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Closure of two-dimensional turbulence: The role of pressure gradients
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Inverse energy cascade regime of two-dimensional turbulence is investigated by means of high resolution
numerical simulations. Numerical computations of conditional averages of transverse pressure gradient incre-
ments are found to be compatible with a recently proposed self-consistent Gaussian model. An analogous
low-order closure model for the longitudinal pressure gradient is proposed and its validity is numerically
examined. In this case numerical evidence for the presence of higher-order terms in the closure is found. The
fundamental role of conditional statistics between longitudinal and transverse components is highlighted.
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The existence of two simultaneous inertial ranges in tw
dimensional turbulence, as a consequence of coupled en
and enstrophy conservation, is one of the most impor
phenomena in statistical fluid mechanics@1#. At variance
with three-dimensional turbulence, the energy injected i
the system at scale, f flows toward the large scales, whil
the enstrophy cascades down on the small scales. Becau
the inverse energy cascade, the Navier-Stokes equation

] tui1uj] jui52] i p1n]2ui1 f i , ~1!

which rule the evolution of an incompressible (] iui50) ve-
locity field, cannot reach a steady state unless an energy
at large scales is added. Alternatively, one can conside
ensemble of solutions of Eq.~1! with a fixed energy value
below the condensation level@2#, i.e., with an integral scale
L(t) ~growing in time ast3/2) still much smaller than the
system size. Because of the scaling of the character
times, the small scales~inertial range! in the system, f!r
!L can be considered in a stationary state. One of the m
challenging problems is to understand the statistics of ve
ity fluctuationsDu(r )5u(x1r )2u(x) @3#. In homogeneous
and isotropic turbulences it amounts to study thejoint prob-
ability density function~PDF! P(U,V,r ) of longitudinal U
and transverseV velocity differences, whereDu5U x̂1Vŷ
and x̂5r /r . Recently experimental@4# and numerical@5# in-
vestigations in two dimensions have shown that the proba
ity distribution of thepure longitudinalP(U,r ) and transver-
sal P(V,r ) velocity differences at inertial scales display
close-to-Gaussian statistics with undetectable intermitte
corrections to structure function exponents. Although the
tablishment of normal scaling in all inverse cascades see
be generic@6#, nevertheless the Gaussianity of the statist
in inverse cascade of the forced two-dimensional turbule
remained to be understood. From Eq.~1!, a set of equations
for generic mixed structure functions, i.e.,Sn,m(r )
[^UnVm&5An,mr jn,m have been obtained@7,8#. In Ref. @8#
those equations are elaborated from the joint PDF equa
Unfortunately, the PDF equation is not closed, resemb
the well-known closure problem in turbulence. In the inve
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energy cascade regime, dissipative contributions can be
glected, so that the remaining unclosed terms are the lo
tudinal and transversal pressure gradient increments.
cently Yakhot@8,9# suggested a self-consistent model for t
pressure gradient increments and succeeded to obta
Gaussian distribution for the transverse PDF,P(V,r ). Al-
though the experimental@4# and numerical@5# observations
support the Gaussian result of the effective low-order mod
nevertheless a direct numerical computation of the pres
gradient increment contribution is still lacking.

The main aim of this work is to compare the numeric
evaluation@10# of transverse and longitudinal components
pressure gradient increments with the theoretical predicti
of a recently introduced closure scheme. We emphasize
the importance of velocity mixed conditional averages, su
as ^UuV,r & and ^V2uU,r & generally arising in the pure lon
gitudinal or transversal PDF equations. To our surprise
existence of such objects has been neglected in all the
vious theoretical modelings. As an essential step for the
scription of pure velocity statistics we numerically evalua
the behavior of these objects for which some effective m
els are proposed. Such an investigation provides a di
check of the closure model.

By standard statistical tools@8,11#, starting from the
Navier-Stokes equations~1!, it is possible to derive the fol-
lowing exact PDF equation for joint transversal and longi
dinal velocity increments:

F] rU1
U

r
2

1

r
]VUV1

1

r
]UV2GP~U,V,r !

5@«~]U
2 1]V

2 !1]UPx,u1]VPy,v#P~U,V,r !, ~2!

where«[^ f iui& is the rate of energy input and the cond
tional transversal,Py,v[^D]ypuU,V,r &, and longitudinal,
Px,u[^D]xpuU,V,r &, pressure gradient increments are t
only unclosed terms. In pure longitudinal and transver
PDF equations other unknown quantities play role. Inde
by integrating Eq.~2! over U or V the terms ^UuV,r &
5*2`

1`UP(UuV,r )dU and ^V2uU,r &5*2`
1`V2P(VuU,r )dV
©2002 The American Physical Society01-1
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appear in the pure transverse or longitudinal PDF equati
respectively, pinpointing the statistical dependence betw
longitudinal and transversal components. Let us start w
the transversal one, for which the knowledge
^D]ypuV,r &5*2`

1`Py,vP(UuV,r )dU and of ^UuV,r & is suf-
ficient to close the equation. Following the recently propos
closure @8#, we assumea second-order expansion for th
transverse pressure gradient incrementsPy,v in terms oflocal
velocity incrementsU andV. Even if the locality assumption
is not based on rigorous grounds, there are some argum
in support of its plausibility@9#. Once locality is accepted
keeping only second-order terms is motivated from the f
that for Gaussian fields only quadratic combinations ofU
and V appear@12#. Some physical constraints simplify th
expansion even further@13,14#, ending with Yakhot ansatz
@8#

^D]ypuU,V,r &52h
UV

r
2b~«r !1/3

V

r
. ~3!

To directly check the closure one has to compute quant
like Py,v . However, to be more quantitative, here we n
merically computê D]ypuV,r & and ^D]ypuU,r & for which
we have a better statistics. For symmetry reas
^D]ypuU,r &50 as confirmed by simulations, and we are l
with the analysis of the term̂D]ypuV,r &. We start by writ-
ing the quantities of interest in a scale-invariant form. Fo
scale-invariant solution for the PDF equation, i.e.,P(V,r )
5P@V/(«r )1/3#[P(X), is sufficient to require scale invari
ance of^UuV,r & and ^D]ypuV,r &. We thus definê UuV,r &
5(«r )1/3F(X) and ^D]ypuV,r &5@(«r )2/3/r #G(X). The ma-
jor challenge now is to determine the functional form
G(X) andF(X). Taking into account the symmetries of E
~1!, we assume for̂UuV,r & an even polynomial expansion i
V. Invoking the homogeneity,̂UuV,r &50, leads to the low
order expansion:

F~X!5C2~2A0,21X2!, ~4!

meaning that positive~negative! longitudinal velocity incre-
ments correspond to large~small! transverse velocity incre
ments. Furthermore, by integrating Eq.~3! over U one ob-
tains G(X)52hXF(X)2bX. Apparently this is a two-
parameter expansion, however, the constraintVPy,v50 @7,8#
implies hX2F(X)52bX2. Since X2F(X)5A1,251/2, one
ends up with the relationhA1,252bA0,2. The important fact
is that this expansion is consistent with Gaussianity of tra
verse fluctuations and also gives a reasonable accoun
pressure contributions in the structure function equati
@7,15,16#. Indeed plugging the expansion forF andG in the
dimensionless transverse PDF equation, one obtains
Gaussian resultP(X)5exp(2X2/2A0,2) @8,16#, which is con-
sistent with simulations and experiments@4,5#. Since positiv-
ity and finiteness of the PDF fixes the constantC2

51/(4A0,2
2 ) and h54/3, thereforeA2,053/5A0,2 is the only

free parameter of the theory@8,16#. Therefore, within
second-order approximation one has
01730
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^UuV,r &5
~«r !1/3

4A0,2
2 ~2A0,21X2!, ~5!

^D]ypuV,r &5
~«r !2/3

r S X

A0,2
2

X3

3A0,2
2 D , ~6!

which up to about two standard deviations agree remarka
well with the numerical data~see Fig. 1!. Moreover, using
Eq. ~5! as a fitting function, we obtainedA2,051161, which
is close, within the statistical errors, with the value obtain
in previous experimental@4,17# numerical@2,5,18#!, and ana-
lytical @19# studies. We remark that the good agreement
direct numerical simulation~DNS! data with Eq.~6! provides
a first evidence~even if numeric! for the plausibility of the
locality assumption. However, one can verify that assum
higher-order polynomials forF(X) can result in nonzero
higher-order terms inG(X). Indeed plugging the Gaussia
result in the equation forP(X), for any order consistent with
Gaussianity,G(X) is expressible as a functional ofF(X). So
we obtain@16#

G~X!52
X

A0,2
2

4

3 S XF~X!1e(X2/2A0,2)

3EX

F~X8!e2(X82/2A0,2)dX8 D . ~7!

FIG. 1. ~a! ^UuV,r & and ~b! ^D]ypuV,r & computed at r
50.025~boxes! andr 50.037~circles!. Empty symbols refer to the
Gaussian forcing and full ones to the one restricted in a band
wave numbers. The full lines represent predictions~5! and~6! with
A2,0511.
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Plugging the self-consistent low-order model~4! in Eq. ~7!
will reduce the proposal of Yakhot. Equation~7! provides a
way to generalize the modelG(X), in a self-consistent way
to higher-order polynomials. It is evident that higher-ord
terms inF(X) can lead to higher-order terms inG(X). So
indeed one may not be able to modelF(X) andG(X) inde-
pendently, provided the Gaussian distribution for transve
fluctuations is assumed.

Let us now consider longitudinal component of press
gradient incrementPx,u5^D]xpuU,V,r &, which has a major
role in determining the main dynamical aspect of the inve
cascade, i.e., the nonequilibrium energy flux. In contras
the transversal case, for the longitudinal case b
^D]xpuU,r &5*2`

1`Px,uP(VuU,r )dV and ^D]xpuV,r &
5*2`

1`Px,uP(UuV,r )dU are nontrivial. However, the result
ing longitudinal PDF equation involves only the^D]xpuU,r &
and the velocity conditional average^V2uU,r &, as one can
verify by integrating Eq.~2! over V. Therefore, only the
knowledge of these two conditional averages is sufficien
close the longitudinal PDF equation. Again the existence
the velocity conditional average indicates the importance
correlation effects in pure longitudinal statistics. The ve
existence of a nonequilibrium flux implies thatP(U,r )
5P(2U,2r ), hence the PDF equation would preserve
same invariance, i.e.,̂V2u2U,2r &5^V2uU,r & and ^D]xp
u2U,2r &52^D]xpuU,r &. Scaling invariance of the PDF
equation implies scaling invariance ofPx,u and ^V2uU,r &.
Analogous to the transversal case, we assume a local s
invariant expansion for̂D]xpuU,r & and ^V2uU,r &, and we
seek for a low-order closure in terms ofY5U/(«r )1/3. So
defining ^D]xpuU,r &5@(«r )2/3/r #H(Y) and ^V2uU,r &
5(«r )2/3M (Y), we propose the following expansion:

H~Y!5ES Y22
3

5
M ~Y!2

6

5A2,0
YD , ~8!

M ~Y!5A2,0S 5

3
1

Y

2A2,0
2 D . ~9!

The coefficients of the three terms in the conditional press
gradient are constrained by homogeneity, isotropy, and
compressibility~i.e., YH(Y)50 andH(Y)50). We observe
that having reduced the expansion ofM (Y) at the first order,
the only new coefficient is the constantE. In Fig. 2 we show
the numerical evaluation ofH(Y) andM (Y). From the fig-
ure a low-order expansion in terms ofY can be inferred for
both these objects. However, concerningM (Y) the result is
hardly distinguishable from an almost constant value. Fro
best fit we foundE520.39 with an error bar around 20%.
the longitudinal fluctuations were purely Gaussian then th
models might be considered as a better approximation
H(Y) andM (Y). However, the longitudinal statistics is ju
nearly Gaussian, indeed the nonzero flux implies a nonz
skewness and to the nonzero odd order structure funct
S2n11,0(r )5A2n11,0(«r )(2n11)/3. Furthermore, a very impor
tant observation in Ref.@5# indicates that the hyperskewne
of higher orders, i.e.,S2n11,0/S2,0

(2n11)/2, increases with orde
and cannot be considered as a small parameter. So the
01730
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pectation from any kind of modeling forH(Y) andM (Y) is
taking care of these fine details of the distribution. It see
improbable to have access to these fine details within a o
parameter low-order closure or other low-order models. A
quantitative check one can plug the low-order expansion
the longitudinal PDF equation. Then it is straightforward
obtain the following prediction

A2n11,05
2n

2nS E1
1

3D1
4

3

H F ~2n21!~2n23!!!

1
~3E11!~2n21!!!

2 GA2,0
n211A2,0

3S E1
5

3DA2n21,0J . ~10!

Substituting the numerical value ofE we obtain for the hy-
perskewnessA5,0/A2,0

5/2;0.449 andA7,0/A2,0
7/2;5.674. Com-

paring these numbers with the corresponding numeric
obtained values,A5,0/A2,0

5/2;0.25 andA7,0/A2,0
7/2;1.55, shows

a large difference. The fourth- and sixth-order hyperfl
nesses calculated from the closure correspondingly
A4,0/A2,0

2 ;3.29 and A6,0/A2,0
3 ;20.03. Comparing to the

Gaussian values the deviations are getting bigger with
order but still the errors are smaller in the even part w
respect to the odd part of the statistics. This is an import
indication that one has to consider higher-order expans
in order to be consistent with higher-order statistics. The
fore, in spite of the fairly good compatibility between th
low-order closure forH(Y) andM (Y) and their direct mea-
surement in two standard deviations, the fine details of
distribution are not recovered by them. This confirms t
observation in Ref.@5# that these fine details are buried in th
very far tails of the antisymmetric part of longitudinal PD

In conclusion, the dynamical role of the pressure gradi
and velocity conditional averages in establishing the veloc

FIG. 2. ^D]xpuU,r & computed atr 50.025 ~boxes! and r
50.037~circles!. Empty symbols refer to the Gaussian forcing a
full ones to the one restricted in a band of wave numbers. The
line is fitted withE520.39. In the inset we shoŵV2uU,r & which
up to two standard deviations seems to be constant and fluctua
larger values.
1-3
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increment statistics has been highlighted and numerically
vestigated. The transversal components of the velocity st
tics has been found to be Gaussian, in agreement with
vious numerical and experimental observations. Low-or
expansions for the transversal conditional pressure grad
and ^UuV&, which have been proposed~in a closely related
approach! in the context of a self-consistent closure@8#, have
been found in good agreement with the DNS data up to
standard deviations. Further, we proposed a generalizatio
the expansion which is order by order consistent with Ga
sianity of the transverse statistics. Concerning the longitu
nal statistics we found that the low-order closure for the c
ditional pressure gradient and̂V2uU&, although in fairly
good compatibility with DNS data, is inconsistent with th
fine details of the longitudinal PDF, which bear the inform
tion of the antisymmetric PDF tail. This indicates that unli
the transverse statistics a complete description of the lo
tudinal statistics calls for higher-order terms in the exp
sions@16#. It is worth emphasizing that these modelings a
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not just a naive fitting: the free parameters are fixedvia re-
alizability conditions in the PDF equations and have be
tested numerically. Let us finally remark that the importan
of the conditional averages goes far beyond the assess
of closures for two-dimensional turbulence, the importa
message is that any theoretical approach to pure longitud
~transversal! velocity statistics cannot disregard the recipr
cal dependence between longitudinal and transversal com
nents. We consider the investigation of such objects als
three-dimensional turbulence to be a necessary step.
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