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Understanding under which conditions it is possible to construct equivalent ensembles is key to
advancing our ability to connect microscopic and macroscopic properties of non-equilibrium statisti-
cal mechanics. In the case of fluid dynamical systems, a first issue is to test whether different models
for viscosity lead to the same macroscopic properties of the fluid systems in different regimes. Such
models include, besides the standard choice of constant viscosity, also cases where the time symme-
try of the evolution equations is exactly preserved, as it must be in the corresponding microscopic
systems, when available. Here a time-reversible dynamics is obtained by imposing the conservation
of global observables. We test the equivalence of reversible and irreversible ensembles for the case of
a multiscale shell model of turbulence. We verify that the equivalence is obeyed for the mean-values
of macroscopic observables, up to an error that vanishes as the system becomes more and more
chaotic.

I. INTRODUCTION

The macroscopic description of the dynamics of phys-
ical systems typically include forces that phenomenolog-
ically model the effect of molecular disordered motions,
and are controlled by appropriate transport coefficients
(such as viscosity, diffusivity etc.). A prominent exam-
ple is given by the viscous term of the Navier-Stokes (NS)
equations. Such forces break the time-reversibility, which
is instead inherent to the microscopic dynamics. They
are also responsible for the dissipation of energy, which
allows for establishing a (non-equilibrium) statistically
steady state when the system is externally driven.

In the context of molecular dynamics a similar role is
played by thermostats. A body of numerical simulations
from the ’80s till these days have shown that the non-
equilibrium properties of systems composed by a large
number of molecules (particles) are basically independent
of the precise nature (reversible or not) of the model used
for the thermostats [1]. This suggests that something
similar may apply to the macroscopic description of phys-
ical systems, as pioneered in simulations in [2] and con-
jectured, on more theoretical ground, about two decades
ago in [3, 4]. Specifically the hypothesis is that the statis-
tical properties of the non-equilibrium steady state of a
macroscopic system, whose dynamics obeys a simple phe-
nomenological law of the kind described above, should
be equivalently described by different macroscopic equa-
tions, including some that preserve time reversal sym-
metry. In particular, with the example of fluid dynamics
in mind, this can be realized by allowing the viscosity
to depend on the fluid velocity in an appropriate way,
thus converting the (inherently irreversible) dynamical
ensemble of the Navier-Stokes equation with a fixed vis-
cosity into a (formally reversible) dynamical ensemble
with fluctuating viscosity. In systems at equilibrium, a

conceptually similar step is done when switching from
the microcanonical to the canonical ensemble.

The equivalence discussed above has already been scru-
tinized in a few simple systems such as a highly trun-
cated version of the 2D Navier Stokes equations with pe-
riodic boundary conditions [5, 6] and, more recently, in
the Lorenz ’96 model [7]. Such tests dealt with systems
not exhibiting the time-scale separation typical of many
macroscopic systems. In this paper we explore whether
it is possible, and under which caveats, to establish an
equivalence between different non-equilibrium ensembles
in systems with multiple spatial and temporal scales. In
particular, we investigate the shell model for turbulence
introduced in [8] (see also [9, 10] for general surveys on
shell models).

The study of multiscale systems is at the core of many
disciplines dealing with complex systems and the con-
struction of accurate methods for model reduction is of
great relevance for the theory and for the construction
of efficient and robust numerical models. For instance
a substantial part of the efforts in weather and climate
modeling are devoted to improving the representation of
small scale processes. This requires a difficult interplay
between Large Eddy Simulations (LES) [11, 12] and ded-
icated observational campaigns. LES simulations them-
selves need to be tailored via parametrization (which
amounts to defining suitable eddy viscosities) to be com-
patible with higher resolution direct numerical simula-
tions (DNS) of atmospheric flows. It is important to re-
mark that reversible models for the dissipative terms are
already used in LES [13] (see also [14, 15] for interesting
studies on the interplay of energy cascade and reversibil-
ity in LES and DNS of the Navier-Stokes equations).

The paper is structured as follows. In Sect. II we
provide a concise, but self-contained, summary of the
general framework of non-equilibrium dynamical ensem-
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ble equivalence, where we formalize a general theoretical
approach to the problem in the form of conjectures that
can be subjected to tests.

In Sect. III we present the multiscale model ana-
lyzed in detail in this study. We supplement the tra-
ditional irreversible model with the reversible models
obtained by replacing viscous terms with forces impos-
ing anholonomous constraints on suitably chosen observ-
ables selected so that the resulting equations are time
reversible.

Comparisons between properties of the irreversible and
reversible models are discussed in Sect. IV, where we an-
alyze a range of mathematical and physical properties of
the models and assess whether the equivalence discussed
above holds.

In Sect. V we summarize and discuss the main findings
of our paper and present perspectives for future works in
this direction.

II. THE GENERAL FRAMEWORK:
EQUIVALENCE OF ENSEMBLES

A. Equivalence of Equilibrium Ensembles

One of the cornerstones of equilibrium statistical me-
chanics is the possibility of establishing an equivalence
between different statistical ensembles [16, 17]. This
means that in the thermodynamic limit - as the num-
ber of particles goes to infinity - the expectation values
of physical observables of the system do not depend on
the specific choice of the thermostat defining the interac-
tion between the system and the reservoir it is in contact
with, when suitable consistency is imposed.

Clearly not all physical observables will have the same
value in the different ensembles. For instance, in a sys-
tem statistically described by the canonical ensemble the
temperature fluctuations vanish while energy fluctuates
and the opposite occurs in a system described by the
microcanonical ensemble.

Equivalence of equilibrium ensembles allows us to un-
derstand the emergence of macroscopic thermodynami-
cal properties that do not depend on the details of the
microscopic dynamics describing the coupling between a
system and the surrounding environment.

B. Equivalence of Non-Equilibrium Ensembles

1. General Discussion

Let us consider the simplest case of an out–of–
equilibrium system modeled by a differential equation
with N variables that can be thought as a time reversible
equation perturbed with an external force, which injects
energy into the system, plus a dissipative force, which
absorbs energy, allowing the system to reach a steady
state.

The parameter controlling dissipation (e.g. viscosity ν
in a fluid) can be replaced by a multiplier defined in such
a way that the new equation admits a suitably selected
observable as an exact constant of motion (e.g. the fluid
enstrophy). We will call it the balancing observable.

Furthermore the multiplier can often be chosen so that
the new equations exhibit a time reversal symmetry (see
below for typical examples). The multiplier will fluctuate
in time and, for macroscopic observables, equivalence is
expected between the irreversible and reversible formula-
tions. By macroscopic we mean observables that depend
on a few (� N) large-scale degrees of freedom (hence
insensitive to the details of the system when N is large).
One expects the equivalence to hold when the motion
is sufficiently chaotic and the fluctuating multiplier has
average equal to the value of the phenomenological dis-
sipation parameter.

For instance, in the case of a fluid described by the in-
compressible Navier-Stokes equations in a homogeneous
geometry (e.g. periodic boundary conditions) or by a
shell model truncated at N modes we have a multi-scale
non equilibrium system characterized by a single dynam-
ical parameter R, the Reynolds number, and an ultravi-
olet cutoff N . At fixed forcing, equivalence of the aver-
ages of a prefixed number of observable is expected in the
limit of very small dissipation e.g. ν → 0 or, equivalently,
Reynolds number R→∞. The discrepancy between av-
erages of the prefixed observables is expected to become
smaller than some δ > 0 for a R above a threshold value
Rδ. In applications to fluids it is also expected that N
should be taken large enough and correspondingly the
equivalence threshold will have to become R > Rδ,N , i.e.
depending on N too. The order of the limit R→∞ and
N → ∞ is a delicate issue that will be discussed in the
following for the specific case of the shell model.

Then the analogy with the usual theory of ensemble
equivalence for equilibrium statistical mechanics would
be complete with ν, or the Reynolds number R ∝ ν−1,
playing the role of the inverse temperature, and with N
(necessary, perhaps, to give mathematical wellposedness
to the equations in 3 dimensions or, certainly, in numer-
ical implementations in any dimension) playing the role
of the volume.

Of course, an important question is: how do we choose
the balancing observable in order to successfully define
an equivalent ensemble? For instance, in the NS case,
the balancing can be constructed using the total enstro-
phy, or the total energy, or other macroscopic observ-
ables. The choice might be critical because the Fourier
components of the velocity field have non-local interac-
tions [18], so that the equivalence could be affected by
the same difficulties that occur in equilibrium statistical
mechanics in systems with long range interactions [19].
As far as we know, there is no general prescription and, in
the end, the choice might be based on empirical grounds
or motivated by/targeted to specific applications.
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2. Mathematical Formulation

Mathematically speaking, we consider a dynamical sys-
tem with N degrees of freedom written as:

ẋj = fj(x) + Fj − ν(Lx)j , j = 1, . . . , N (1)

where Fj is a constant forcing, ν > 0 is a dissipation
coefficient and L is a positive definite dissipation matrix.
In many interesting cases one has (Lx)j = gjxj with
gj > 0 (the matrix is diagonal and all the elements on
the diagonal are positive; no summation implied here).

A system is said to have a time reversal symmetry I if
the map I acts on the variable x so that if t → Stx is a
solution then IStx = S−tIx, i.e. if t→ x(t) is a solution
also Ix(−t) is solution (with datum Ix(0)). Therefore the
above Eq. (1) has the map Ix = −x as a time reversal
symmetry if fj(x) is even in x and ν = 0.

Let O(x) be an observable such that∑N
j=1 ∂jO(x)(Lx)j = M(x) is positive for x 6= 0.

For instance in the above equation if L = 1 and
O(x) = x2/2 then M(x) = x2. Then the equation:

ẋj = fj(x) + Fj − α(x)(Lx)j , (2)

with

α(x) ≡
∑N
j=1(fj + Fj)xj

M(x)
, (3)

admits O(x) as an exact constant of motion, i.e. Ȯ = 0.
Furthermore, if O(x) = O(−x), the equation is time-
reversible. In Eq. (1) the viscosity, ν, is set constant
and the observable O fluctuates; correspondingly, in Eq.
(2), the observable O is constant and the ”viscosity” α
fluctuates.

Hereafter the notation X|y will denote that X is evalu-
ated in the model where the quantity y is kept constant.
We say that the stationary distributions of the Eq. (1),
(2) define ensembles of statistical distributions that can
be parameterized by the value of ν for Eq. (1) or, by the

(constant) value Õ of the observable O for Eq. (2).
In this work, equivalence means that the reflexivity

property holds, i.e.

〈O〉|ν = Õ ↔ 〈α〉|Õ = ν , (4)

and for a given set of macroscopic observables Φ the sta-
tionary averages in the reversible and irreversible evolu-
tions are related by

〈Φ〉|ν = 〈Φ〉|Õ (1 + o) (5)

with the o a Φ-dependent quantity, infinitesimal as
ν−1 →∞, for fixed N .

Equation (5) clarifies the thermodynamical aspect of
the equivalence: in a strongly chaotic regime, measuring
a macroscopic observable of the system, we are unable
to say whether we are observing the reversible or the
irreversible variant.

The property of reflexivity is an essential element of
the proposed equivalence: setting the value of the viscos-
ity coefficient ν in the irreversible system is conceptually
equivalent to setting the value of the physical quantity O
in the corresponding reversible system.

The above-mentioned formulation of the equivalence
conjecture has been extended in other studies [20–23], in-
cluding the definition of a fluctuation relation for the re-
versible ensemble, as well as conjectures about the equiv-
alence of the Lyapunov spectra in the two ensembles [7].
However, these concepts are out of the scope of this pa-
per, and will not be discussed in the following.

Finally, by repeating the procedure described above
with a different observable O, it is possible to generate
different time-reversible models, so that a plurality of
(potentially equivalent) non-equilibrium ensembles can,
in principle, be constructed.

III. MODELS

A. The (irreversible) Shell Model

Shell models are finite dimensional, chaotic dynami-
cal systems providing a test-bed for fundamental studies
of fully developed turbulence [9, 10, 24]. They can be
thought as drastic simplifications of the Navier-Stokes
equations and share with them many non-trivial prop-
erties observed in experiments and simulations, such as
the energy cascade from large to small scales, dissipative
anomaly, and intermittency with anomalous scaling for
the velocity statistics.

Our analysis is based on the shell model introduced in
Ref. [8]. It describes the evolution of a set of complex
variables un, representing the velocity in a shell of wave-
numbers |k| ∈ [kn, kn+1], with n = 0, . . . , N − 1. The
Fourier shells kn are geometrically spaced, kn = k02n

with k0 = 1, so that a large, O(2N ), range of scales can
be explored using few degrees of freedom. The equations
of motion take the form [8]:

u̇n = N [{un}]−νk2
nun+Fn , n = 0, . . . , N −1 , (6)

where

N [{un}] = ikn

(
2aun+2u

∗
n+1+bun+1u

∗
n−1+

c

2
un−1un−2

)
(7)

accounts for the non-linear coupling between neighboring
wave-numbers, −νk2

n is the dissipative term, and Fn is
an external force typically acting at large scales (here
Fn = Fδn,0, with F constant). The boundary conditions
u−1 = u−2 = uN = uN+1 = 0 are imposed.

Rigorous results [25] have been derived for equation
(6), proving that it admits a unique global, regular solu-
tion for all initial data with finite enstrophy. Moreover,
it has been shown that the attractor is finite dimensional
with dimension not exceeding (log2R) + 1

2 log2( 13
4 3) (see

Eq.(62) in Ref.[25]), and that the evolution of the shells
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≤ K determines the evolution of the remaining modes
if K is large enough, i.e. larger than the Kolmogorov
wavenumber (defined below).

When ν = F = 0, the model (6) has two quadratic in-
variants depending on the values of the a, b, c parameters.
The choice a = 1, b = −0.5, and c = 0.5 guarantees that
the non-linear evolution (7) conserves the total energy
(hereafter

∑
n denotes the sum over all the shells)

E =
∑
n

|un|2 , (8)

and the total helicity H =
∑
n(−)nkn|un|2, as in the

three-dimensional Navier-Stokes equations.

After multiplying Eq. (6) times u∗n, adding the com-
plex conjugate, and summing over all the shells from 0
to M , one obtains the equation for the time evolution for
the energy contained in the first M shells:

ĖM = ΠE
M − 2ν

M∑
n=0

k2
n|un|2 + 2

M∑
n=0

Re(Fnu
∗
n) , (9)

where

ΠE
M = − 2kM

[
2a=(uM+2u

∗
M+1u

∗
M )+

+ (a+ b)=(uM+1u
∗
Mu
∗
M−1)

]
, (10)

is the (instantaneous) energy flux through the M th shell.

The model given in eq. (6) spontaneously develops
an energy cascade from the large (forced) scales to the
small ones, with a constant energy flux at steady state.
The energetics of such a system is given by eq. (9) with
M = N − 1, and reads as follows:

Ė = ε− 2νΩ . (11)

where the rate of energy injection, ε = 2
∑
nRe(Fnu

∗
n),

is bounded by 2|F |
√
E, and 2νΩ is the rate of energy

dissipation, with

Ω =
∑
n

k2
n|un|2 (12)

being the total enstrophy. The energy flux in (11) is equal
to zero because the non linear term (7) conserves energy.

From Eq. (11) at stationary state and the Schwartz
inequality, it follows that the average of E is Ē ≤
|f |2(k0ν)−2 , implying the boundedness of the phase
space asymptotically visited by the system.

At stationary state, realized when 〈ε〉 = 〈2νΩ〉, the en-
ergy injected at large scales cascades towards the small
scales with a constant flux, 〈ΠE

n 〉 = −〈ε〉, for all shells be-
tween the forcing one and the the Kolmogorov wavenum-
ber kη = 〈ε〉1/4ν−3/4, where dissipation becomes domi-
nant over non-linear transfers (provided kη < kN−1) [9].

B. A Class of Reversible Shell Models

Following the procedure discussed in Sect. II (see also
Refs. [3, 4]), we can define a class of time-reversible mod-
els out of Eq. (6) as

u̇n = N [{un}]− αχ[{un}]k2
nun + Fn , (13)

where the fluctuating viscosity αχ is a function of the
velocity variables, {un}, chosen such as to conserve a
generic quadratic quantity of the form

Oχ ≡
∑
n

kχn |un|2 = const , (14)

where the continuous parameter χ weighs differently the
wavenumbers. With this choice, the fluctuating viscosity
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FIG. 1. (Color online) Side by side comparison between the
time evolution of several observables in the irreversible shell
model SI (left column) and the reversible SRΩ model (right
column). From top to bottom: energy E, viscosity ν (α2 for
SRΩ), enstrophy Ω, and energy dissipation ε = 2νΩ (2α2Ω for
SRΩ). All quantities are normalized by their average value.
We used N = 15 shells and ν = 10−5, corresponding to the
energy cascade regime. Notice that α2 is not positive def-
inite: the occurrence of negative values, highlighted with a
thicker/red line, corresponds to instances in which the dissi-
pative terms injects energy into the system.
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takes the form

αχ =

∑
n k

χ
n<(unF

∗
n)∑

n k
χ+2
n |un|2

+

+

∑
n k

χ+1
n (2aC3,n+1 + bC3,n − (c/2)C3,n−1)∑

n k
χ+2
n |un|2

,

(15)
where C3,n ≡ −=(un+1u

∗
nu
∗
n−1). Notice that the con-

straint (14) implies that also the reversible models evolve
in a bounded region of the phase-space.

For simplicity, we will denote the irreversible shell
model SI and the reversible ones as SRχ, where χ is the
same parameter as in Eq. (14), representing the observ-
able kept constant by the time-dependent viscosity. Two
limiting cases of interest are χ = 0 and χ = 2, which we
will also indicate as SRE and SRΩ, respectively.

The case χ = 0 corresponds to fixing the total energy
Oχ=0 = E. Being the energy conserved in the inviscid
limit, the second term on the right-hand side of (15) is
zero. Notice also that while the constraint χ = 0 is appar-
ently “democratic” on all wave-numbers, in the presence
of an energy cascade it weighs more the first shells (large
scales).

The second case corresponds to fixing the enstrophy
(12), Oχ=2 = Ω, which, due to the factor proportional to
the square of the wave-number, puts most of the weight
on the small scales. The limit χ = 2 is particularly inter-
esting as the energy dissipation rate in the original model
(6), ε(t) = 2νΩ, fluctuates by virtue of the fluctuations of
Ω, while in the reversible model (13) ε(t) = 2α2Ω fluctu-
ates with the viscosity α2. This phenomenology is clear
from Fig. 1 where we present an overview of the dynam-
ics of the standard SI model and the SRΩ (χ = 2) model.
The figure shows the time evolution of some observables
of interest such as E, Ω ν and ε, in a situation of en-
ergy cascade for both the systems. These results will be
analyzed in more detail in the next section.

We remark that some preliminary study of the model
with χ = 2 was presented in Ref. [26], where the aim was
not that of studying the equivalence in the sense specified
in Sect. II.

IV. NUMERICAL SIMULATIONS

A. Setup of the Numerical Simulations

We first integrate the irreversible (SI) model (6) for
as long as needed to achieve stationarity. The resulting
average energy spectrum En|ν ≡ 〈|un|2〉|ν is then used to
set the initial condition for the reversible model (13) as

un(t = 0)|χ ≡
√
En|ν eiξn , (16)

where ξn are random phases. The initial condition (16)
guarantees that the reversible dynamics starts with ini-
tial values for the considered global quadratic observable

Oχ (see Eq. [14]), such as e.g. E or Ω, equal to the
expectation value obtained with the irreversible model.

Simulations of SI are performed fixing the number of
shells, holding constant the large scale forcing and vary-
ing the viscosity ν which plays here the role of the inverse
of the Reynolds number R = 1/ν. A change in the chosen
value of the viscosity ν reflects in an initial configuration
for the reversible models with different values of the con-
served quantity Oχ.

The corresponding reversible model is then integrated
with the same number of shells N and forcing Fn as the
irreversible case. As for the forcing, we have chosen a
constant (hence, time-reversible) forcing acting on the
first shell only, i.e. Fn = δn,0 |F |eiγ with |F | = 1 and γ
a randomly chosen phase.

A statistical ensemble of 10 dynamical evolutions was
obtained by varying the phases ξn of the initial condition.
All data presented hereafter are averages on this ensem-
ble and the errors are estimated as the standard error on
the mean. The characteristic time of the large scales is
estimated as TL ∼ E/〈ε〉 which is O(1) in our simula-
tions. The total integration time (cumulated over all the
simulations in the ensemble) ranges between ∼ 105TL,
for the smallest Reynolds, and ∼ 104TL for the largest.

The integration scheme was a modified 4th order
Runge-Kutta with explicit integration of the linear part
(see Appendix A for details). For both the irreversible
and reversible models, the (fixed) integration time step
was guaranteed to be δt ≤ τmin/50, with τmin =
minn(〈|un|〉kn)−1 being the fastest time scale of the dy-
namics. The number of shells in the system was N = 20,
unless otherwise specified.

B. Test of the equivalence in the reversible model
conserving the total enstrophy

We start by discussing the reversible model SRΩ ob-
tained by imposing the conservation of enstrophy. Re-
versible models conserving other quadratic quantities (in
particular, SRE which conserves energy) will be discussed
in the next section.

Phenomenology of the irreversible model: First it is
useful to illustrate briefly the phenomenology of the irre-
versible model with fixed number of shells at increasing
the Reynolds number, viz. decreasing the viscosity value
ν. In Figure 2, we show the energy spectrum obtained
for three values of ν. When the viscosity is small enough
but such that kη � kN−1 (i.e. when the dissipative scale
is well resolved), the irreversible shell model develops an
energy cascade, from large to small scales, with a charac-

teristic Kolmogorov-like scaling, En = 〈|un|2〉 ∝ k
−2/3
n ,

plus intermittency corrections [9]. This energy cascade
regime is well evident for ν = 10−6 in Fig. 2. When
the Reynolds number is very large, viz. the viscosity
is so small that kη � kN−1, a new stationary regime
sets in. In the following such regime will be referred as
quasi-equilibrium as it is characterized by the energy be-



6

ing essentially equipartited - though in non-equilibrium
conditions - among the shells (see the case ν = 10−12 in
Fig. 2), and by an average energy flux constant over the
shells and typically much smaller than its fluctuations
(not shown). The transition between the energy-cascade
and quasi-equilibrium regimes is characterized by energy
spectra with intermediate characteristics (see the case
ν = 10−10 in Fig. 2). Strictly speaking, the dynamical
equivalence discussed in Sect. II B 2 is expected to hold in
the quasi-equilibrium regimes, when the Reynolds num-
ber R ∼ ν−1 is large enough and N is fixed. Note that
in [7] the validity of the equivalence has been confirmed
exactly in such quasi-equilibrium conditions.

Test of the Equivalence Conjecture: As a preliminary
test of the equivalence, we first verified the validity of
Eq. (4), i.e.. we checked whether the average value 〈α2〉
measured in the SRΩ model simulations converges to the
values of the viscosity ν of the corresponding irreversible
model. In Figure 3 we show the ratio 〈α2〉/ν at varying
R (R = ν−1, where ν is the viscosity of the SI model).
As one can see the ratio is ≈ 1 for R > 10−5 and unity
is approached better and better at increasing R, apart
from the highest R, where computational constraints on
the integration time leads to poorer convergence of the
statistics and thus larger statistical errors.

As discussed in Sect. II B 2, the validity of Eq. (4) is
a prerequisite for the equivalence conjecture. Then, we
tested the conjecture (5) at varying values of R using as
observable Φ the 2nd and 4th moments of |un| for a small
wavenumber (shell n = 2, see Fig. 4a). These moments
are effectively large scales observables, and the equiva-
lence conjecture is expected to hold for them for high
values of R. We also measured the same moments at
a larger wavenumber (shell n = 10, see Fig. 4b) where,
in principle, the validity of the equivalence should not
be taken for granted. At large scales (Fig. 4a) the data

0 2 4 6 8 10 12 14 16 18
n

10 5

10 3

10 1

101

E n k 0.72
n

= 10 6

= 10 10 = 10 12

FIG. 2. (Color online) Phenomenology of the irreversible
shell model. Energy spectrum En = 〈|un|2〉 for three values
of the viscosity ν with N = 20 shells. With ν = 10−6 the
characteristic spectrum of the energy cascade En ∼ k−0.72

n

(see dashed line) appears. For ν = 10−12 the energy spec-
trum is roughly at equipartition, namely the regime of quasi-
equilibrium (see main text). For ν = 10−10 a mixed behavior
is observed.
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2
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FIG. 3. Mean values of α2/ν for simulations of the SRΩ

model at different Reynolds number R with N = 20 shells.
The R dependency of the SRΩ model is intended in the sense
that it is initialized with an initial enstrophy Ω̃ equal to 〈Ω〉
measured in a run of the SI model with (fixed) viscosity ν =
R−1. The large error bars reported for high R can be ascribed
to the limited statistics, due to the high cost of the numerical
integration in that range of parameters.
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FIG. 4. (Color online) Test of the equivalence for the SRΩ

model. 2nd moment (full symbols) and 4th moment (empty
symbols) of a velocity field component pertaining to the large
scales n = 2 (a) and small scale n = 10 (b), as functions
of the Reynolds number R, for both the SI and SRΩ models
with N = 20 shells. The R dependency of the SRΩ model
is intended in the sense that it is initialized with an initial
enstrophy Ω̃ equal to 〈Ω〉 measured in a run of the SI model
with (fixed) viscosity ν = R−1. Errors are smaller than or of
the order of the symbol size.

points of the SRΩ perfectly agree with the values of the
SI model at all the R considered. At smaller scales (Fig.
4b) we observe a good agreement with SI at high and
relatively small R, i.e. in both the quasi-equilibrium and
energy-cascade regime, while deviations are present at
intermediate values of R.

In order to understand better the above findings, in
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FIG. 5. (Color online) Comparison of several spectral observables between the SI and the SRΩ models, in both situations of
energy cascade (ν = 10−6 •, 〈α2〉 ' 106 ◦) and quasi-equilibrium (ν = 10−12 N, 〈α2〉 ' 1012 4). Panels refer to: (a) Energy
spectra; (b) energy flux (10); (c) skewness Sn (17); in the inset the same plot with logarithmic y-axis; (d) flatness Fn (18).
Errors are of the order or smaller than the symbol size. The dashed line labeled k−0.72

n in (a) represents the scaling behavior
a lá Kolmogorov plus intermittency correction. The dashed line labeled k−1

n in the inset of panel (c) represents a dimensional
prediction valid at quasi-equilibrium; indeed, since 〈|un|〉 and 〈ΠE

n 〉 do not depend on the wavenumber kn, at least in a certain
range of scales, as shown in panel (a) and (b) respectively, one has that Sn ∼ k−1

n (17). The dashed line labeled k0.06
n in panel

(d) shows a best fit of the curves in the cascade regime. Finally, the horizontal dashed line in panel (d) displays the value
Fn = 2, which is expected for complex Gaussian variables. In these figures, and in some of the following ones, to ease the
identification of the various curves and avoid the superposition of different symbols, not all data points have been marked by
a symbol.

Fig. 5a we compare the energy spectra of the SI and
SRΩ in the two regimes of energy cascade and quasi-
equilibrium. Consistently with Fig. 4, a very good equiv-
alence between the reversible and irreversible models is
observed in both regimes, at least at large enough scales.
At small scales deviations can be seen in both regimes.

In the cascade regime, the main differences appear for
kn > kη. It should be noticed that kη > k10, which ex-
plains the agreement observed in Fig. 4a. Clearly, choos-
ing a wavenumber kn > kη does lead in general to a good
agreement. It is worth noticing that for kn > kη the
energy spectrum has a scaling law close to En ∼ k−2

n ,
which could be due to a local equipartition of the enstro-
phy (which is mostly localized around these scales)[27].

In the quasi-equilibrium regime, we can notice that
the SRΩ model shows a more regular spectrum at small
scales (near the boundary kN−1), with respect to the SI
model. We should remark that these oscillations in the
SI model remain confined to the last three/four shells, as
confirmed by simulations with a larger number of shells
(not shown). Our interpretation is that they are simply
due to the constraint imposed by the fixed ultraviolet cut-

off, that becomes important when the scales affected are
not efficiently damped by viscosity. The choice Ω = const
imposes a constraint on the amount of energy present at
scales around k ∼

√
Ω/E, suppressing such oscillations

coming from the spectral truncation.
We also compared other quantities in the two models

at varying the Reynolds number. In particular, we stud-
ied the average energy flux (10) (Fig. 5b), the skewness
(Fig. 5c) defined as

Sn =
〈ΠE

n 〉
kn〈|un|〉〈|un+1|〉〈|un+2|〉

, (17)

where we use products |un||un+1||un+2| in place of |un|3
to get rid of spurious oscillations due to the phase sym-
metry between three adjacent shells (see [8] for details),
and the flatness (Fig. 5d)

Fn =
〈|un|4〉
〈|un|2〉2

. (18)

In the cascade regime, the equivalence holds only within
the inertial range of scales, which is slightly shorter in
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the SRΩ compared to SI, indeed, as clear from Fig. 5b,
the flux for SRΩ model stops to be constant at slightly
smaller wavenumbers than in the SI model. We ob-
serve a remarkable agreement also for very delicate prop-
erties such as the intermittent corrections to the scal-
ing exponents as clear from both the energy spectrum
(Fig. 5a) and high order quantities such as Sn and Fn
(Fig. 5c,d). A previous study confirmed this equivalence
also on higher order structure functions 〈|un|q〉, up to or-
der q = 9 [26]. These results offer further confirmation of
the extreme robustness of the energy cascade mechanism
with respect to the particular method used to remove en-
ergy at small scales, thus reinforcing the validity of the
dynamical equivalence.

Also in the quasi-equilibrium regime (i.e. for the sim-
ulation corresponding to ν = 10−12) a very good equiv-
alence is observed for all the quantities. In particular,
we notice that in the quasi-equilibrium regime the statis-
tics tends to become Gaussian with Sn → 0 and Fn ≈ 2
(which is the result expected for Gaussian statistics, tak-
ing into account the fact that un is complex).

Between these two regimes, for intermediate values of
the viscosity, deviations are well evident [as already clear
from Fig. (4)b].

Summarizing, the equivalence conjecture is well veri-
fied in the quasi-equilibrium regime, where is expected
to hold, at almost all scales excluding those very close
to the ultraviolet cut-off. Remarkably, the equivalence
holds, even for very delicate quantities, also in the energy-
cascade regime at scales kn . kη. We notice that the
equivalence in the latter case may have a different nature
from that of the former. In particular, when the energy
cascade is at play, the matching of the statistics of the
various observables within the inertial range may be due
to the robustness of the inertial range physics with re-
spect to the energy removing mechanisms, i.e. due to
the dissipative anomaly.

C. Test of the Equivalence in Reversible Models
Conserving Different Quantities

Here, we discuss the equivalence in the reversible mod-
els (13) at varying the parameter χ in (14), i.e. at varying
the particular quadratic quantity conserved by the time-
dependent viscosity.

We start from Fig. 6 that, analogously to Fig. 4, shows
the R dependence of the 2nd and 4th moment of |un| for
n = 2 (panel a) and n = 10 (panel b) for the model
SRE , i.e. when the reversible model is obtained by im-
posing the conservation of energy. Unlike the SRΩ model
shown in Fig. 4, we can see that agreement between the
moments of the SI and SRE models is realized only in
the quasi-equilibrium regime. This is further confirmed
in Fig. 7 where we compare the energy spectra of the
SI and SRE models in this regime. As clear from the
figure, for model SRE the agreement of the spectra ex-
tends even close to the ultraviolet cut-off (compare with

106 107 108 109 1010 1011 101210 6

10 4

10 2

100

102

106 107 108 109 1010 1011 1012
R

10 6

10 4

10 2

100

102

(a)

(b)

FIG. 6. (Color online) Test of the equivalence for the SRE

model. 2nd (full symbols) and 4th moment (empty symbols)
of a velocity component at large scales n = 2 (a) and small
scales n = 10 (b) as functions of the effective Reynolds num-
ber R, for the SI and SRE models with N = 20 shells. The R
dependency of the SRE model is intended in the sense that it
is initialized with an initial energy Ẽ equal to 〈E〉measured in
a run of the SI model with (fixed) viscosity ν = R−1. Errors
are smaller than or of the order of the symbol size.

0 5 10 15
n

0
2
4
6
8

E n

SI SRE

FIG. 7. (Color online) Energy spectra En of the SI and
SRE models in the regime of quasi-equilibrium (N = 20, ν =
10−12). Error bars are smaller than or of the order of the
symbol size.

Fig. 5a). This is possibly due to the fact that the con-
straint of constant energy is less stringent for the large
wave numbers compared with constant enstrophy con-
straint.

In order to understand the large differences between
the SRE and SI model out of the quasi-equilibrium
regime we now fix ν such that the SI model is in the
energy cascade regime. In Figure 8a we show the spec-
tra obtained for different reversible models, all initial-
ized with the same initial condition, conserving quadratic
quantities Oχ indexed by different values of χ as from
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FIG. 8. (Color online) Energy spectra En for several re-
versible models, compared with the irreversible one (�, with
N = 20 and ν = 10−6). All the reversible model simulations
are initialized with the same distribution of initial energy in
the range 0 ≤ n < 15, but the models conserve different in-
variants Oχ [see eq. (14)]. Error bars are smaller than or of
the order of the symbol size.

Eq. (14) (we recall that SRE corresponds to the case
χ = 0). We see that there is a clear trend of better
and better equivalence at increasing χ, i.e. when the
constraint weighs more and more the small scales. In
particular, when the reversible model conserves Oχ with
low values of χ, it suffers from the lack of a stable en-
ergy cascade solution, with the effective confinement of
the dynamics on the shell n = 0. When the value χ
is large, on the contrary, Oχ is significantly dependent
on the small scales of the system, meaning that the re-
quest Oχ = const actually imposes a constraint on the
amount of energy needed in the small scales, favoring
the presence of a stable energy cascade mechanism. The
threshold between the two cases lies around χ = 2/3.
Even if we did not pursued a systematic test, here is a
simple argument for why the value χ = 2/3 should be
a good candidate for the threshold: for that value both
the constant energy flux solution and the Oχ equiparti-

tion solution have the same spectral scaling En ∼ k−2/3
n .

For χ > 2/3 the constant energy flux solution has a less
steep energy spectrum and it is likely dominant in the
dynamics, and vice versa. Thus, given the same initial
conditions for the velocity field, the model SRΩ and the
other SR models with χ > 2/3 are always able to reach a
chaotic stationary state with an energy cascade like the
SI model.

Instead, in the same range of viscosities, the SRE

model and the other SR models with χ < 2/3 get locked
in a fixed point in phase space, where all the energy of
the system is localized in the n = 0 shell and α0 ∼ 1.

The presence of an attractive fixed point in a highly di-
mensional phase-space unavoidably makes the statistical
properties strongly sensitive to the extension in time of
the dynamical evolution and to the total number of de-
grees of freedom. For example, we found that the results
published in [28] were affected by the limited extension
of the time integration and that by averaging more, as it

is possible with the nowadays computational power, the
long-time asymptotic dynamics is always dominated by
the fixed point at small shell numbers.

Although we did not perform systematic tests, on the
basis of the previous observations and of Fig. 7, it is
reasonable to expect that for any χ equivalence should
hold in the quasi-equilibrium regime.

Specifically, for the model SRE , it is worth remark-
ing that imposing the conservation of energy constrains
the energy dissipation to be identical to the energy input
at any instant. This is at odds with the phenomenol-
ogy of the cascade where such a balance is obtained only
on average. On the other hand, fixing Ω = const does
not introduce such stringent conditions on the instan-
taneous energy budget. More importantly, while the
energy input varies on the (slow) time scale typical of
the large scales the energy dissipation has a fast evo-
lution. Thus, the model SRE imposes a very severe
dynamical constraint requiring the two quantities to be
identical at each time. This constraint is less stringent
in quasi-equilibrium conditions, where energy is essen-
tially in equipartition among the shells. Indeed in such a
regime also model SRE becomes equivalent to the SI as
clear from Fig. 7.

D. Analysis of the Time-Dependent Viscosity in
the reversible model with enstrophy conservation

In this section we study the statistics of the time-
dependent viscosity α2 in the SRΩ model. We have al-
ready shown that 〈α2〉 ≈ ν (Fig. 3) as required for the
validity of the equivalence. However, the temporal fluc-
tuations of α2 are non-trivial: as shown in Fig. 1 α2 can
become negative (i.e. the viscous forces can inject en-
ergy instead of removing it), which is the signature of
the dynamical reversibility. In this section, though this
is not directly linked with testing the equivalence conjec-
ture, we explore how the statistics of this sign variations
depends on the Reynolds number.

In Figure 9 we summarize the behavior of the time-
dependent viscosity α2 in different regimes: from quasi-
equilibrium to energy cascade (as qualified by the behav-
ior of the spectra shown on the right panels). On the left
panels we show the time evolution of α2 in a typical run
of the model, in the central panel the measured PDFs
of the values of α2, and on the right column the energy
spectrum of the corresponding simulation. All data refer
to the SRΩ model.

In the quasi-equilibrium regime, the viscosity α2 tends
to have a PDF symmetric around the zero, becoming
more and more skewed towards positive values as the cas-
cade regime becomes dominant in the dynamics. A sim-
ilar behavior of the PDF of the time-dependent viscosity
of the reversible model as a function of the Reynolds num-
ber was found in [7]. In the limit of an extremely well
resolved system (N → ∞, with finite Reynolds number,
i.e. in the energy-cascade regime with well resolved dissi-
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FIG. 9. (Color online) Probability Density Function of the time-dependent viscosity α2 for model SRΩ in three different cases:
a situation of energy cascade (N = 20 and Ω ∼ 104, •), a situation of quasi-equilibrium (N = 10 and Ω ∼ 108,�), and a case
in between (N = 15 and Ω ∼ 104,H). The insets on the left show corresponding typical time evolutions of α2. The insets on
the right show the corresponding energy spectra.

pative range), the probability to observe negative values
(α2 < 0) within the observation time becomes extremely
small. This observation shows once again the different
nature of the equivalence in the quasi-equilibrium regime
(corresponding to taking the limit R→∞ with N fixed,
eventually very large) and the cascade one (correspond-
ing to taking the limit N → ∞ with R fixed and very
large).

V. CONCLUSIONS

Summarizing, in this paper we have scrutinized the va-
lidity of the equivalence of ensembles for non-equilibrium
statistical mechanical systems conjectured for fluid flows
in [3, 4]. In particular, we tested the conjecture within
the framework of the shell models for turbulence featur-
ing a multiscale nonlinear dynamics.

In these systems, the issue of non-equilibrium ensem-
ble equivalence translates into the quest for equivalence of
the macroscopic dynamics between systems with different
modelizations of the viscous forces. The standard choice
is to use a constant viscosity, which, from the mathe-
matical point of view, explicitly breaks the time-reversal
symmetry of the equations of motion. However, given the
reversibility of the microscopic dynamics, it is natural to
speculate that a macroscopic description preserving such
a fundamental symmetry should be possible.

Models exhibiting a time reversal symmetry can be re-
alized by using a time-dependent viscosity designed to
enforce the conservation of some observable, quadratic
in the velocity via, for instance, Gauss’ principle for an-
holonomous constraints [1, 29].

The construction of the reversible models is not unique,
relying on the choice of the observable to keep constant in
the time-reversible dynamics. We found that the equiva-
lence between the two statistical ensembles holds, as ex-
pected, in the quasi-equilibrium regime, i.e. in the limit
of very large Reynolds number when keeping constant
the number of shells (i.e. the ultraviolet cut-off). More-
over, when the reversible model is constructed by im-
posing a constraint impacting preferentially the smallest
and fastest scales of the system, e.g. when enforcing the
conservation of enstrophy, equivalence is obtained also in
the energy cascade regime, likely, owing the the robust-
ness of the cascade mechanisms against the mechanism
of energy dissipation.

The results in this study, together with similar find-
ings on the 2D Navier-Stokes equations [6] and on the
Lorenz ’96 system [7], strengthen the case for the non-
equilibrium statistical equivalence to hold also for other
physically relevant non-equilibrium dynamical systems
and, in particular, for the 3D Navier-Stokes equations,
for which it was originally conjectured [3].

Besides the theoretical interest, the results here pre-
sented offer more freedom in modeling viscous forces in
non-equilibrium systems, with particular reference to the
ones of interest in fluid dynamics. Specifically, the ideas
discussed in this paper could be relevant for small scale
parametrization in atmosphere, ocean and climate mod-
els [30–32], and LES models [11, 12], where eddy viscosity
need to be carefully tailored in order to have results com-
patible with DNS. Indeed some form of reversible mod-
eling of the small-scale dynamics is already used in LES
[13, 14].
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Appendix A: Numerical integration scheme

Equations (6)–(13), neglecting the forcing term, have
the structure

d

dt
un(t) = gn[{un(t)}]− νk2

nun(t) , (A1)

where gn[{un(t)}] stands for the non-linear term at shell
n, calculated on the velocity configuration {un(t)} at
time t.

When ν is constant in time, we adopted the following
modified 4-th order Runge-Kutta scheme which exactly

integrates the viscous contribution:

un(t+ δt) = en
{
en
[
un(t) + δt

6 gn[{un(t)}]
]

+

+ δt
6

[
gn[{u(1)

n (t)}] + gn[{u(2)
n (t)}]

]
+ δt

6 gn[{u(3)
n (t)}]

}
,

u
(1)
n (t) = en

[
un(t) + δt

2 gn[{un(t)}]
]
,

u
(2)
n (t) = enun(t) + δt

2 gn[{u(1)
n (t)}] ,

u
(3)
n (t) = en

[
e

1
2νk

2
nδtun(t) + δt

2 gn[{u(2)
n (t)}]

]
,

en = e
1
2νk

2
nδt .

(A2)
For the reversible models, where ν is not a constant, we
introduced the following correction to the scheme:

un(t+ δt) = en
{
en
[
un(t) + δt

6 ĝn[{un(t)}]
]

+

+ δt
6

[
ĝn[{u(1)

n (t)}] + ĝn[{u(2)
n (t)}]

]
+ δt

6 ĝn[{u(3)
n (t)}]

}
,

u
(1)
n (t) = en

[
un(t) + δt

2 ĝn[{un(t)}]
]
,

u
(2)
n (t) = enun(t) + δt

2 ĝn[{u(1)
n (t)}] ,

u
(3)
n (t) = en

[
e

1
2νk

2
nδtun(t) + δt

2 ĝn[{u(2)
n (t)}]

]
,

en = e
1
2ν[{un(t)}]k2nδt ,

ĝn[{u(i)
n (t)}] = gn[{u(i)

n (t)}]− (ν[{u(i)
n (t)}]−

+ν[{un(t)}]) k2
n un(t) .

(A3)
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