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We study relative dispersion of passive scalar in nonideal cases, i.e., in situations in which
asymptotic techniques cannot be applied; typically when the characteristic length scale of the
Eulerian velocity field is not much smaller than the domain size. Of course, in such a situation usual
asymptotic quantitiesthe diffusion coefficientsdo not give any relevant information about the
transport mechanisms. On the other hand, we shall show that the Finite Size Lyapunov Exponent,
originally introduced for the predictability problem, appears to be rather powerful in approaching
the nonasymptotic transport properties. This technique is applied in a series of numerical
experiments in simple flows with chaotic behaviors, in experimental data analysis of drifter and to
study relative dispersion in fully developed turbulence. 2@00 American Institute of Physics.
[S1054-150000)01001-9

It is now well known that the Lagrangian motion of test X

particles in a fluid can be highly nontrivial even for the g1 U =o(), (1)
simple Eulerian field. Up to now there exists powerful

methods to study in a rigorous way the asymptotic trans-  where, by definitiony (t) is the Lagrangian particle velocity.
port properties of passive scalar. On the other hand very Despite the apparent simplicity @f), the problem of
often (especially in real world) it is not possible to char-  connecting the Eulerian properties ofto the Lagrangian
acterize dispersion in terms of asymptotic quantities such  properties of the trajectorieg(t) is a very difficult task. In

as average velocity and diffusion coefficients. This hap- the last 20—30 years the scenario has become even more
pens, typically, in finite domain systems with no large complex by the recognition of the ubiquity of Lagrangian
scale-separation between the domain size and the largest chaos(chaotic advection Even very simple Eulerian fields
characteristic Eulerian length; more generally when can generate very complex Lagrangian trajectories which are
there is not a sharp separation among the characteristic practically indistinguishable from those obtained in a com-
length scales of the system. In this perspective, we briefly plex, turbulent, flow’.

review a recently introduced method to approach the Despite these difficulties, the study of the relative disper-
nonasymptotic properties of transport and mixing. We  sion of two particles can give some insight on the link be-
discuss the relevance of the Finite Size Lyapunov Expo- tween Eulerian and Lagrangian properties at different length-
nent for the characterization of diffusion. In particular scales. Indeed, the evolution of the separafgt) =x(?)(t)

we stress its advantages compared with the usual way of —x®)(t) between two tracers is given by

looking at the relative dispersion at fixed delay time. dR

i v ) — oD (t)=u(x®(t) +R(t),t) —u(xP(t),1),

I. INTRODUCTION (2

Transport processes play a crucial role in many naturahnd thus depends on the velocity difference on sBalk is
phenomena. Among the many examples, we just mention thebvious from(2) that Eulerian velocity components of typi-
particle transport in geophysical flows which is of obviouscal scale much larger thaR will not contribute to the evo-
interest for atmospheric and oceanic issues. The most naturlaition of R. Since, in incompressible flows, separatiBn
framework for investigating such phenomena is to adopt dypically grows in timé® we have the nice situation in which
Lagrangian viewpoint in which the particles are advected byfrom the evolution of the relative separation we can, in prin-
a given Eulerian velocity field(x,t) according to the differ- ciple, extract the contributions of all the components of the
ential equation velocity field. For these reasons, in this paper we prefer to

1054-1500/2000/10(1)/50/11/$17.00 50 © 2000 American Institute of Physics



Chaos, Vol. 10, No. 1, 2000 Nonasymptotic properties 51

study relative dispersion instead of absolute dispersion. For The aim of the present paper is to discuss the use of an
spatially infinite cases, without mean drift there is no differ-indicator—the Finite Size Lyapunov ExponentSLE),
ence; for closed basins the relative dispersion is, for mangriginally introduced in the context of predictability
aspects, more interesting than the absolute one, which jsroblem$®—to study and characterize nonasymptotic trans-
dominated by the sweeping induced by large scale flow. port in nonideal systems, e.g., closed basins and systems in
There are very few general results on the link betweerwhich the characteristic length-scales are not sharply sepa-
Eulerian and Lagrangian properties and only for asymptoticated.
behaviors. Let us suppose that the Eulerian velocity field is  In Sec. Il we introduce the basic tools for the finite-scale
characterized by two typical length-scales; {emal) scale analysis and we discuss their general properties. Section I
I, below which the velocity is smooth, andlarge scalel is devoted to the evaluation of our method on some numeri-
representing the size of the largest structures present in theal examples. We shall see that even in apparently simple
flow. In most nonturbulent flows it will turn out thalt, situations the use of finite scale analysis avoids possible mis-
~Lg. interpretation of the results. In Sec. IV the method is applied
At very small separationR<|, we have that the veloc- to two physical problems; the analysis of experimental
ity difference in(2) can be reasonably approximated by adrifter data and the numerical study of relative dispersion in
linear expansion inR, which in most of time-dependent fully developed turbulence. Conclusions are presented in
flows leads to an exponential growth of the separation ofSec. V. The appendices report, for sake of self-consistency,
initially close particles, a phenomenon known as Lagrangiarsome technical aspects.
chaos, i.e.

(INR(1))=InR(0) +\t 3)

Il. FINITE SIZE DIFFUSION COEFFICIENT

In order to introduce the finite size analysis for the dis-
(the average is taken over many couples with initial separapersion problem let us start with a simple example. We con-
tion R(0)). The coefficient\ is the Lagrangian Lyapunov sider a set ofN particle pairs advected by a smodihg.,
exponent of the system.The rigorous definition of the spatially periodi¢ velocity field with characteristic lengtl .
Lyapunov exponent imposes to take the two limR¢0)  Denoting withRZ(t) the square separation of tith couple,
—0 and thert—; in physical terms these limits amount to we define
the requirement that the separation has not to exceed the N
scalel , but for very large times. This is a very strict condi- (RA(1)) = i 2 RZ. (5)
tion, rarely accomplished in real flows, rendering often in- N <!
feasible the experimental observation of the beha(@ar

On the opposite limit, for very long times and for sepa-
rationsR>L,, the two trajectorie<!)(t) and x®)(t) feel

We assume that the Lagrangian motion is chaotic, thus we
expect the following regimes to hold

two velocities which can practically be considered as uncor- (R(D) Raexp(L(2)t) if (R(1))¥%<l, ©
related. We thus expect normal diffusion, i.e., 2Dt if (R3(1))¥21, '
(R?(t))=2Dt, (49 whereL(2)=2\ is the generalized Lyapunov exponéfit:°

being D the diffusion coefficient. Even in this case it is nec- D is the diffusion coefficient and we assume ti4(0)

essary to remark that the asymptotic behaviyrcannot be (K | _ hod h . he di .
attained in many realistic situations, the most common of n alternative method to characterize the dispersion

which is the presence of boundaries at a scale comparab@o?er;'es 'Sf kljly introducing the “QOUb“fnghtlmﬁ'*(lg)é(%t
with Ly. In absence of boundaries it is possible to formulatescane(o) as loflows.” given a Series 0? .t resho
=r"5(®, one can measure the tinfg(5(?) it takes for the

sufficient conditions on the nature of the Eulerian flow, un- X ©) 1) 0)
der which normal diffusion (4) always takes place separatiorR(t) tozgrow from 61 to 6M=r 5, gnd soon
for T;(8®), T;(8?), ... up to the largest considered scale.

asymptotically’ Ther f b . e o ord
Between the two asymptotic regimé® and(4) the be- er factor may be any value-1, properly chosen in order
fto have a good separation between the scales of motion, i.e.,

havior of R(t) depends on the particular flow. The study o hould b | o K . |
the evolution of the relative dispersion in this crossover re Should be not too large. Strictly spea ing¢) is exactly
the doubling time ifr=2.

ime is very interesting and can give an insight on the Eule ) . . .
g y g g g Performing the doubling time experiments over tKe

rian structure of the velocity field. ic| . gefi h doubling ti
To summarize, in all systems in which the characteristicg;;tl'g;aga'rs' one defines the average doubling (@ at

length-scales are not sharply separated, it is not possible
describe dispersion in terms of asymptotic quantities. In such 1 N

cases, different approaches are required. Let us mention 7(5):<T(5)>e:NE Ti(9). (7)
some examples, the Poincarecurrences analyst§, the =1

symbolic dynamics approach to the subdiffusive behavior irt is worth noting that the averag@) is different from the

a stochastic layert and to mixing in meandering jeté;the  usual time averagésee Appendix A

study of tracer dynamics in open flows in terms of chaotic =~ Now we can define the Finite Size Lagrangian Lyapunov
scattering® and the exit time description for transport in Exponent(see Ref. 16 for a detailed discussidn terms of
semienclosed basitfsand open flows?® the average doubling time as
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(5)= Inr
(0)= o)
which quantifies the average rate of separation between two
particles at a distancé Let us remark thak(é) is indepen-
dent ofr, for r close to 1. For very small separatiofi.,
6<l,) one recovers the Lagrangian Lyapunov exponent
i.e.

8

A=Ilim Inr.

50 T(0)
In this framework the finite size diffusion coefficietit,
D(6), dimensionally turns out to be

D(8)= 8\ (9). (10)

Note the absence of the factor 2, as one may expect fom
in the denominator oD (§); this is because (9) is a differ-
ence of times. For a standard diffusion proc&s) ap-
proaches the diffusion coefficiebt[see Eq(6)] in the limit
of very large separationss&1,). This result stems from the
scaling of the doubling times( ) ~ 62 for normal diffusion.

Thus the finite size Lagrangian Lyapunov expone®
behaves as follows:

N if 8<ly,
D/& if &>,

One could naively conclude, matching the behaviorssat
~l,, that D~\I2. This is not always true, since one can
have a rather large range for the crossover due to nontrivial
correlations which can be present in the Lagrangian
dynamics’

One might wonder that the introduction efs) is just
another way to look atR?(t)). This is true only in limiting
cases, when the different characteristic lengths are well sepa-
rated and intermittency is weak. A similar idea of using
times for the computation of the diffusion coefficients in
nontrivial cases was developed in Refs. 20—-22.

If one wants to identify the physical mechanisms acting
on a given spatial scale, the use of scale dependent quantities
is more appropriate than time dependent ones.

For instance, in presence of strong intermittefahich
is indeed a rather usual situatidR?(t) as a function of can
be very different in each realization. Typically one liase

9
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: k ¢ ] FIG. 1. (a) Three realizations oR?(t) as a function oft built as follows:
Fig. 1(a)] different exponential growth rates for different re- r2(t)= 52 exp(2yt)

and R2(t)=2D(t—t,) with

alizations, producing a rather odd behavior of the average=0.08,0.05,0.3 and,=10"",D=1.5. (b) (R*(t)) as function oft aver-
<R2(t)) not due to any physical mechanisms. Indead, in Fig aged on the three equiprobable realizations shown in k&). The apparent

1(b) we show the averagéR?(t)) versus timet; at large
times one recovers the diffusive behavior but at intermediate
times appears an “anomalous” diffusive regime which is
only due to the superposition of exponential and diffusive
contributions by different samples at the same time. On thé
other hand, by exploiting the tool of doubling times one has
an unambiguous resykee Fig. 1c)].X’ Let us stress that the

nongenuine “anomalous” diffusive regime, if one looks at
(R(t)) versust, is not due to poor statistics but only to the
superposition of different regimes.

An important physical problem where the behavior of (1) AN(§)=\ for §<l,,
() is essentially well understood is the relative dispersion2) \(8)~ & 2® for | ,<8<L,,
in 3D fully developed turbulence. Here the smallest Eulerian(3) \(8)~4& 2 for 6>L,,

anomalous regime and the diffusive one are sho@nh.\(d) vs &, with
Lyapunov and diffusive regimes.

scalel, is the Kolmogorov scale at which the flow becomes
Smooth. In the inertial rangg <R<L, we expect theRich-
ardson Lawto hold (R?(t))~t3; for separations larger than
the integral scald., we have normal diffusion. In terms of
the finite size Lyapunov exponent we thus expect three dif-
ferent regimes:
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the behavioK2) is another way to write the Richardson Law.
We will see in Sec. IV that even for large Reynolds

numbers, the characteristic lengthsand L, are not suffi- 0.01 |
ciently separated and the different scaling regimes for
(R?(t)) cannot be well detected. The fixed scale analysis in s 0001}
terms of\($) for fully developed turbulence presents clear <
advantages with respect to the fixed time approach. 00001

3
I1l. NUMERICAL RESULTS ON SIMPLE FLOWS 1e-05 | ‘ ‘ L *,,

0.1 1 10

In this section we shall discuss some examples of appli-
cations of the above introduced indicatets) (or equiva- )
lently D()) for simple flows. The technical and numerical FIG. 2. Lagrangian motion given by the Rayleigh-viaed convection

: . ; ; odel withA=0.2, B=0.4, w=0.4, k=1.0, a=, the number of real-
details of the finite size Lyapunov exponent computation aré‘;aﬁons is A/=2000 and the series of thresholds ds— " with 3,

settled out in Appendl)f A. o ) =10*andr=1.05.\(4) versuss, in a closed domain with écrossesand
In a generic case in addition to the two asymptotic re-12 (diamond$ convective cells. The lines are, respectivelg), Lyapunov

gimes(11) discussed in Sec. Il, we expect another universafegime withx=0.017; (b) diffusive regime withD =0.021; (c) saturation
regime due to the presence of the boundary of givenlsize ~ "€9ime Withdng,=19.7;(d) saturation regime withy,=5.7.

For separations close to the saturation vafijg,~Lg we

expect the following behavior to hold for a broad class of

systems”’
In order to study the effects of finite boundaries on the

D(a)oc(amax_ ) 1p diffusion properties we confine the tracers’ motion in a
52 o ' (12 closed domain. This can be achieved by slightly modifying
) ) o . the stream functioril4). We have modulated the oscillating
The proportionality constant is given by the second eigenigrm in such a way that fofx|=Lg the amplitude of the
value of the Perron—Frobenius operator which is related tQygjjiation is zero, i.eB—B sin(mx/Lg) with Lg=27n/k (n

the typical time of exponential relaxation of tracers’ densityiS the number of convective celldn this way the motion is
to uniform distribution(see Appendix B confined inxe[ —Lg,Lg].

A. A model for transport in Rayleigh—-Be ~nard In Fig. 2 we show\(9) for two values ofLg. If Lg is
convection large enough one can distinguish the three regimes; exponen-
tial, diffusive, and the saturation regime Ef2). Decreasing

the size of the boundarlg, the range of the diffusive re-
gime decreases, while for small valuesLgf, it disappears.

N(O)=

The advection in two-dimensional incompressible flows
in absence of molecular diffusion is given by the Hamil-
tonian equation of motion where the stream functigh,
plays the role of the Hamiltonian,

dx d¢ dy 9y

=—, =——, 13
dt oy dt X (13 B. Point vortices in a disk

~If ¢ris time-dependent one typically has chaotic advec-  wWe now consider a two-dimensional time-dependent
tion. As an example let us consider the time-periodicflow generated byM point vortices, with circulations

Rayleigh—B@ard convection, which can be described by ther,, ... I'y, in a disk of unit radiug® The passive tracers
following stream functior?? are advected by the time dependent velocity field generated
A by the vortices and behave chaotically for avly>2. Let us
(X, y,t)= Esin{k[x+ B sin(wt) [}W(y), (149 note that in this case the scale separation is not imposed by

hand, but depends okl and on the energy of the vortex

whereW(y) satisfies rigid boundary conditions on the sur- systen?® Figure 3a) shows the relative diffusion as a func-
facesy=0 andy=a (we useW(y)=sin(wy/a)). The two tion of time in a system withtM =4 vortices. Apparently
surfacesy=a andy=0 are the top and bottom surfaces of there is an intermediate regime of anomalous diffusion.
the convection cell. The time dependent teBmsin(wt) rep-  However from Fig. 8) one can clearly see that, with the
resents lateral oscillations of the roll pattern which mimic thefixed scale analysis, only two regimes survive, exponential
even oscillatory instability® and saturation. Comparing Fig@ and Fig. 3b) one under-

Concerning the analysis in terms of the finite sizestands that the appearance of the spurious anomalous diffu-
Lyapunov exponent one has that,dfis much smaller than sion regime in the fixed time analysis is due to the mecha-
the domain size\(8)=N\. At larger values ofs we find stan-  nism described in Sec. II.
dard diffusion \ (8)=D/&% with good quantitative agree- The absence of the diffusive regim¢s) ~ 6~ 2 is due to
ment with the value of the diffusion coefficient evaluated bythe fact that the characteristic length of the velocity field,
the standard technique, i.e., usitB?(t)) as a function of which is comparable with the typical distance between two
time t. close vortices, is not much smaller than the size of the basin.
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FIG. 3. (a) (R?(t)) for the four vortex system with',=T,=—-T3=—T,

=1. The threshold parameter lis=1.03 ands,=10"*, the dashed line is
the power law(R%(t))~t® The number of realizations i&=2000. (b)

() versussé for the same model and parameters. The horizontal line indi-
cates the Lyapunov exponef=0.14), the dashed curve is the saturation
regime with 6,,,,=0.76.

C. Random walk on a fractal object: An anomalous
diffusive case

In this section we discuss the case of particles perform
ing a continuous random walk on a fractal object of fractal
dimensionDg, where one has subdiffusion. We show that
also in situation of anomalous diffuside.g., subdiffusion

Boffetta et al.
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FIG. 4. FSLE computed for particle diffusion in a Sierpinsky Carpet of
fractal dimensiorD;=1og(8)/log(3) obtained by iteration of the unit struc-
ture up to a resolution 2, one has\(8)~ 6 Y245 which is in agreement

with the value obtained foxKR(t)> versust shown in the insefi.e.,
<R(t)>~1t%%9,

dom walk in a Sierpinsky Carpet with fractal dimension
De=log8/log 3. In our computation we use a resolution
375, i.e., the fractal is approximated by five steps of the
recursive building rule, in practice we perform a continuous
random walk in a basin obtained with the above approxima-
tion of the Sierpinsky Carpet. We initialize the particles in-
side one of the smallest resolved structures, then we follow
the growth of the relative dispersion with the FSLE method,
and redeploy the particles in a small cell randomly chosen at
the beginning of each doubling time experiment. From Fig. 4
one can see that(8)~ 6 Y% which is an indication of
subdiffusion the exponent is in good agreement with the
usual relative dispersion analygsee the inset of Fig.)4

IV. APPLICATION OF THE FSLE

A. Drifter in the Adriatic Sea: Data analysis and
modelization

Lagrangian data recorded within oceanographic pro-
grams in the Mediterranean $éaffer the opportunity to
apply the fixed scale analysis to a geophysical problem, for

the FSLE is able to recognize the correct behavior. In thevhich the standard characterization of the dispersion proper-

following section we consider the case of fully developed
turbulence which displays superdiffusion.
In a fractal object due to the presence of voids, i.e.,

ties gives poor information.
The Adriatic Sea is a semienclosed basin, about 800
X200 km wide, connected to the whole Mediterranean Sea

forbidden regions for the particles, one expects a decreasirthrough the Otranto Straif:>® We adopt the reference frame
of the spreading, and because of the self-similar structure ah which the x,y-axes are aligned, respectively, with the

the domain(i.e., voids on all scalg¢sa subdiffusive behavior
is expected. It is worth to note that the particles do not dif-
fuse with the same law from any points of the domé&ine

short side(transverse direction orthogonal to the coasts,
and the long sidé€longitudinal direction, along the coasts.
We have computed relative dispersion along the two

to the presence of voifishence in order to define a diffu- axes,(R2(t)), (Rf,(t)) and FSLEA(8). The number of se-

sivelike behavior one has to average over all possible patected drifters for the analysis is 37, distributed in 5 different
ticles’ position. For discrete random walk on a fractal latticedeployments in the Strait of Otranto, happened during the
it is known that the diffusion follows the lawWR(t)) period December 1994—March 1997, containing respectively
~t2Pw with D> 2, i.e., subdiffusiorf® The quantityDyis 4,9, 7, 7, and 10 drifters. To get as high statistics as possible,
related to the spectral dractondimensionDg, by the rela- even to the cost of losing information on the seasonal vari-
tion Dyy=2Dg/Dg, and it depends on the detailed structureability, we shift the time tracks of all of the 37 drifters to
of the fractal object® t—t,, wheret, is the time of the deployment, so that the
We study the relative dispersion of 2D continuous ran-drifters can be treated as a whole cluster. Moreover, to re-



Chaos, Vol. 10, No. 1, 2000 Nonasymptotic properties 55

400 ] 400 ]
200} 4 200F .
> oF - > ok ]
—200f , —200F 5
—a00+ § —400f ]
L 1 1 1 I} i ] L 1 1 L 1 1
_400  —200 o 200 400 400  -200 200 400

»x O

X

FIG. 5. Stream function isolines for the modé&b)—(17) at (a) t=0 and(b) t=T,/2. The coordinatesx(y) are in km. For the parameters see the text.

strict the analysis only to the Adriatic basin, we discarded dices); the typical recirculation times, for gyres and vortices,
drifter as soon as its latitude goes south of 39.5 N or itsare ~1 month and~1 week, respectively; the oscillation
longitude goes beyond 19.5 E. periods are=10 days(gyres and=2 days(vortices. In Fig.
Before presenting the results of the data analysis, let uS we show some instantaneous streamline patterns obtained
introduce a simplified model for the Lagrangian tracers mo{rom (15)—(17) at different times.
tion in the Adriatic Sea. We assume as main features of the Let us discuss now the comparison between data and
surface circulation the following elemerftsthe drifter mo-  model results. The relative dispersion along the two direc-
tion is basically two-dimensional; the domain is a quasi-tions of the basin, for data and model trajectories, are shown
closed basin; an anticlockwise coastal current; two large cyin Figs. §a) and Gb). The results for the model are obtained
clonic gyres; some natural irregularities in the Lagrangiarfrom the spreading of a cluster of 40nitial conditions.
motion induced by small scale structures. On the basis of
these considerations, we introduce a deterministic chaotic
model with mixing properties for the Lagrangian drifters. 100000
The stream function is given by the sum of three terms,

W(X,y,1)=Po(X,y)+Wi(Xy,t) +W,(X,y,t1), (15 10000 |

defined as follows:

2,
>

1000 |

<R

C
Wo(x,y) = k_s'[_Sin(ko(y+77))+C05(k0(x+277))],
(16) 100

G :
\Ifi(x,y,t):?-sm(ki(xﬂLei sin(w;t))) 10

Xsin(ki(y+ € sin(wit+ ¢;))), (i=1,2),
7

wherek;=27/\;, fori=0,1,2,\;'s are the wavelengths of
the spatial structures of the flow; analogously=27/T;,

for j=1,2, andT;’s are the periods of the perturbations. In
the nondimensional expression of the equations, the length
and time units have been set to 200 km and 7.5 days, respec-
tively.

The stationary term¥’, defines the boundary large scale
circulation with positive vorticity. The contribution o¥
contains the two cyclonic gyres and it is explicitly time-
dependent through a periodic perturbation. The tebm 0.1 ” 0 100
gives the motion over scales smaller than the size of the large t
gyres and it is time-dependent as well. The zero-value isoline (b)
is defined as the boundary of the basin.

According to observation, we have chosen the paramHG- 6. Relative dispersion of Lagrangian trajector(eRﬁ,y(t)) versust, in

; ; —1. the Adriatic Sea, for datécontinuous ling and model(dashed ling along
eters so that the VeIOCIty range 1s aroun®.3 ms* the the natural axes of the basi(g) transverse directiofx-axis) and (b) longi-

length scales of the Eulerian structures &gg~1000 Km  yyginal direction(y-axis). The time is measured in days and the mean square
(coastal current Ly~200 km(gyre9, andl,~50 km (vor- radius of the cluster is in kfn
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FIG. 7. FSLE of Lagrangian trajectories in the Adriatic Sea, for deda-
tinuous ling and model(dashed ling The scaled is in km, \(d) is in
dayst.

FIG. 8. Relative dispersiofR(t)) for N=20 octaves synthetic turbulent
simulation averaged over 4@ealizations. The line is the theoretical Rich-
ardson scaling®2

When a particle reaches the bound@b=0) it is eliminated.

For the diffusion properties, one cannot expect a ScallngE)ic, fully developed turbulent field. The Eulerian statistics of

for (Ri.,(1)) before the saturation regime, since the Eulerian, ooty gifferences is characterized by the Kolmogorov
characteristic lengths are not too small compared with th%caling su(r)~rY3 in an interval of scaled,<r<L,
. ’ u ’

basin size. Indeed, we do not observe a power law behaviql, e the inertial rangd,, is now the Kolmogorov scale.

neither for the experimental data nor for the numericalpq 1o the incompressibility of the velocity field particles
model. . will typically diffuse away from each othér® For pair sepa-
Let us stress that by opportunely fitting the parameters,aiiqng |ess thah, we have exponential growth of the sepa-

we could obtain the model curves even closer to the eXPerizytion of trajectories, typical of smooth flows, whereas at
normal diffusion takes place. In

mental ones, but this would not be very meaningful Sinceseparations larger thain,

there is no clear theoretical expectation in a transient regimye jnerti| range the average pair separation is not affected
Let us now discuss t'he finite size Lyapunov exponentyqjyqr by large scale components of the flow, which simply
The analysis of the experimental data hag beeq averaged OvﬁK/eep the pair, nor by small scale ones, whose intensity is
the (’;qt_al nuhmbe;] of Coulpl_es ou; 0:] 37dftrajector|bes, under the,  and which act incoherently. Accordingly, the separation
condition that the evolution of the distance between tWog () feels mainly the action of velocity differencés (R(t))
drifters is no longer followed when any of the two exits the _ c.o1er As a consequence of the Kolmogorov scaling the

Adriatic basin. separation grows with thRichardson Layi®®!
In Fig. 7 we show the FSLE for data and model. In our

case, as discussed above, we are far from asymptotical con- (R*(t))~t°. (18
d|t|5c1r125, therefore we do not observe the scalingd) Nonasymptotic behavior takes place in such systems

. o . wheneverl, is not much smaller thah,, that is when the
The () obtained from the minimal chaotic model Reynolds number is not high enough. As a matter of fact
(15)—(17) shows the typical steplike shape of a system witheyen at very high Reynolds numbers, the inertial range is still
two characteristic time s_cales_, and offers a scenario aboygsfficient to observe the scalin@8) without any ambigu-
how the FSLE of real trajectories may come out. ity. On the other hand, we shall show that FSLE statistics is

The relevant fact is that the large-scale Lagrangian feagifective already in a relatively small Reynolds numbers.
tures are well reproduced, at least at a qualitative level, by a |, order to investigate the problem of relative dispersion

relatively simple model. We believe that this agreement isy¢ yarious scale separations a practical tool is the use of
not due to a particular choice of the model parameters, bufynihetic turbulent fields. In fact, by means of stochastic pro-
rather to the fact that transport is'mainly dominqted by larg&.esses it is possible to build a velocity field which repro-
scales whereas small scale details play a marginal role.  g,ces the statistical properties of velocity differences ob-
Itis evident the major advantages of FSLE with respecieryed in fully developed turbulené®In order to avoid the
to the usual fixed time statistics of relative dispersion; fromyigricyities related to the presence of sweeping in the velocity
the relative dispersion analysis of Fig. 6 we are unable {Qje|q, we limit ourselves to a correct representation of two-
recognize the underlying Eulerian structures, while the_ FSLEpoint velocity differences. In this case, if one adopts the ref-
of Fig. 7 suggests the presence of structures on differentrence frame in which one of the two tracers is at rest at the
scales and with different characteristic times. In c:onclusionorigin (the so-called a quasi-Lagrangian frame of refergnce
the fixed scale analysis gives information for discriminatingine motion of the second particle is ruled by the velocity
among different models for the Adriatic Sea. difference in this frame of reference, which has the the same
single time statistics of the Eulerian velocity differences?
The detailed construction of the synthetic quasi-Lagrangian
We consider now the relative dispersion of particlesvelocity field is presented in Appendix C.
pairs advected by an incompressible, homogeneous, isotro- In Fig. 8 we show the results of simulations of pair dis-

B. Relative dispersion in fully developed turbulence
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10000 son with a multifractal scenario. The conclusion that can be
drawn is that in this case doubling time statistics makes it
1000 | possible a much better estimate of the scaling exponent with
respect to the standard—fixed time—statistics.
3
’i 100 ¢ V. CONCLUSIONS
In the study of relative dispersion of Lagrangian tracers
10k one has to tackle situations in which the asymptotic behavior
is never attained. This may happen in presence of many char-
' . . : acteristic Eulerian scales or, what is typical of real systems,
10® 10% 10*  10% 102 0.1 yb y

in presence of boundaries. It is worth to stress that such kind
of systems are very common in geophysical fidfvand also
FIG. 9. Average inverse doubling tii{@/T(R)) for the same simulation of  jn plasma physicgz_ Therefore a close understanding of non-
the previous figure. Observe the enhanced scaling region. The line is thgsymptotic transport properties can give much relevant infor-
theoretical Richardson scalirig <. .

mation about these natural phenomena.

To face these problems, in recent years, there have been
proposed different approaches whose common ingredient is
basically an “exit time” analysis. We remind the Poincare
recurrence analysi§, the symbolic dynamicti'? and the
chaotic scattering approaches, the exit time description for

persion by the synthetic turbulent field with Kolmogorov
scaling of velocity differences at Reynolds number Re
=10°.3* The expected superdiffusive regini@8) can be

‘gep ggse_ltvedxolnl% f[cr)]r hdug(T :i?eri/nc;lds “ﬁm?é?e ? Ifct)h transport in semienclosed basifissymplectic map§? open
€l. 29. 10 expiain the depietion ot scaling range 1or the g, (15 o4 iy plasma physicd

relative dispersion let us consider a series of pair dispersion In this paper we have discussed the applications of the

experiments, in which a couple of particles is released at a. . . . .
separatiorR, at timet=0. At a fixed timet, as customaril inite Size Lyapunov Exponenk(d), in the analysis of sev-
i Fc)ione wg erform_an. average over &’1" different exyeri-eral situations. This method is based on the identification of
ments t(') comp UtéR2(t)). But uglesst is larae enouah cht the typical timer(5) characterizing the diffusive process at
all particle aFi)rs have ‘:for c;tten" their in?tial congditions scales through the exit time. This approach is complemen-
thepavera epwill be biasedgThis is at the oridin of the fI‘jju_tary to the traditional one, in which one looks at the average
tenin of(ng(t)> for small tir.nes which we cangcall 2 Cross- size of the clouds of tracers as function of time. For values of
over ?rom initial condition to sel%—similarit In an analogous 6 much smaller than the smallest characteristic length of the
. ! b 9 Fulerian velocity field, one has thaté) coincides with the
fashion there is a crossover for large times, of the order o . :
. . . ; maximum Lagrangian Lyapunov exponent. For largehe
the integral time scale, since some couples might have : .
: . shape of\(5) depends on the detailed mechanisms of spread-
reached a separation larger than the integral scale, and thus h f the ad . locity field and/
diffuse normally, meanwhile other pairs still lie within the Mg, 1.e., the structure of the advecting velocity field and/or
inertial range bi,asin the average and, again, flattenin ththe presence of boundaries. The diffusive regime corre-
curve(RZ(tg)]>' This cgorrection toga uré gowe'r law is ?ar gponds to the behavior(6)=D/&" If & gets close to s
' P b saturation value, i.e., the characteristic size of the basin, the

from being negligible for instance in experimental datauniversal shape ok(8) can be obtained on the basis of dy-
where the inertial range is generally limited due to the Rey'namical system theory. In addition, we have shown that the
nolds number and the experimental apparatus. For examplﬁked scale method is .able to rec,ognize the presence of a
Refs. 36 and 37 show quite clearly the difficulties that may . PP
arise in numerical simulations with the standard approach. genuine anomalous diffusion. : , _
e : A remarkable advantage of working at fixed scéle
To overcome these difficulties we exploit the approachStead of at fixed time as in the traditional approaishits
based on the fixed scale statistics. The outstanding advanta Bility to avoid misleading results, for instance apparent
of averaging at a fixed separation scale is that it removes aﬁ .

crossover effects, since all sampled pairs belong to the iner_nomalous scaling over a certain time interval. Moreover,
. ' mpled pairs 9 . ~with the FSLE one obtains the proper scaling laws also for a
tial range. The expected scaling properties of the doublin

9elativel small inertial range for which the standard tech-
times is obtained by a simple dimensional argument. Th y g

time it takes for particle separation to grow frd®to 2R can Ique gives rather controversial answers.
be estimated a8 (R)~ R/ v (R): we thus expect for the in- The proposed method can be also applied in the analysis

oo . of drifter experimental data or in humerical model for La-
verse doubling times the scaling .
grangian transport.
1

(T(R))e
In Fig. 9 the great enhancement of the scaling range achieved We thank V. Artale, E. Aurell, L. Biferale, P. Castigli-
by using the doubling times is evident. In addition, by usingone, A. Crisanti, M. Falcioni, R. Pasmanter, P. M. Poulain,
the FSLE it is possible to study in details the effect of Eule-G. Redaelli, M. Vergassola, and E. Zambianchi for collabo-
rian intermittency on the Lagrangian statistics of relative dis+ations and discussions in the last years. A particular ac-
persion. See Ref. 34 for a detailed discussion and a compatnowledgment to B. Marani for the continuous and warm
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.
NCSE T <In( 5 )> . (A4)
< r( n))e n e
APPENDIX A: COMPUTATION OF THE FINITE SIZE
LYAPUNOV EXPONENT We conclude by observing that the computation of the

In this appendix we discuss in detail the method forES;‘Eur:ZVng; n(;ﬁ;emegpes?zlr:/ja:ga; t(?rieth(r:](w)mgrl:;aagrsl ;fnfhf
computing the Finite Size Lyapunov Exponent for both con- yap P y g ' Py

tinuous dynamicgdifferential equationsand discrete dy- to integrate two cop|es_of the_ system and this can be done
. also for very complex simulations.

namics(maps.
The practical method for computing the FSLE goes as

follows. Defined a given norm for the distanéét) between

the reference and perturbed trajectories, one has to define AL PENDIX B UNIVERSAL SATURATION BEHAVIOR

series of thresholds,=r"8, (n=1,... P), and to measure OF A(9)
the “doubling times” T,(4,) that a perturbation of sizé, In this appendix we present the derivation of the

takes to grow up t@, . The threshold rate should notbe 45y mptotic behaviofl2) of A(6) for & close to the saturation.

taken too large, because otherwise the error has to growhe computation is explicitly done for the simple case of a
through different scales before reaching the next thresholdy,e  gimensional Brownian motion in  the domain

On the other handr cannot be too close to one, because —Lg,Lg], with reflecting boundary conditions; the numeri-

otherwise the doubling time would be of the order of thecq| simulations indicate that the result is of general applica-
time step in the integration. In our examples we typically USEhility.

r=2orr= V2. For simplicityT, is called “doubling time” The evolution of the probability densityis ruled by the
even ifr#2. Fokker—Planck equation,
The doubling timed,(5,,) are obtained by following the
evolution of the separation from its initial siz&,,<& up to ap 1 _a%p
the largest threshold, . This is done by integrating the two ot EDQ (B1)

trajectories of the system starting at an initial distafgg, . ) N
In general, one must choos®,,<4,, in order to allow the ~With the Neumann boundary conditionsp{dx) (*Lg) =0 .

direction of the initial perturbation to align with the most ~ The general solution of81) is

unstable direction in the phase-space. Moreover, one must o

pay attention to keepp< Spax, SO that all the thresholds can p(x,t)= >, p(k,0ere Ywtc.c., (B2)
be attained §,,. iS the typical distance of two uncorrelated k==

trajectory. where

The evolution of the error from the initial valug,,;, to
the largest threshold, carries out a single error-doubling
experiment. At this point one rescales the model trajectory at
the initial distance’,,;, with respect to the true trajectory and ) ) )
starts another experiment. Aftéy error-doubling experi- At large times p approaches the uniform solutiopo
ments, we can estimate the expectation value of some quam/2-s- Writing p asp(x,t)=po+ dp(x,t) we have, fort

2 -1
7= EW—H) k=0,+1,+2 (83)
2 Lé ] ’ ] PRI

tity A as >y,
1 N Sp~exp—t/ry). (B4)
<A>e:N 21 A (A1) The asymptotic behavior for the relative dispers{@®f(t))
is
This is not the same as taking the time average because dif- 1
ferent error doubling experiments may take different times. R2(1)) = _f g2 t " )ydxdx B5
Indeed we have (RED)=5 | (x=x)*px,H)p(x’,tydxdx. (B5)
1T SAT (AT For t>r, using (B4 we obtain (R%(t))~((L3/3)
<A>t:$fo At dt= <——= De " (A2)  —pAe V7). Therefore for 62(t)=(R2(t)) one has &(t)
v ¢ ~((Lg/\3) — (V3A/2Lg) e Y™, The saturation value af
In the particular case in which is the doubling time itself s 5, .=Lg/\/3, so fort>r7;, or equivalently for @nax
we have from(A2), —8)/6<1, we expect
1 d 1 Spax— O
()= 7 500 (A3) gt o=Ma=—— (B6)
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which is (12). frame the first particle is at rest in the origin and the second
Let us remark that in the previous argument X¢6) for  particle is atr,=r;+ R, advected with respect to the refer-
6= Smax the crucial point is the exponential relaxation to theence particle by the relative velocity,
asymptotic uniform distribution. In a generic deterministic _
chaotic system it is not possible to prove this property in a v(RO=Ur(D+RH=ulry(1),1). (€4
rigorous way. Nevertheless one can expect that this request By this change of coordinates the problem of pair dispersion
fulfilled at least in nonpathological cases. In chaotic system# an Eulerian velocity field has been reduced to the problem
the exponential relaxation to asymptotic distribution corre-of single particle dispersion in the velocity difference field
sponds to have the second eigenvalueof the Perron— wv(r,t). This yields a substantial simplification; it is indeed
Frobenius operator inside the unitary circle; the relaxatiorsufficient to build a velocity difference field with proper scal-
time is 7, = —In|a.* ing features in the radial direction only, that is along the line
that joins the reference partictg(t)—at rest in the origin of
the QL coordinates—to the second partialg(t)=rq(t)
APPENDIX C: SYNTHETIC TURBULENT VELOCITY +R(t). To appreciate this simplification, it must be noted

FIELDS that actually all moments of velocity differencegr,(t)
The generation of a synthetic turbulent field which re-+1",t) —u(ry(t) +r,t)=ov(r’,t)—ov(r,t) should display
produces the relevant statistical features of fully developedower law scaling ir’ —r|. Actually these latter differences
turbulence is not an easy task. Indeed to obtain a physicalljever appear in the dynamics of pair separation, and so we
sensible evolution for the velocity field one has to take intocan limit ourselves to fulfill the weaker reque€t3). Need-
account the fact that each eddy is subject to the action of alpss to say, already for three particle dispersion one needs a
other eddies. Actually the overall effect amounts only to twofield with proper scaling in all directions.
main ContributionS, name|y the Sweeping exerted by |arger We limit ourselves to the two-dimensional case, where
eddies and the shearing due to eddies of comparable siz@€ can introduce a stream function for the QL velocity dif-
This is indeed a substantial simplification, but nevertheleséerences
the problem of properly mimicking the effect of sweeping is o(r,1)=VX(r,t). (C5)
still unsolved. ) ) _ o
To get rid of these difficulties we shall limit ourselves to The extension to a three-dimensional velocity field is not
the generation of a synthetic velocity field in quasi- difficult but.more expensive in terms of numerlcall resources.
Lagrangian(QL) coordinates? thus moving to a frame of Under |so_trop|c.cond|t|ons, the stream function can be
reference attached to a particle of fluig(t). This choice decomposed in radial octaves as
bypasses the problem of sweeping, since it allows to work N n b1 i)
only with relative velocities, unaffected by advection. As a  y(r,0,t)= >, >, ———F(kr)G;(6), (C6)
matter of fact there is a price to pay for the considerable ==k '
advantage gained by discarding advection, and it is that onlywherek;=2'. Following a heuristic argument, one expects
the problem of two-particle dispersion can be well managedhat at a giverr the stream function is essentially dominated
within this framework. The properties of single-particle La- by the contribution from thé term such that~2~'. This
grangian statistics cannot, on the contrary, be consistentlcality of contributions suggests a simple choice for the

treated. functional dependencies of the “basis functions,”
The QL velocity differences are defined as )
F(x)=x%(1—x) for 0=x=<1 (C?
v(r,t)=u(ry(t)+r,t)—u(ry(t),t), (C) )
and zero otherwise,
where the reference particle moves according to
dry(t) Gi0)=1, G;(0)=cod20+¢;), (C8)
r
dlt =u(rq(t),t). (C2 andG; ;=0 for j>2 (¢; is a quenched random phask is

worth remarking that this choice is rather general because it

These velocity differences have the useful property that theican be derived from the lowest order expansion for smatl

single-time statistics are the same as the Eulerian ones whea-generic streamfunction in quasi-Lagrangian coordinates.

ever considering statistically stationary flows=or fully de- It is easy to show that, under the usual locality condi-

veloped turbulent flows, in the inertial interval of length tions for infrared convergence,< p,* the leading contri-

scales where both viscosity and forcing are negligible, théution to the pth order longitudinal structure function

QL longitudinal velocity differences show the scaling behav-(|v,(r)|P) stems from theMth term in the sum(C6),

ior (Jve(N[P)~(Ipm AP with r=2"M_If the ¢; (t) are sto-

< p> chastic processes with characteristic timgs2 237, zero
~r§p,

(C3) mean ano(|¢iyj|p)~ki_§p, the scaling(C3) will be accom-
where the exponent, is a convex function of, and {3

plished. An efficient way of to generatg ; is*
=1. This scaling behavior is a distinctive statistical property

r
v(r)- F

?i (D=0 ;(1)z1;(1)Z5(1) - - - Z (1), (CY

of fully developed turbulent flows that we shall reproduce bywhere thez, ; are independent, positive definite, identically
means of a synthetic velocity field. In the QL referencedistributed random processes with characteristic time
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