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Closure of two-dimensional turbulence: The role of pressure gradients
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Inverse energy cascade regime of two-dimensional turbulence is investigated by means of high resolution
numerical simulations. Numerical computations of conditional averages of transverse pressure gradient incre-
ments are found to be compatible with a recently proposed self-consistent Gaussian model. An analogous
low-order closure model for the longitudinal pressure gradient is proposed and its validity is numerically
examined. In this case numerical evidence for the presence of higher-order terms in the closure is found. The
fundamental role of conditional statistics between longitudinal and transverse components is highlighted.
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The existence of two simultaneous inertial ranges in two-energy cascade regime, dissipative contributions can be ne-
dimensional turbulence, as a consequence of coupled energjected, so that the remaining unclosed terms are the longi-
and enstrophy conservation, is one of the most importantudinal and transversal pressure gradient increments. Re-
phenomena in statistical fluid mechanick|. At variance cently Yakhot[8,9] suggested a self-consistent model for the
with three-dimensional turbulence, the energy injected intgressure gradient increments and succeeded to obtain a
the system at scalé; flows toward the large scales, while Gaussian distribution for the transverse PIBKV,r). Al-
the enstrophy cascades down on the small scales. Becausetbbugh the experiment@#l] and numerica[5] observations
the inverse energy cascade, the Navier-Stokes equations, support the Gaussian result of the effective low-order model,

nevertheless a direct numerical computation of the pressure
GiU;+UjdjUi = — dip+ vaPu+ i, (1) gradient increment contribution is still lacking.

, ) ) ) The main aim of this work is to compare the numerical
Wh!Ch rule the evolution of an incompressiblé ;= 0) ve- . evaluation10] of transverse and longitudinal components of
locity field, cannot reach a steady State unless an energy Slrg‘ressure gradient increments with the theoretical predictions
at large scales is added. Alternatively, one can consider af 5 recently introduced closure scheme. We emphasize on
ensemble of solutions of Eq1) with a fixed energy value yhe imnortance of velocity mixed conditional averages, such
below the condensation Ie3\//EQ], i.e., with an integral scale as(U|V,r) and(V?|U,r) generally arising in the pure lon-
L(t) (growing in time ast®?) still much smaller than the i, ginal or transversal PDF equations. To our surprise the
system size. Because of the scaling of the CharaCterISt'gxistence of such objects has been neglected in all the pre-
times, the small scaleSnertial range in the system(s<r iy s theoretical modelings. As an essential step for the de-
<L can be considered in a stationary state. One of the mogl.rintion of pure velocity statistics we numerically evaluate
challenging problems is to understand the statistics of veloc,a penavior of these objects for which some effective mod-

ity fluctuationsAu(r) =u(x-+r)—u(x) [3]. In homogeneous g5 are proposed. Such an investigation provides a direct
and isotropic turbulences it amounts to study jiat prob-  -hack of the closure model.

ability density functior?(PD.F) P(U,V,r) of longitudinal U By standard statistical tool§8,11], starting from the
and transvers® velocity differences, wherdu=Ux+Vy  Navier-Stokes equationd), it is possible to derive the fol-
andx=r/r. Recently experimentd#] and numerical5] in-  lowing exact PDF equation for joint transversal and longitu-

vestigations in two dimensions have shown that the probabildinal velocity increments:
ity distribution of thepurelongitudinalP(U,r) and transver-

sal P(V,r) velocity differences at inertial scales display a
close-to-Gaussian statistics with undetectable intermittency
corrections to structure function exponents. Although the es-
tablishment of normal scaling in all inverse cascades seem to =[(d5+35) + dyPxut Py, IP(UV,1), v

be generid 6], nevertheless the Gaussianity of the statistics

in inverse cascade of the forced two-dimensional turbulencevhere e=(f;u;) is the rate of energy input and the condi-
remained to be understood. From Et)), a set of equations tional transversal,P, ,=(Adyp|U,V,r), and longitudinal,

for generic mixed structure functions, i.e.5, () Pyu=(Ad,p|U,V,r), pressure gradient increments are the
=(U"V™M=A, rém have been obtaine,8]. In Ref.[8]  only unclosed terms. In pure longitudinal and transversal
those equations are elaborated from the joint PDF equatiof?DF equations other unknown quantities play role. Indeed,
Unfortunately, the PDF equation is not closed, resemblindy integrating Eq.(2) over U or V the terms(U|V,r)

the well-known closure problem in turbulence. In the inverse= [ZZUP(U|V,r)dU and (V2|U,r)=[*2V2P(V|U,r)dV

u 1 1
[aru+ — AUV ;&UVZ P(U,V,r)

1063-651X/2002/6@.)/0173014)/$20.00 66 017301-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B6, 017301 (2002

appear in the pure transverse or longitudinal PDF equations,
respectively, pinpointing the statistical dependence between
longitudinal and transversal components. Let us start with
the transversal one, for which the knowledge of
(Adyp|V,ry= 2P, ,P(UIV,r)dU and of (U|V,r) is suf-
ficient to close the equation. Following the recently proposed
closure[8], we assumea second-order expansion for the
transverse pressure gradient increm@its in terms oflocal
velocity incrementd) andV. Even if the locality assumption

is not based on rigorous grounds, there are some arguments
in support of its plausibilityf 9]. Once locality is accepted,
keeping only second-order terms is motivated from the fact (@)
that for Gaussian fields only quadratic combinationsUof

and V appear[12]. Some physical constraints simplify the
expansion even furthdil3,14], ending with Yakhot ansatz

(8]

<U[Vs{er)

0.3

uv Y
(Aayp|U,V,r>=—hT—b(sr) T (3)

To directly check the closure one has to compute quantities
like P, ,. However, to be more quantitative, here we nu-

merically compute{Adyp|V,r) and(Adyp|U,r) for which

we have a better statistics. For symmetry reasons -0.3
(Adyp|U,r)=0 as confirmed by simulations, and we are left ) i
with the analysis of the terfAd,p|V,r). We start by writ-

ing the quantities of interest in a scale-invariant form. Fora g 1 (@ (UIV.r) and (b) (Aa,p|V.r) computed atr

scale-invariant solution for the PDF equation, iB(V.r)  —q 025(hoxes andr =0.037(circles. Empty symbols refer to the
=P[V/(er)"®]=P(X), is sufficient to require scale invari- Gayssian forcing and full ones to the one restricted in a band of
ance of(U[V,r) and(Adyp|V,r). We thus defingU|V,r) wave numbers. The full lines represent predictiBsand (6) with
=(er)Y*F(X) and(A&ypf/V,w:[(sr)2’3/r]G(X). The ma-  A,,=11.

jor challenge now is to determine the functional form of

G(X) andF(X). Taking into account the symmetries of Eq. UIV.r)= (er)*® LA X2 ©)
(1), we assume fofU|V,r) an even polynomial expansion in ( = 2, (=Ao2 ),
V. Invoking the homogeneity{U|V,r)=0, leads to the low ’
order expansion: (er)23 X X3
Ad,p|V,ry= —_— , 6
< yp| > r AO’Z 3A(2)’2 ( )

F(X)=Cy(—Ago+X?), (4)
which up to about two standard deviations agree remarkably

meaning that positivénegative longitudinal velocity incre- Well with the numerical datasee Fig. 1. Moreover, using

ments correspond to largemal) transverse velocity incre- Ed- (9 as afitting function, we obtainel, ;=11+ 1, which
ments. Furthermore, by integrating E®) over U one ob- is close, within the statistical errors, with the value obtained

tains G(X)=—hXF(X)—bX. Apparently this is a two- in previous expe_zriment@h,l?] numerical2,5,18), and ana-

arameter expansion, however, the constrdiR}, =0 [7.8] Iytical [19] studies. We remark that the good agreement of
.p lies hX2E(X ——t,)ﬁ Si ' ZECX) = A 11/2 ' direct numerical simulatiofDNS) data with Eq(6) provides
'mg 1es 'h(h)_l . hA |Eceb ( _?_; 1,27 =4 c])cne a first evidenceeven if numerig for the plausibility of the
ends up with the relationA; = — AO’Z.' e important fact locality assumption. However, one can verify that assuming
is that this expansion is consistent with Gaussianity of trans

X . higher-order polynomials foF(X) can result in nonzero
verse fluctuations and also gives a reasonable account f?ﬁgher-order terms irG(X). Indeed plugging the Gaussian

pressure contributions in the structure function equation?‘esultin the equation foP(X), for any order consistent with

[7,15,18. Indeed plugging the expansion fBrandG in the . : : :
dimensionless transverse PDF equation, one obtains tn’G?aUSSIanltyG(X) is expressible as a functional B{X). So

Gaussian resuP(X) = exp(_)(?/ZAO’z) [8,16], which is con- e obtain[16]

sistent with simulations and experimefds5|. Since positiv- X (X212

ity and finiteness of the PDF fixes the consta@t G(X)=~— Ay, 3 XE(X)+e™ .
=1/(4A3 ) and h=4/3, thereforeA, o= 3/5A,, is the only '

free parameter of the theory8,16]. Therefore, within X N e (X' 21280 9 gy
second-order approximation one has x| F(X"e 02dX’ ). @)
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Plugging the self-consistent low-order modé) in Eq. (7)

will reduce the proposal of Yakhot. Equatidf) provides a
way to generalize the mod&@(X), in a self-consistent way,

to higher-order polynomials. It is evident that higher-order
terms inF(X) can lead to higher-order terms @&(X). So
indeed one may not be able to modi€lX) and G(X) inde-
pendently, provided the Gaussian distribution for transverse
fluctuations is assumed.

Let us now consider longitudinal component of pressure
gradient incremen®, ,=(Ad,p|U,V,r), which has a major
role in determining the main dynamical aspect of the inverse
cascade, i.e., the nonequilibrium energy flux. In contrast to
the transversal case, for the longitudinal case both

+ o
(A&1g|U,r>=f_°ch,uP(V|U,r)d\_/_ and  (Ad,p|V.r) FIG. 2. {(Ad.p|U,r) computed atr=0.025 (boxes and r
=JZ2P«uP(U|V.r)dU are nontrivial. However, the result-  _ g37(circles. Empty symbols refer to the Gaussian forcing and
ing longitudinal PDF equation involves only th&d,p|U,r)  full ones to the one restricted in a band of wave numbers. The full
and the velocity conditional averag®?|U,r), as one can ine is fitted withE=—0.39. In the inset we showw?2|U,r) which
verify by integrating Eq.(2) over V. Therefore, only the up to two standard deviations seems to be constant and fluctuates at
knowledge of these two conditional averages is sufficient taarger values.
close the longitudinal PDF equation. Again the existence of
the velocity conditional average indicates the importance opectation from any kind of modeling fad(Y) andM(Y) is
correlation effects in pure longitudinal statistics. The verytaking care of these fine details of the distribution. It seems
existence of a nonequilibrium flux implies th&(U,r)  improbable to have access to these fine details within a one-
=P(—U,—r), hence the PDF equation would preserve theparameter low-order closure or other low-order models. As a
same invariance, i.e{(V?—U,—r)=(V?U,r) and(Ad,p  quantitative check one can plug the low-order expansion in
|=U,—r)=—(Adp|U,r). Scaling invariance of the PDF the longitudinal PDF equation. Then it is straightforward to
equation implies scaling invariance @, , and (V3|U,r). obtain the following prediction
Analogous to the transversal case, we assume a local scale-

M2 r . r b
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invariant expansion fotAd,p|U,r) and(V3|U,r), and we 2n
seek for a low-order closure in terms ¥f&=U/(er)Y3. So Azn+10™ (2n—=1)(2n=3)!!
defining (Ad,p|U,ry=[(er)Z¥r]H(Y) and (V2U,r) 2n(5+_ 4
=(er)?*M(Y), we propose the following expansion: 3/ 3
(3E+1)(2n—1)!!} 3
3 + Dot A
_ 22 _ 2,0 2,0
H(Y) E(Y ZM(Y) 5Az,oY)’ 8 2
5
5 X E+ § Aan,O] . (10)
M(Y)=As0 =+ . 9
( ) 2,0 3 ZAE‘O ( )

Substituting the numerical value & we obtain for the hy-
The coefficients of the three terms in the conditional pressurgerskewnes#s o/ A3'3~0.449 andA, o/AJ/3~5.674. Com-
gradient are constrained by homogeneity, isotropy, and inparing these numbers with the corresponding numerically
compressibility(i.e., Y H(Y)=0 andH(Y)=0). We observe obtained valuesis o/A>%~0.25 andA, o/AJa~1.55, shows
that having reduced the expansionM{Y) at the first order, a large difference. The fourth- and sixth-order hyperflat-
the only new coefficient is the consteatin Fig. 2 we show nesses calculated from the closure correspondingly are
the numerical evaluation dii(Y) andM(Y). From the fig- A4,o/A§,o’“3-29 and A6,O/Ag,0~ 20.03. Comparing to the
ure a low-order expansion in terms ¥fcan be inferred for  Gaussian values the deviations are getting bigger with the
both these objects. However, concernMdY) the result is  order but still the errors are smaller in the even part with
hardly distinguishable from an almost constant value. From @espect to the odd part of the statistics. This is an important
best fit we foundE= —0.39 with an error bar around 20%. If indication that one has to consider higher-order expansions
the longitudinal fluctuations were purely Gaussian then thesg order to be consistent with higher-order statistics. There-
models might be considered as a better approximation fofore, in spite of the fairly good compatibility between the
H(Y) andM(Y). However, the longitudinal statistics is just |ow-order closure foH(Y) andM(Y) and their direct mea-
nearly Gaussian, indeed the nonzero flux implies a nonzereurement in two standard deviations, the fine details of the
skewness and to the nonzero odd order structure functiongistribution are not recovered by them. This confirms the
Sont1.d1) =Azns1.o(er) 2" YR Furthermore, a very impor- observation in Refl5] that these fine details are buried in the
tant observation in Ref5] indicates that the hyperskewness very far tails of the antisymmetric part of longitudinal PDF.
of higher orders, i.eS,,.10/S55 1'%, increases with order  In conclusion, the dynamical role of the pressure gradient
and cannot be considered as a small parameter. So the eand velocity conditional averages in establishing the velocity
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increment statistics has been highlighted and numerically innot just a naive fitting: the free parameters are fixere-
vestigated. The transversal components of the velocity statistlizability conditions in the PDF equations and have been
tics has been found to be Gaussian, in agreement with préested numerically. Let us finally remark that the importance
vious numerical and experimental observations. Low-ordepf the conditional averages goes far beyond the assessment
expansions for the transversal conditional pressure gradie®f closures for two-dimensional turbulence, the important
and (U|V), which have been proposéih a closely related Message is that any theoretical approach to pure longitudinal
approachin the context of a self-consistent closyi3, have  (transversalvelocity statistics cannot disregard the recipro-
been found in good agreement with the DNS data up to weal dependence_ betweerj Iong|_tud|_nal and transv_ersal compo-
standard deviations. Further, we proposed a generalization G€NtS: We consider the investigation of such objects also in

the expansion which is order by order consistent with Gaus' ree-dimensional turbulence to be a necessary step.

sianity of the transverse statistics. Concerning the longitudi- e acknowledge discussions with A. Celani, G. Falkov-
nal statistics we found that the low-order closure for the conich, T. Gotoh, R. J. Hill, M. R. Rahimitabar, and V. Yakhot.
ditional pressure gradient an@v/?|U), although in fairly ~ G.B. has been partially supported by the EU under the Grant
good compatibility with DNS data, is inconsistent with the ERB FMR XCT 98-0175 “Intermittency in Turbulent Sys-
fine details of the longitudinal PDF, which bear the informa-tems,” and M.C. by the the EU under the Grant HPRN-CT-
tion of the antisymmetric PDF tail. This indicates that unlike 2000-00162 “Nonldeal Turbulence.” J.D. acknowledges the
the transverse statistics a complete description of the longpartial support by Deutsche Forschungsgemeins¢bédc).
tudinal statistics calls for higher-order terms in the expanWe also acknowledge the allocation of computer resources
sions[16]. It is worth emphasizing that these modelings arefrom INFM “Progetto Calcolo Parallelo.”

[1] R.H. Kraichnan, Phys. Fluidk0, 1417(1967); G.K. Batchelor,
ibid. 12, 233 (1969; R.H. Kraichnan, and D. Montgomery,
Rep. Prog. Phys43, 35 (1980.

[2] L. Smith and V. Yakhot, Phys. Rev. Leftl, 352 (1993.

below the system size to avoid condensation and averages are
made over several independent realizations.

[11] A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics

(MIT Press, Cambridge, MA, 1975Vol. II.

[3] U. Frisch, Turbulence (Cambridge University Press, Cam- [12] T. Gotoh, ITP lectures noted of program on hydrodynamic

bridge, UK, 1995.

[4] J. Paret and P. Tabeling, Phys. Fluidy 3126(1998.

[5] G. Boffetta, A. Celani, and M. Vergassola, Phys. Rev6 E
R29(2000.

[6] G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod.
Phys.73, 913(2002).

[7] R.J. Hill, J. Fluid Mech434, 379(200J).

[8] V. Yakhot, Phys. Rev. B3, 026307(2001).

[9] V. Yakhot, Phys. Rev. B0, 5544 (1999.

[10] DNS of Eq. (1) have been performed by means of a fully

dealiased standard pseudospectral code on a doubly period

square domain of size ()2 with 2048 grid points. Energy is
injected into the system at a constant ratdy means of an
isotropic Gaussian forcinfy concentrated on small scalés,
with correlation (f;(r,t) f;(0,t"))=&;6(t—t")F(r/€) [5].

We also considered a Gaussian forcing in a restricted band of

turbulence, 2000, URL:
hydrot_c00/gotoh/

http://online.itp.ucsb.edu/online/

[13] For P(V,r), the quantity of interest is the conditional average

(Adyp|V,ry=[P,,P(U|V,r)dU. Due to rotational symmetry
one has parity invariance, i.&?(V,r)=P(—V,r), which im-
plies the invariance ofAd,p|V,r) for V——V. Taking into
account thafU|V,ry=(U[-V,r), (Ad,p|V,r) would be an
odd  function of V. Moreover,  (Adyp|V,r)
=[(Adyp|V,r)P(V)dV=0.

5&4] In order to guarantee the correct dimensionality, the Kolmog-

orov scalingV~r® has been imposed in Eq3), i.e., we
implicitly assumed the absence of intermittency, which should
be consistent with the outcomes of the theory.

[15] S. Kurien and K.R. Sreenivasan, Phys. Rev6& 056302

(2001).

wave numbers. Viscous term in Ed), as customary, has been [16] G. Boffetta, M. Cencini, and J. Davoudinpublisheg

replaced by a hyperviscous terthere of order eight Time

[17] 3. Sommeria, J. Fluid Mech.70, 139(1986.

evolution is obtained by a second-order Runge-Kutta schemd,18] M.E. Maltrud and G.K. Vallis, J. Fluid Mect228 321(1991J).

and integrations have been stopped whem) is still well

017301-4

[19] P. Qlla, Phys. Rev. Let67, 2465(1991).



