The same kind
of observation has been made in ad hoc examples where the
projection is trivially typical, such as random fractal sets in
three dimensions projected on randomly oriented planes [34].
This suggests we reconsider with more care the analysis of the
data by performing a closer inspection of the local slopes (see
Fig. 7(a) and (b)). One can naively estimate the dimensions by
averaging the local slope over those scales where it seems fairly
constant, thinking that the error on the exponent is of the order
of the maximal deviations of the local slope from its mean. This
method is appropriate for measuring D2 but does not work for
D2. Indeed, the logarithmic derivatives (d ln P2(r))/(d ln r) are
curved, indicating a behavior that differs from a pure power law.
This observation is made both below and above the potential
critical Stokes number StĎ ≈ 0.6 for which D2(StĎ) = d = 2.
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Fig. 7. (a) Logarithmic derivative (d log P2(r))/(d log r) of the pair distance probability in real space (empty boxes) and in phase space (empty circles) for St = 0.5.
The solid straight line is at the estimatedD2 = 1.965, the dotted straight line is at the value 1.86 obtained by averaging the correlation dimension in real space in the
range [10−3

: 10−2
]. The thick black line corresponds to a fit of the local slopes by assuming a superposition of two power laws, i.e. assuming P2(r) = Ara

+ Br2

(see text for a discussion). (b) Logarithmic derivative (d log P2(r))/(d log r) vs r for St = 2.0 (empty boxes) and St = 4 (full boxes). The curves are obtained by
using (25) as a fitting function. The inset displays (d log P2(r))/(d log r) vs r for St = 2.0 (empty boxes) and St = 4 (full boxes), for which D2 ≈ 2.58 and 2.83
respectively.
Similarly to what has been observed in other systems
exhibiting multifractal behavior [35], one can be tempted to
interpret the curvature of the local slopes by the presence of
sub-dominant terms leading to the superposition of two power
laws. We hence make the Ansatz that the probability distribution
of the two-particle separation r can be approximated by
P2(r) ' Ara

+ Brb at the spatial scales we resolve. In our
case it is rather clear how to guess the exponents a and b for
St < StĎ. Since D2 < d in this range of Stokes numbers,
one expects from (24) the projected set to have dimension
D2 = D2. However, at such values of St there is a contribution
coming from caustics [36,18]. With a non-zero probability,
particles can come sufficiently close to each other with quite
different velocities. Once projected onto the physical space,
these caustics will appear as spots of uncorrelated particles, and
hence, locally, the correlation dimension will be D2 = d = 2.
This (indeed very) crude argument suggests that

P2(r) = ArD2 + Br2. (25)

As shown in Fig. 7, this fitting form is actually in very good
agreement with the behavior of the local slopes. Indeed the
validity of (25) was confirmed by several experiments which
consisted in varying the number of free parameters in the fit. It
is interesting to note that also for St > StĎ the asymptotic form
(25) approximates very well the data, even though the simple
argument we sketched is not applicable for such values of the
Stokes number.

To summarize, for St close to StĎ, the probability P2(r)

is well approximated at small scales by the superposition of
two power laws (25). The first power law gives the leading
behavior for St < StĎ and is related to the fractal nature of
the particle distribution The second power law dominates for
St > StĎ and is related to the presence of caustics in the particle
dynamics. We thus have strong evidence in favor of the validity
of the projection formula (24) and hence for saturation of the
correlation dimension D2 to the space dimension.
We now briefly comment upon the implication of saturation
on the behavior of the approaching rate. In the limit St →

∞, particles move ballistically and hence may approach each
other within an arbitrary small distance with order unity
velocity differences. One thus expects the exponent γ of the
approaching rate defined in (19) to tend to d. As in the case of
D2, deviations from this limiting value cannot be determined
by scaling arguments. Saturation of D2 would however affect
γ . It is related to a dominant contribution of caustics that could
imply also the saturation of γ to d for sufficiently large Stokes
numbers. As shown in the next section, though numerical
experiments confirm this scenario, saturation cannot be studied
with as much detail as for D2. In particular, there is at the
moment no simple phenomenological argument leading to a
prediction for the subleading terms.

6. The case of finite Stokes numbers

Apart from its validity for the large Stokes asymptotics,
a Gaussian and δ-correlated in time carrier flow constitutes
a valuable model for systematic investigation in particle
clustering at any value of St: Due to the lack of persistent
structures it is well suited for quantifying those effects in the
particle dynamics that are due to its dissipative nature only.

Here we mostly stick to a numerical analysis whose main
findings are summarized in Fig. 8: the correlation dimensions
D2 and D2 in physical space and in phase space, respectively,
as well as the exponent γ characterizing the approaching rate,
are represented as a function of the Stokes number.

The main feature is that for St = St? ≈ 0.07, the correlation
dimension has a minimum corresponding to a maximum of
clustering. The presence of such an ‘optimal’ Stokes number
St? for particle clustering is a generic feature that has also been
observed using other indicators, such as the deviation of the
particle number density from a uniform distribution [1,9] or the
Lyapunov dimension [37]. In turbulent flows, St? was found
to be of order of unity, i.e. the particle response time is of
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Fig. 8. Scaling exponents as a function of St. Data refer to the correlation
dimension in real space D2 (thick solid line), which has been corrected for
St close and larger than StĎ using (24) and the correlation dimension in phase
space D̄2 (full circles). Inset: γ −D2 vs St. Note the plateaus at 1 for small St
and at 0 for large St.

the order of the Kolmogorov eddy turnover time. According
to the standard phenomenological picture (see, e.g., [1]), this
can be interpreted in terms of an optimal response time for the
particles that anti-correlate with the vortical structures of the
flow. This is responsible for the accumulation of particles in
strain regions and, hence, for the formation of inhomogeneities
in their spatial distribution. This appealing picture based on the
presence of persistent structures in the fluid flow can, of course,
not be applied to white-in-time random flows. Our results reveal
that the mechanisms responsible for an optimal clustering have
a purely dynamical origin. In our settings the only relevant
time scale is D−1

1 which is a Lagrangian time scale (essentially
the inverse of the Lyapunov exponent of fluid tracers). Even if
we cannot exclude that time-correlated and time-uncorrelated
flows are governed by different mechanisms, our conjecture is
that particle clustering has a purely Lagrangian origin. A deeper
understanding of such mechanisms is still lacking.

Qualitative agreement between the flow considered, which is
uncorrelated in time, and more realistic flows displaying time
correlations does not extend to St � St?. In the former, as
seen from Fig. 9, the dimension deficit 2 − D2 is proportional
to St, while it was shown to be proportional to St2 in both
random time-correlated [17,13] and turbulent flows [15]. For
St � StĎ, the scaling is rather clean and the subleading terms
discussed in the previous section can hardly be detected and
D2 ≈ D2 ≈ γ − 1 (see insets of Figs. 8 and 9). These
measurements suggest that in this regime the particle velocities
are defining a smooth compressible velocity field. This leads us
to conjecturing that the small Stokes number asymptotics can
eventually be approximated with an expansion of the particle
velocity as a function of the flow velocity. The validity of this
expansion has been shown for correlated flows where it has
been successfully used [38,14]. However this approach cannot
be straightforwardly extended to the δ-correlated case where the
fastest time scale of the system is the one of the fluid. Tackling
this asymptotics requires the use of standard techniques of
Fig. 9. Dimension deficits 2 − D2 (empty boxes) and 2 − D2 (full boxes)
as a function of St in log–log coordinates. Note the remarkable overlap that
almost hides the empty boxes. The dashed straight line is the result of a linear fit
2 −D2 = 21.6St. Inset: Logarithmic derivatives (d log P2(r))/(d log r) (empty
boxes), (d log P2(r))/(d log r) (full boxes), and [(d log κ2(r))/(d log r) − 1]

(crosses) for St = 1.6 × 10−3, illustrating the typical quality of the scaling for
St � 1.

singular perturbation theories [39], which is beyond the scope
of the present work.

The exponents characterizing the scaling of the approaching
rate, as shown in the inset of Fig. 8, deviate from the small St
asymptotics γ = D2 + 1 already for St < St?. They actually
approach rapidly the large St asymptotics γ ' D2. This means
that velocity differences of close particles become less and less
correlated, i.e. |V| ∼ |R|

0. Caustics seem to dominate the two-
particle statistics already at intermediate values of the Stokes
number.

We finally mention that we have performed similar
numerical experiments in three dimensions. Although they
involve fewer statistics, they reproduce qualitatively the same
general picture.

7. Concluding remarks

We have seen that the fluid flow along particles with
large inertia is asymptotic to a Gaussian, δ-correlated in time
random process. We thus focused on two-particle motions
in such an asymptotics. Following the approach of [19,
21], the dynamics of particle separation in position–velocity
phase space has been reduced to three stochastic differential
equations involving the distance, and the longitudinal and
transverse velocity differences only. Focusing mostly on two
dimensions, we reinterpreted within this approach many aspects
of inertial particle dynamics such as, for instance, preferential
concentration.

Scaling arguments have been used to determine the
asymptotic behavior of the Lyapunov exponent, of the
distribution of the stretching rate and of the velocity differences,
predictions which are confirmed numerically. It would be of
interest to test the validity of such scaling laws in time-
correlated flows. Concerning the small-scale behavior of the
spatial distribution of particles, we presented strong evidence
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that the correlation dimension saturates to the spatial dimension
when the Stokes number exceeds a threshold value StĎ.
We extended our study to values of the Stokes number
where the model loses its physical relevance, but is still
displaying interesting features. For St < StĎ, we observed that
particles transported by a δ-correlated flow reproduce the main
qualitative features observed in more realistic time correlated
flows. In particular, there exists an ‘optimal’ Stokes number
St∗ for particle clustering as observed for turbulent flows.
Its existence in δ-correlated flows which have no structures,
questions the classical phenomenological explanation based on
the presence of persistent structures.

The probability distribution of the velocity difference
between two particles was found to have power-law tails with
exponent −3. We presented a phenomenological argument
relating this algebraic behavior with those events where the
particles approach each other ballistically. Interestingly, the
correlation dimension of the particle distribution seems to
depend analytically on the Stokes number and, in particular,
it approaches linearly the space dimension d for St → 0.
This observation has to be balanced with results on the non-
analyticity of the Lyapunov exponent for St → 0 (see, e.g., [23]
and references therein).

We conclude by stressing that a phenomenological
understanding of the relative motion of inertial particles in
turbulent flows may benefit from approaching the problem in
terms of the reduced variables discussed here. In particular,
studying the probability distribution of the components of the
velocity difference might be of interest not only for checking
whether or not the −3 tails are also present there, but to
understand its behavior at finite Stokes numbers as well.
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Appendix A. Numerical methods

With respect to numerics, efficient codes have been
developed for the direct integration of the particle dynamics as
it is given in (6) and of the reduced model dynamics (10) and
(11).

A.1. Integration of the reduced model

In two dimensions, the exact solution of the drift part of the
reduced model (10) and (11) can be straightforwardly derived
from the solution of the deterministic part of (6). In terms of
Z = X + iY , the solution can be cast into the following simple
form [19]:

Z(t + 1t) =
Z(t) exp(−1t)

1 + Z(t)(1 − exp(−1t))
.

Then the noise term can be added by using the Euler–Ito
scheme. This integration method is very efficient and has been
used to evaluate the large deviations of the finite-time Lyapunov
exponent and of the Lyapunov exponent itself.

In three dimensions, due to the Ito-term ∝ 1/Y , the solution
of the drift part cannot straightforwardly be obtained from the
solution of the deterministic part of the original system as is
done for d = 2. Due to the nonlinear terms in the drift, it is
rather difficult to develop a stable integration scheme. We thus
used the Lagrangian method described below.

A.2. Lagrangian integration of two-particle dynamics

The two-point motion (6) can be numerically integrated in
a very efficient way by following [40]. In practice one simply
needs to generate the random relative velocities according to a
white-noise Gaussian process with a correlation function given
by (4) and (5). This can be done easily because the correlation
matrix di j in (5) is symmetric and positive definite. The latter
property allows us to use the Cholesky decomposition of the
correlation matrix,

di j (r) = L ik L jk .

L i j being a non-singular lower triangular matrix. The
integration of (6) can thus be performed with a standard
Euler–Ito scheme

Ri (t + 1t) = Ri (t) + 1tVi (t),

Vi (t + 1t) =

(
1 −

1t
τ

)
Vi +

1
τ

√
21t L i jη j ,

where i, j = 1 . . . d, 1t is the discretized time step and the η j ’s
are d independent white noises.

The numerical procedure is thus as follows. Given the
separation R between two particles, the correlation matrix
di j (r = |R|) is computed from (5), and L i j is obtained by
means of an efficient algorithm. The d independent Gaussian
variables η j are generated and the velocity is obtained as L i jη j .
In two spatial dimensions the latter procedure is particularly
efficient. Indeed, the velocity differences associated to the
particle separation R = (x, y) can be simply written as:

δux (t) =

√
D1(xη1 − yη2)

δu y(t) =

√
D1(yη1 + xη1).

The evolution of the separation (6) is supplemented by periodic
boundary conditions which are required for a stationary spatial
particle distribution. These boundary conditions do not affect
the small scales properties we are interested in.

This procedure has the advantage of working in a quasi-
Lagrangian frame, i.e. directly with the particle relative position
and the velocity difference. Furthermore, it can be easily
generalized to rough flows. We used it for computing the pair-
separation probability distribution, the phase–space correlation
dimension and the approaching rate (see Section 6). The
algorithm we set up is fast enough to allow us to reach statistics
up to times of orders 108–109 (which for the smaller values of
the Stokes number corresponds to 1013–1014 time steps) in a
few hours on a PC.
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