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We study relative dispersion of passive scalar in nonideal cases, i.e., in situations in which
asymptotic techniques cannot be applied; typically when the characteristic length scale of the
Eulerian velocity field is not much smaller than the domain size. Of course, in such a situation usual
asymptotic quantities~the diffusion coefficients! do not give any relevant information about the
transport mechanisms. On the other hand, we shall show that the Finite Size Lyapunov Exponent,
originally introduced for the predictability problem, appears to be rather powerful in approaching
the nonasymptotic transport properties. This technique is applied in a series of numerical
experiments in simple flows with chaotic behaviors, in experimental data analysis of drifter and to
study relative dispersion in fully developed turbulence. ©2000 American Institute of Physics.
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It is now well known that the Lagrangian motion of test
particles in a fluid can be highly nontrivial even for the
simple Eulerian field. Up to now there exists powerful
methods to study in a rigorous way the asymptotic trans-
port properties of passive scalar. On the other hand very
often „especially in real world… it is not possible to char-
acterize dispersion in terms of asymptotic quantities such
as average velocity and diffusion coefficients. This hap
pens, typically, in finite domain systems with no large
scale-separation between the domain size and the large
characteristic Eulerian length; more generally when
there is not a sharp separation among the characteristic
length scales of the system. In this perspective, we briefl
review a recently introduced method to approach the
nonasymptotic properties of transport and mixing. We
discuss the relevance of the Finite Size Lyapunov Expo
nent for the characterization of diffusion. In particular
we stress its advantages compared with the usual way o
looking at the relative dispersion at fixed delay time.

I. INTRODUCTION

Transport processes play a crucial role in many natu
phenomena. Among the many examples, we just mention
particle transport in geophysical flows which is of obvio
interest for atmospheric and oceanic issues. The most na
framework for investigating such phenomena is to adop
Lagrangian viewpoint in which the particles are advected
a given Eulerian velocity fieldu(x,t) according to the differ-
ential equation
501054-1500/2000/10(1)/50/11/$17.00
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dx

dt
5u~x,t !5v~ t !, ~1!

where, by definition,v(t) is the Lagrangian particle velocity
Despite the apparent simplicity of~1!, the problem of

connecting the Eulerian properties ofu to the Lagrangian
properties of the trajectoriesx(t) is a very difficult task. In
the last 20–30 years the scenario has become even m
complex by the recognition of the ubiquity of Lagrangia
chaos~chaotic advection!. Even very simple Eulerian fields
can generate very complex Lagrangian trajectories which
practically indistinguishable from those obtained in a co
plex, turbulent, flow.1–6

Despite these difficulties, the study of the relative disp
sion of two particles can give some insight on the link b
tween Eulerian and Lagrangian properties at different leng
scales. Indeed, the evolution of the separationR(t)5x(2)(t)
2x(1)(t) between two tracers is given by

dR

dt
5v (2)~ t !2v (1)~ t !5u~x(1)~ t !1R~ t !,t !2u~x(1)~ t !,t !,

~2!

and thus depends on the velocity difference on scaleR. It is
obvious from~2! that Eulerian velocity components of typ
cal scale much larger thanR will not contribute to the evo-
lution of R. Since, in incompressible flows, separationR
typically grows in time7,8 we have the nice situation in whic
from the evolution of the relative separation we can, in pr
ciple, extract the contributions of all the components of t
velocity field. For these reasons, in this paper we prefe
© 2000 American Institute of Physics
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study relative dispersion instead of absolute dispersion.
spatially infinite cases, without mean drift there is no diffe
ence; for closed basins the relative dispersion is, for m
aspects, more interesting than the absolute one, whic
dominated by the sweeping induced by large scale flow.

There are very few general results on the link betwe
Eulerian and Lagrangian properties and only for asympt
behaviors. Let us suppose that the Eulerian velocity field
characterized by two typical length-scales; the~small! scale
l u below which the velocity is smooth, and a~large! scaleL0

representing the size of the largest structures present in
flow. In most nonturbulent flows it will turn out thatl u

;L0 .
At very small separationsR! l u we have that the veloc

ity difference in ~2! can be reasonably approximated by
linear expansion inR, which in most of time-dependen
flows leads to an exponential growth of the separation
initially close particles, a phenomenon known as Lagrang
chaos, i.e.

^ ln R~ t !&. ln R~0!1lt ~3!

~the average is taken over many couples with initial sepa
tion R(0)). The coefficient l is the Lagrangian Lyapunov
exponent of the system.2 The rigorous definition of the
Lyapunov exponent imposes to take the two limitsR(0)
→0 and thent→`; in physical terms these limits amount
the requirement that the separation has not to exceed
scalel u but for very large times. This is a very strict cond
tion, rarely accomplished in real flows, rendering often
feasible the experimental observation of the behavior~3!.

On the opposite limit, for very long times and for sep
rations R@L0 , the two trajectoriesx(1)(t) and x(2)(t) feel
two velocities which can practically be considered as unc
related. We thus expect normal diffusion, i.e.,

^R2~ t !&.2Dt, ~4!

beingD the diffusion coefficient. Even in this case it is ne
essary to remark that the asymptotic behavior~4! cannot be
attained in many realistic situations, the most common
which is the presence of boundaries at a scale compar
with L0 . In absence of boundaries it is possible to formul
sufficient conditions on the nature of the Eulerian flow, u
der which normal diffusion ~4! always takes place
asymptotically.9

Between the two asymptotic regimes~3! and~4! the be-
havior of R(t) depends on the particular flow. The study
the evolution of the relative dispersion in this crossover
gime is very interesting and can give an insight on the Eu
rian structure of the velocity field.

To summarize, in all systems in which the characteris
length-scales are not sharply separated, it is not possib
describe dispersion in terms of asymptotic quantities. In s
cases, different approaches are required. Let us men
some examples, the Poincare´ recurrences analysis,10 the
symbolic dynamics approach to the subdiffusive behavio
a stochastic layer,11 and to mixing in meandering jets;12 the
study of tracer dynamics in open flows in terms of chao
scattering13 and the exit time description for transport
semienclosed basins14 and open flows.15
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The aim of the present paper is to discuss the use o
indicator—the Finite Size Lyapunov Exponents~FSLE!,
originally introduced in the context of predictabilit
problems16—to study and characterize nonasymptotic tra
port in nonideal systems, e.g., closed basins and system
which the characteristic length-scales are not sharply se
rated.

In Sec. II we introduce the basic tools for the finite-sca
analysis and we discuss their general properties. Sectio
is devoted to the evaluation of our method on some num
cal examples. We shall see that even in apparently sim
situations the use of finite scale analysis avoids possible m
interpretation of the results. In Sec. IV the method is appl
to two physical problems; the analysis of experimen
drifter data and the numerical study of relative dispersion
fully developed turbulence. Conclusions are presented
Sec. V. The appendices report, for sake of self-consiste
some technical aspects.

II. FINITE SIZE DIFFUSION COEFFICIENT

In order to introduce the finite size analysis for the d
persion problem let us start with a simple example. We c
sider a set ofN particle pairs advected by a smooth~e.g.,
spatially periodic! velocity field with characteristic lengthl u .
Denoting withRi

2(t) the square separation of theith couple,
we define

^R2~ t !&5
1

N (
i 50

N

Ri
2 . ~5!

We assume that the Lagrangian motion is chaotic, thus
expect the following regimes to hold

^R2~ t !&.H R0
2 exp~L~2!t ! if ^R2~ t !&1/2! l u

2Dt if ^R2~ t !&1/2@ l u
, ~6!

whereL(2)>2l is the generalized Lyapunov exponent,16–19

D is the diffusion coefficient and we assume thatRi(0)
5R0 .

An alternative method to characterize the dispers
properties is by introducing the ‘‘doubling time’’t~d! at
scale d as follows:17 given a series of thresholdsd (n)

5r nd (0), one can measure the timeTi(d
(0)) it takes for the

separationRi(t) to grow fromd (0) to d (1)5rd (0), and so on
for Ti(d

(1)), Ti(d
(2)), . . . up to the largest considered sca

The r factor may be any value.1, properly chosen in orde
to have a good separation between the scales of motion,
r should be not too large. Strictly speaking,t~d! is exactly
the doubling time ifr 52.

Performing the doubling time experiments over theN
particle pairs, one defines the average doubling timet~d! at
scaled as

t~d!5^T~d!&e5
1

N (
i 51

N

Ti~d!. ~7!

It is worth noting that the average~7! is different from the
usual time average~see Appendix A!.

Now we can define the Finite Size Lagrangian Lyapun
Exponent~see Ref. 16 for a detailed discussion! in terms of
the average doubling time as
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l~d!5
ln r

t~d!
, ~8!

which quantifies the average rate of separation between
particles at a distanced. Let us remark thatl~d! is indepen-
dent of r, for r close to 1. For very small separations~i.e.,
d! l u) one recovers the Lagrangian Lyapunov exponenl,
i.e.

l5 lim
d→0

1

t~d!
ln r . ~9!

In this framework the finite size diffusion coefficient,17

D(d), dimensionally turns out to be

D~d!5d2l~d!. ~10!

Note the absence of the factor 2, as one may expect from~6!,
in the denominator ofD(d); this is becauset ~d! is a differ-
ence of times. For a standard diffusion processD(d) ap-
proaches the diffusion coefficientD @see Eq.~6!# in the limit
of very large separations (d@ l u). This result stems from the
scaling of the doubling timest(d);d2 for normal diffusion.

Thus the finite size Lagrangian Lyapunov exponentl~d!
behaves as follows:

l~d!;H l if d! l u

D/d2 if d@ l u
. ~11!

One could naively conclude, matching the behaviors ad
; l u , that D;l l u

2 . This is not always true, since one ca
have a rather large range for the crossover due to nontr
correlations which can be present in the Lagrang
dynamics.4

One might wonder that the introduction oft~d! is just
another way to look at̂R2(t)&. This is true only in limiting
cases, when the different characteristic lengths are well s
rated and intermittency is weak. A similar idea of usi
times for the computation of the diffusion coefficients
nontrivial cases was developed in Refs. 20–22.

If one wants to identify the physical mechanisms act
on a given spatial scale, the use of scale dependent quan
is more appropriate than time dependent ones.

For instance, in presence of strong intermittency~which
is indeed a rather usual situation! R2(t) as a function oft can
be very different in each realization. Typically one has@see
Fig. 1~a!# different exponential growth rates for different r
alizations, producing a rather odd behavior of the aver
^R2(t)& not due to any physical mechanisms. Indead, in F
1~b! we show the averagêR2(t)& versus timet; at large
times one recovers the diffusive behavior but at intermed
times appears an ‘‘anomalous’’ diffusive regime which
only due to the superposition of exponential and diffus
contributions by different samples at the same time. On
other hand, by exploiting the tool of doubling times one h
an unambiguous result@see Fig. 1~c!#.17 Let us stress that the
nongenuine ‘‘anomalous’’ diffusive regime, if one looks
^R2(t)& versust, is not due to poor statistics but only to th
superposition of different regimes.

An important physical problem where the behavior
t ~d! is essentially well understood is the relative dispers
in 3D fully developed turbulence. Here the smallest Euler
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scalel u is the Kolmogorov scale at which the flow becom
smooth. In the inertial rangel u,R,L0 we expect theRich-
ardson Lawto hold ^R2(t)&;t3; for separations larger tha
the integral scaleL0 we have normal diffusion. In terms o
the finite size Lyapunov exponent we thus expect three
ferent regimes:

~1! l~d!5l for d! l u ,
~2! l(d);d22/3 for l u!d!L0 ,
~3! l(d);d22 for d@L0 ,

FIG. 1. ~a! Three realizations ofR2(t) as a function oft built as follows:
R2(t)5d0

2 exp(2gt) if R2(t),1 and R2(t)52D(t2t* ) with
g50.08,0.05,0.3 andd051027,D51.5. ~b! ^R2(t)& as function oft aver-
aged on the three equiprobable realizations shown in Fig. 1~a!. The apparent
anomalous regime and the diffusive one are shown.~c! l~d! vs d, with
Lyapunov and diffusive regimes.
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the behavior~2! is another way to write the Richardson Law
We will see in Sec. IV that even for large Reynold

numbers, the characteristic lengthsl u and L0 are not suffi-
ciently separated and the different scaling regimes
^R2(t)& cannot be well detected. The fixed scale analysis
terms ofl~d! for fully developed turbulence presents cle
advantages with respect to the fixed time approach.

III. NUMERICAL RESULTS ON SIMPLE FLOWS

In this section we shall discuss some examples of ap
cations of the above introduced indicatorl~d! ~or equiva-
lently D(d)) for simple flows. The technical and numeric
details of the finite size Lyapunov exponent computation
settled out in Appendix A.

In a generic case in addition to the two asymptotic
gimes~11! discussed in Sec. II, we expect another univer
regime due to the presence of the boundary of given sizeLB .
For separations close to the saturation valuedmax.LB we
expect the following behavior to hold for a broad class
systems:17

l~d!5
D~d!

d2
}

~dmax2d!

d
. ~12!

The proportionality constant is given by the second eig
value of the Perron–Frobenius operator which is related
the typical time of exponential relaxation of tracers’ dens
to uniform distribution~see Appendix B!.

A. A model for transport in Rayleigh–Be ´nard
convection

The advection in two-dimensional incompressible flo
in absence of molecular diffusion is given by the Ham
tonian equation of motion where the stream function,c,
plays the role of the Hamiltonian,

dx

dt
5

]c

]y
,

dy

dt
52

]c

]x
. ~13!

If c is time-dependent one typically has chaotic adv
tion. As an example let us consider the time-perio
Rayleigh–Be´nard convection, which can be described by t
following stream function:23

c~x,y,t !5
A

k
sin$k@x1B sin~vt !#%W~y!, ~14!

whereW(y) satisfies rigid boundary conditions on the su
facesy50 and y5a ~we useW(y)5sin(py/a)). The two
surfacesy5a and y50 are the top and bottom surfaces
the convection cell. The time dependent termB sin(vt) rep-
resents lateral oscillations of the roll pattern which mimic t
even oscillatory instability.23

Concerning the analysis in terms of the finite si
Lyapunov exponent one has that, ifd is much smaller than
the domain size,l~d!5l. At larger values ofd we find stan-
dard diffusion l(d)5D/d2 with good quantitative agree
ment with the value of the diffusion coefficient evaluated
the standard technique, i.e., using^R2(t)& as a function of
time t.
r
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In order to study the effects of finite boundaries on t
diffusion properties we confine the tracers’ motion in
closed domain. This can be achieved by slightly modifyi
the stream function~14!. We have modulated the oscillatin
term in such a way that foruxu5LB the amplitude of the
oscillation is zero, i.e.,B→B sin(px/LB) with LB52pn/k (n
is the number of convective cells!. In this way the motion is
confined inxP@2LB ,LB#.

In Fig. 2 we showl~d! for two values ofLB . If LB is
large enough one can distinguish the three regimes; expo
tial, diffusive, and the saturation regime Eq.~12!. Decreasing
the size of the boundaryLB , the range of the diffusive re
gime decreases, while for small values ofLB , it disappears.

B. Point vortices in a disk

We now consider a two-dimensional time-depend
flow generated byM point vortices, with circulations
G1 , . . . ,GM , in a disk of unit radius.24 The passive tracers
are advected by the time dependent velocity field genera
by the vortices and behave chaotically for anyM.2. Let us
note that in this case the scale separation is not impose
hand, but depends onM and on the energy of the vorte
system.25 Figure 3~a! shows the relative diffusion as a func
tion of time in a system withM54 vortices. Apparently
there is an intermediate regime of anomalous diffusi
However from Fig. 3~b! one can clearly see that, with th
fixed scale analysis, only two regimes survive, exponen
and saturation. Comparing Fig. 3~a! and Fig. 3~b! one under-
stands that the appearance of the spurious anomalous d
sion regime in the fixed time analysis is due to the mec
nism described in Sec. II.

The absence of the diffusive regimel(d);d22 is due to
the fact that the characteristic length of the velocity fie
which is comparable with the typical distance between t
close vortices, is not much smaller than the size of the ba

FIG. 2. Lagrangian motion given by the Rayleigh–Be´nard convection
model with A50.2, B50.4, v50.4, k51.0, a5p, the number of real-
izations is N52000 and the series of thresholds isdn5d0r n with d0

51024 andr 51.05. l~d! versusd, in a closed domain with 6~crosses! and
12 ~diamonds! convective cells. The lines are, respectively,~a! Lyapunov
regime withl50.017; ~b! diffusive regime withD50.021; ~c! saturation
regime withdmax519.7; ~d! saturation regime withdmax55.7.
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C. Random walk on a fractal object: An anomalous
diffusive case

In this section we discuss the case of particles perfo
ing a continuous random walk on a fractal object of frac
dimensionDF , where one has subdiffusion. We show th
also in situation of anomalous diffusion~e.g., subdiffusion!
the FSLE is able to recognize the correct behavior. In
following section we consider the case of fully develop
turbulence which displays superdiffusion.

In a fractal object due to the presence of voids, i
forbidden regions for the particles, one expects a decrea
of the spreading, and because of the self-similar structur
the domain~i.e., voids on all scales! a subdiffusive behavior
is expected. It is worth to note that the particles do not d
fuse with the same law from any points of the domain~due
to the presence of voids!, hence in order to define a diffu
sivelike behavior one has to average over all possible
ticles’ position. For discrete random walk on a fractal latti
it is known that the diffusion follows the laŵR2(t)&
;t2/DW with DW.2, i.e., subdiffusion.26 The quantityDW is
related to the spectral orfracton dimensionDS , by the rela-
tion DW52DF /DS , and it depends on the detailed structu
of the fractal object.26

We study the relative dispersion of 2D continuous ra

FIG. 3. ~a! ^R2(t)& for the four vortex system withG15G252G352G4

51. The threshold parameter isr 51.03 andd051024, the dashed line is
the power law^R2(t)&;t1.8. The number of realizations isN52000. ~b!
l~d! versusd for the same model and parameters. The horizontal line in
cates the Lyapunov exponent~l50.14!, the dashed curve is the saturatio
regime withdmax50.76.
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dom walk in a Sierpinsky Carpet with fractal dimensio
DF5 log 8/log 3. In our computation we use a resolutio
325, i.e., the fractal is approximated by five steps of t
recursive building rule, in practice we perform a continuo
random walk in a basin obtained with the above approxim
tion of the Sierpinsky Carpet. We initialize the particles i
side one of the smallest resolved structures, then we fol
the growth of the relative dispersion with the FSLE metho
and redeploy the particles in a small cell randomly chose
the beginning of each doubling time experiment. From Fig
one can see thatl(d);d21/0.45 which is an indication of
subdiffusion the exponent is in good agreement with
usual relative dispersion analysis~see the inset of Fig. 4!.

IV. APPLICATION OF THE FSLE

A. Drifter in the Adriatic Sea: Data analysis and
modelization

Lagrangian data recorded within oceanographic p
grams in the Mediterranean Sea27 offer the opportunity to
apply the fixed scale analysis to a geophysical problem,
which the standard characterization of the dispersion pro
ties gives poor information.

The Adriatic Sea is a semienclosed basin, about 8
3200 km wide, connected to the whole Mediterranean S
through the Otranto Strait.27,28We adopt the reference fram
in which the x,y-axes are aligned, respectively, with th
short side~transverse direction!, orthogonal to the coasts
and the long side~longitudinal direction!, along the coasts.

We have computed relative dispersion along the t
axes,^Rx

2(t)&, ^Ry
2(t)& and FSLEl~d!. The number of se-

lected drifters for the analysis is 37, distributed in 5 differe
deployments in the Strait of Otranto, happened during
period December 1994–March 1997, containing respectiv
4, 9, 7, 7, and 10 drifters. To get as high statistics as poss
even to the cost of losing information on the seasonal v
ability, we shift the time tracks of all of the 37 drifters t
t – t0 , where t0 is the time of the deployment, so that th
drifters can be treated as a whole cluster. Moreover, to

i-

FIG. 4. FSLE computed for particle diffusion in a Sierpinsky Carpet
fractal dimensionD f5 log(8)/log(3) obtained by iteration of the unit struc
ture up to a resolution 325, one hasl(d);d21/0.45, which is in agreement
with the value obtained for,R(t). versus t shown in the inset~i.e.,
,R(t).;t0.45).
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FIG. 5. Stream function isolines for the model~15!–~17! at ~a! t50 and~b! t5T1/2. The coordinates (x,y) are in km. For the parameters see the text
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are
strict the analysis only to the Adriatic basin, we discarde
drifter as soon as its latitude goes south of 39.5 N or
longitude goes beyond 19.5 E.

Before presenting the results of the data analysis, le
introduce a simplified model for the Lagrangian tracers m
tion in the Adriatic Sea. We assume as main features of
surface circulation the following elements:29 the drifter mo-
tion is basically two-dimensional; the domain is a qua
closed basin; an anticlockwise coastal current; two large
clonic gyres; some natural irregularities in the Lagrang
motion induced by small scale structures. On the basis
these considerations, we introduce a deterministic cha
model with mixing properties for the Lagrangian drifter
The stream function is given by the sum of three terms,

C~x,y,t !5C0~x,y!1C1~x,y,t !1C2~x,y,t !, ~15!

defined as follows:

C0~x,y!5
C0

k0
•@2sin~k0~y1p!!1cos~k0~x12p!!#,

~16!

C i~x,y,t !5
Ci

ki
•sin~ki~x1e i sin~v i t !!!

3sin~ki~y1e i sin~v i t1f i !!!, ~ i 51,2!,

~17!

whereki52p/l i , for i 50,1,2,l i ’s are the wavelengths o
the spatial structures of the flow; analogouslyv j52p/Tj ,
for j 51,2, andTj ’s are the periods of the perturbations.
the nondimensional expression of the equations, the len
and time units have been set to 200 km and 7.5 days, res
tively.

The stationary termC0 defines the boundary large sca
circulation with positive vorticity. The contribution ofC1

contains the two cyclonic gyres and it is explicitly tim
dependent through a periodic perturbation. The termC2

gives the motion over scales smaller than the size of the la
gyres and it is time-dependent as well. The zero-value iso
is defined as the boundary of the basin.

According to observation, we have chosen the para
eters so that the velocity range is around;0.3 m s21; the
length scales of the Eulerian structures areLB;1000 km
~coastal current!, L0;200 km ~gyres!, and l u;50 km ~vor-
a
s

s
-
e

-
y-
n
of
tic

th
ec-

ge
e

-

tices!; the typical recirculation times, for gyres and vortice
are ;1 month and;1 week, respectively; the oscillatio
periods are.10 days~gyres! and.2 days~vortices!. In Fig.
5 we show some instantaneous streamline patterns obta
from ~15!–~17! at different times.

Let us discuss now the comparison between data
model results. The relative dispersion along the two dir
tions of the basin, for data and model trajectories, are sho
in Figs. 6~a! and 6~b!. The results for the model are obtaine
from the spreading of a cluster of 104 initial conditions.

FIG. 6. Relative dispersion of Lagrangian trajectories,^Rx,y
2 (t)& versust, in

the Adriatic Sea, for data~continuous line! and model~dashed line!, along
the natural axes of the basin;~a! transverse direction~x-axis! and~b! longi-
tudinal direction~y-axis!. The time is measured in days and the mean squ
radius of the cluster is in km2.
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When a particle reaches the boundary~C50! it is eliminated.
For the diffusion properties, one cannot expect a sca

for ^Rx,y
2 (t)& before the saturation regime, since the Euler

characteristic lengths are not too small compared with
basin size. Indeed, we do not observe a power law beha
neither for the experimental data nor for the numeri
model.

Let us stress that by opportunely fitting the paramete
we could obtain the model curves even closer to the exp
mental ones, but this would not be very meaningful sin
there is no clear theoretical expectation in a transient regi

Let us now discuss the finite size Lyapunov expone
The analysis of the experimental data has been averaged
the total number of couples out of 37 trajectories, under
condition that the evolution of the distance between t
drifters is no longer followed when any of the two exits t
Adriatic basin.

In Fig. 7 we show the FSLE for data and model. In o
case, as discussed above, we are far from asymptotical
ditions, therefore we do not observe the scalingl(d)
;d22.

The lM(d) obtained from the minimal chaotic mode
~15!–~17! shows the typical steplike shape of a system w
two characteristic time scales, and offers a scenario ab
how the FSLE of real trajectories may come out.

The relevant fact is that the large-scale Lagrangian f
tures are well reproduced, at least at a qualitative level, b
relatively simple model. We believe that this agreemen
not due to a particular choice of the model parameters,
rather to the fact that transport is mainly dominated by la
scales whereas small scale details play a marginal role.

It is evident the major advantages of FSLE with resp
to the usual fixed time statistics of relative dispersion; fro
the relative dispersion analysis of Fig. 6 we are unable
recognize the underlying Eulerian structures, while the FS
of Fig. 7 suggests the presence of structures on diffe
scales and with different characteristic times. In conclusi
the fixed scale analysis gives information for discriminati
among different models for the Adriatic Sea.

B. Relative dispersion in fully developed turbulence

We consider now the relative dispersion of partic
pairs advected by an incompressible, homogeneous, is

FIG. 7. FSLE of Lagrangian trajectories in the Adriatic Sea, for data~con-
tinuous line! and model~dashed line!. The scaled is in km, l~d! is in
days21.
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pic, fully developed turbulent field. The Eulerian statistics
velocity differences is characterized by the Kolmogor
scaling dv(r );r 1/3, in an interval of scalesl u!r !L0 ,
called the inertial range,l u is now the Kolmogorov scale
Due to the incompressibility of the velocity field particle
will typically diffuse away from each other.7,8 For pair sepa-
rations less thanl u we have exponential growth of the sep
ration of trajectories, typical of smooth flows, whereas
separations larger thanL0 normal diffusion takes place. In
the inertial range the average pair separation is not affe
neither by large scale components of the flow, which sim
sweep the pair, nor by small scale ones, whose intensit
low and which act incoherently. Accordingly, the separati
R(t) feels mainly the action of velocity differencesdv(R(t))
at scaleR. As a consequence of the Kolmogorov scaling t
separation grows with theRichardson Law,30,31

^R2~ t !&;t3. ~18!

Nonasymptotic behavior takes place in such syste
wheneverl u is not much smaller thanL0 , that is when the
Reynolds number is not high enough. As a matter of f
even at very high Reynolds numbers, the inertial range is
insufficient to observe the scaling~18! without any ambigu-
ity. On the other hand, we shall show that FSLE statistics
effective already in a relatively small Reynolds numbers.

In order to investigate the problem of relative dispersi
at various scale separations a practical tool is the use
synthetic turbulent fields. In fact, by means of stochastic p
cesses it is possible to build a velocity field which repr
duces the statistical properties of velocity differences
served in fully developed turbulence.32 In order to avoid the
difficulties related to the presence of sweeping in the veloc
field, we limit ourselves to a correct representation of tw
point velocity differences. In this case, if one adopts the r
erence frame in which one of the two tracers is at rest at
origin ~the so-called a quasi-Lagrangian frame of referenc!,
the motion of the second particle is ruled by the veloc
difference in this frame of reference, which has the the sa
single time statistics of the Eulerian velocity differences.33,34

The detailed construction of the synthetic quasi-Lagrang
velocity field is presented in Appendix C.

In Fig. 8 we show the results of simulations of pair di

FIG. 8. Relative dispersion̂R(t)& for N520 octaves synthetic turbulen
simulation averaged over 104 realizations. The line is the theoretical Rich
ardson scalingt3/2.



v
Re

e
sio
at

r
t
,
at
s-
s

r o
av
th
e
t
r
ta

ey
p
a
h.
c
ta
a

ne
lin
h

-

v
ng
le
is

pa

be
s it
with

rs
vior
har-
ms,
ind

n-
for-

een
t is

re

or

the

of
at
n-
ge
of

the

ad-
/or
rre-

the
y-
the
of a

nt
er,
r a
h-

ysis
a-

-
in,
o-
ac-
rm

t

57Chaos, Vol. 10, No. 1, 2000 Nonasymptotic properties
persion by the synthetic turbulent field with Kolmogoro
scaling of velocity differences at Reynolds number
.106.34 The expected superdiffusive regime~18! can be
well observed only for huge Reynolds numbers~see also
Ref. 35!. To explain the depletion of scaling range for th
relative dispersion let us consider a series of pair disper
experiments, in which a couple of particles is released
separationR0 at time t50. At a fixed timet, as customarily
is done, we perform an average over all different expe
ments to computêR2(t)&. But, unlesst is large enough tha
all particle pairs have ‘‘forgotten’’ their initial conditions
the average will be biased. This is at the origin of the fl
tening of^R2(t)& for small times, which we can call a cros
over from initial condition to self-similarity. In an analogou
fashion there is a crossover for large times, of the orde
the integral time scale, since some couples might h
reached a separation larger than the integral scale, and
diffuse normally, meanwhile other pairs still lie within th
inertial range, biasing the average and, again, flattening
curve ^R2(t)&. This correction to a pure power law is fa
from being negligible for instance in experimental da
where the inertial range is generally limited due to the R
nolds number and the experimental apparatus. For exam
Refs. 36 and 37 show quite clearly the difficulties that m
arise in numerical simulations with the standard approac

To overcome these difficulties we exploit the approa
based on the fixed scale statistics. The outstanding advan
of averaging at a fixed separation scale is that it removes
crossover effects, since all sampled pairs belong to the i
tial range. The expected scaling properties of the doub
times is obtained by a simple dimensional argument. T
time it takes for particle separation to grow fromR to 2R can
be estimated asT(R);R/dv(R); we thus expect for the in
verse doubling times the scaling

1

^T~R!&e
;R22/3. ~19!

In Fig. 9 the great enhancement of the scaling range achie
by using the doubling times is evident. In addition, by usi
the FSLE it is possible to study in details the effect of Eu
rian intermittency on the Lagrangian statistics of relative d
persion. See Ref. 34 for a detailed discussion and a com

FIG. 9. Average inverse doubling time^1/T(R)& for the same simulation of
the previous figure. Observe the enhanced scaling region. The line is
theoretical Richardson scalingR22/3.
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son with a multifractal scenario. The conclusion that can
drawn is that in this case doubling time statistics make
possible a much better estimate of the scaling exponent
respect to the standard—fixed time—statistics.

V. CONCLUSIONS

In the study of relative dispersion of Lagrangian trace
one has to tackle situations in which the asymptotic beha
is never attained. This may happen in presence of many c
acteristic Eulerian scales or, what is typical of real syste
in presence of boundaries. It is worth to stress that such k
of systems are very common in geophysical flows,14 and also
in plasma physics.22 Therefore a close understanding of no
asymptotic transport properties can give much relevant in
mation about these natural phenomena.

To face these problems, in recent years, there have b
proposed different approaches whose common ingredien
basically an ‘‘exit time’’ analysis. We remind the Poinca´
recurrence analysis,10 the symbolic dynamics,11,12 and the
chaotic scattering13 approaches, the exit time description f
transport in semienclosed basins,14 symplectic maps,38 open
flows,15 and in plasma physics.22

In this paper we have discussed the applications of
Finite Size Lyapunov Exponent,l~d!, in the analysis of sev-
eral situations. This method is based on the identification
the typical timet~d! characterizing the diffusive process
scaled through the exit time. This approach is compleme
tary to the traditional one, in which one looks at the avera
size of the clouds of tracers as function of time. For values
d much smaller than the smallest characteristic length of
Eulerian velocity field, one has thatl~d! coincides with the
maximum Lagrangian Lyapunov exponent. For largerd the
shape ofl~d! depends on the detailed mechanisms of spre
ing, i.e., the structure of the advecting velocity field and
the presence of boundaries. The diffusive regime co
sponds to the behaviorl(d).D/d2. If d gets close to its
saturation value, i.e., the characteristic size of the basin,
universal shape ofl~d! can be obtained on the basis of d
namical system theory. In addition, we have shown that
fixed scale method is able to recognize the presence
genuine anomalous diffusion.

A remarkable advantage of working at fixed scale~in-
stead of at fixed time as in the traditional approach! is its
ability to avoid misleading results, for instance appare
anomalous scaling over a certain time interval. Moreov
with the FSLE one obtains the proper scaling laws also fo
relatively small inertial range for which the standard tec
nique gives rather controversial answers.

The proposed method can be also applied in the anal
of drifter experimental data or in numerical model for L
grangian transport.
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APPENDIX A: COMPUTATION OF THE FINITE SIZE
LYAPUNOV EXPONENT

In this appendix we discuss in detail the method
computing the Finite Size Lyapunov Exponent for both co
tinuous dynamics~differential equations! and discrete dy-
namics~maps!.

The practical method for computing the FSLE goes
follows. Defined a given norm for the distanced(t) between
the reference and perturbed trajectories, one has to defi
series of thresholdsdn5r nd0 (n51, . . . ,P), and to measure
the ‘‘doubling times’’ Tr(dn) that a perturbation of sizedn

takes to grow up todn11 . The threshold rater should not be
taken too large, because otherwise the error has to g
through different scales before reaching the next thresh
On the other hand,r cannot be too close to one, becau
otherwise the doubling time would be of the order of t
time step in the integration. In our examples we typically u
r 52 or r 5A2. For simplicityTr is called ‘‘doubling time’’
even if rÞ2.

The doubling timesTr(dn) are obtained by following the
evolution of the separation from its initial sizedmin!d0 up to
the largest thresholddP . This is done by integrating the tw
trajectories of the system starting at an initial distancedmin .
In general, one must choosedmin!d0, in order to allow the
direction of the initial perturbation to align with the mo
unstable direction in the phase-space. Moreover, one m
pay attention to keepdP,dmax, so that all the thresholds ca
be attained (dmax is the typical distance of two uncorrelate
trajectory!.

The evolution of the error from the initial valuedmin to
the largest thresholddP carries out a single error-doublin
experiment. At this point one rescales the model trajector
the initial distancedmin with respect to the true trajectory an
starts another experiment. AfterN error-doubling experi-
ments, we can estimate the expectation value of some q
tity A as

^A&e5
1

N (
i 51

N

Ai . ~A1!

This is not the same as taking the time average because
ferent error doubling experiments may take different tim
Indeed we have

^A& t5
1

TE0

T

A~ t !dt5
( iAit i

( it i
5

^At&e

^t&e
. ~A2!

In the particular case in whichA is the doubling time itself
we have from~A2!,

l~dn!5
1

^Tr~dn!&e
ln r . ~A3!
s

r
-

s

e a

w
d.

e

st

at

n-

if-
.

The method above described assumes that the dist
between the two trajectories is continuous in time. This is
true for maps or for discrete sampling in time, thus t
method has to be slightly modified. In this caseTr(dn) is
defined as the minimum time at whichd(Tr)>rdn . Because
now d(Tr) is a fluctuating quantity, from~A2! we have

l~dn!5
1

^Tr~dn!&e
K lnS d~Tr !

dn
D L

e

. ~A4!

We conclude by observing that the computation of t
FSLE is not more expensive than the computation of
Lyapunov exponent by standard algorithm. One has sim
to integrate two copies of the system and this can be d
also for very complex simulations.

APPENDIX B: UNIVERSAL SATURATION BEHAVIOR
OF l„d…

In this appendix we present the derivation of t
asymptotic behavior~12! of l~d! for d close to the saturation
The computation is explicitly done for the simple case o
one dimensional Brownian motion in the doma
@2LB ,LB#, with reflecting boundary conditions; the numer
cal simulations indicate that the result is of general appli
bility.

The evolution of the probability densityp is ruled by the
Fokker–Planck equation,

]p

]t
5

1

2
D

]2p

]x2
~B1!

with the Neumann boundary conditions (]p/]x) (6LB)50 .
The general solution of~B1! is

p~x,t !5 (
k52`

`

p̂~k,0!eikxe2t/tk1c.c., ~B2!

where

tk5S D

2

p2

LB
2

k2D 21

, k50,61,62, . . . . ~B3!

At large times p approaches the uniform solutionp0

51/2LB . Writing p as p(x,t)5p01dp(x,t) we have, fort
@t1 ,

dp;exp~2t/t1!. ~B4!

The asymptotic behavior for the relative dispersion^R2(t)&
is

^R2~ t !&5
1

2E ~x2x8!2p~x,t !p~x8,t !dxdx8. ~B5!

For t@t1 using ~B4! we obtain ^R2(t)&;((LB
2/3)

2Ae2t/t1). Therefore for d2(t)5^R2(t)& one has d(t)
;((LB /A3) 2 (A3A/2LB) e2t/t1). The saturation value ofd
is dmax5LB /A3, so for t@t1 , or equivalently for (dmax

2d)/d!1, we expect

d

dt
ln d5l~d!5

1

t1

dmax2d

d
~B6!
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which is ~12!.
Let us remark that in the previous argument forl~d! for

d.dmax the crucial point is the exponential relaxation to t
asymptotic uniform distribution. In a generic determinis
chaotic system it is not possible to prove this property in
rigorous way. Nevertheless one can expect that this reque
fulfilled at least in nonpathological cases. In chaotic syste
the exponential relaxation to asymptotic distribution cor
sponds to have the second eigenvaluea of the Perron–
Frobenius operator inside the unitary circle; the relaxat
time is t152 lnuau.39

APPENDIX C: SYNTHETIC TURBULENT VELOCITY
FIELDS

The generation of a synthetic turbulent field which r
produces the relevant statistical features of fully develo
turbulence is not an easy task. Indeed to obtain a physic
sensible evolution for the velocity field one has to take in
account the fact that each eddy is subject to the action o
other eddies. Actually the overall effect amounts only to t
main contributions, namely the sweeping exerted by lar
eddies and the shearing due to eddies of comparable
This is indeed a substantial simplification, but neverthel
the problem of properly mimicking the effect of sweeping
still unsolved.

To get rid of these difficulties we shall limit ourselves
the generation of a synthetic velocity field in qua
Lagrangian~QL! coordinates,33 thus moving to a frame o
reference attached to a particle of fluidr1(t). This choice
bypasses the problem of sweeping, since it allows to w
only with relative velocities, unaffected by advection. As
matter of fact there is a price to pay for the considera
advantage gained by discarding advection, and it is that o
the problem of two-particle dispersion can be well manag
within this framework. The properties of single-particle L
grangian statistics cannot, on the contrary, be consiste
treated.

The QL velocity differences are defined as

v~r,t !5u~r1~ t !1r,t !2u~r1~ t !,t !, ~C1!

where the reference particle moves according to

dr1~ t !

dt
5u~r1~ t !,t !. ~C2!

These velocity differences have the useful property that t
single-time statistics are the same as the Eulerian ones w
ever considering statistically stationary flows.33 For fully de-
veloped turbulent flows, in the inertial interval of leng
scales where both viscosity and forcing are negligible,
QL longitudinal velocity differences show the scaling beha
ior

K Uv~r!•
r

r U
pL ;r zp, ~C3!

where the exponentzp is a convex function ofp, and z3

51. This scaling behavior is a distinctive statistical prope
of fully developed turbulent flows that we shall reproduce
means of a synthetic velocity field. In the QL referen
a
t is
s
-

n

-
d
lly
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r
ze.
s
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ir
n-

e
-

y

frame the first particle is at rest in the origin and the seco
particle is atr25r11R, advected with respect to the refe
ence particle by the relative velocity,

v~R,t !5u~r1~ t !1R,t !2u~r1~ t !,t !. ~C4!

By this change of coordinates the problem of pair dispers
in an Eulerian velocity field has been reduced to the prob
of single particle dispersion in the velocity difference fie
v(r,t). This yields a substantial simplification; it is indee
sufficient to build a velocity difference field with proper sca
ing features in the radial direction only, that is along the li
that joins the reference particler1(t)—at rest in the origin of
the QL coordinates—to the second particler2(t)5r1(t)
1R(t). To appreciate this simplification, it must be note
that actually all moments of velocity differencesu(r1(t)
1r8,t)2u(r1(t)1r,t)5v(r8,t)2v(r,t) should display
power law scaling inur82ru. Actually these latter difference
never appear in the dynamics of pair separation, and so
can limit ourselves to fulfill the weaker request~C3!. Need-
less to say, already for three particle dispersion one nee
field with proper scaling in all directions.

We limit ourselves to the two-dimensional case, whe
we can introduce a stream function for the QL velocity d
ferences

v~r,t !5¹3c~r,t !. ~C5!

The extension to a three-dimensional velocity field is n
difficult but more expensive in terms of numerical resourc

Under isotropic conditions, the stream function can
decomposed in radial octaves as

c~r,u,t !5(
i 51

N

(
j 51

n
f i , j~ t !

ki
F~kir !Gi , j~u!, ~C6!

whereki52i . Following a heuristic argument, one expec
that at a givenr the stream function is essentially dominat
by the contribution from thei term such thatr;22 i . This
locality of contributions suggests a simple choice for t
functional dependencies of the ‘‘basis functions,’’

F~x!5x2~12x! for 0<x<1 ~C7!

and zero otherwise,

Gi ,1~u!51, Gi ,2~u!5cos~2u1w i !, ~C8!

andGi , j50 for j .2 (w i is a quenched random phase!. It is
worth remarking that this choice is rather general becaus
can be derived from the lowest order expansion for smallr of
a generic streamfunction in quasi-Lagrangian coordinate

It is easy to show that, under the usual locality con
tions for infrared convergence,zp,p,40 the leading contri-
bution to the pth order longitudinal structure function
^uv r(r )up& stems from theMth term in the sum~C6!,
^uv r(r )up&;^ufM ,2up& with r .22M. If the f i , j (t) are sto-
chastic processes with characteristic timest i5222i /3t0 , zero
mean and̂ uf i , j up&;ki

2zp , the scaling~C3! will be accom-
plished. An efficient way of to generatef i , j is32

f i , j~ t !5gi , j~ t !z1,j~ t !z2,j~ t !•••zi , j~ t !, ~C9!

where thezk, j are independent, positive definite, identica
distributed random processes with characteristic timetk ,
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while thegi , j are independent stochastic processes with z
mean,^gi , j

2 &;ki
22/3 and characteristic timet i . The scaling

exponentszp are determined by the probability distributio
of zi , j via

zp5
p

3
2 log2^z

p&. ~C10!

As a last remark we note that by simply fixing thezi , j51 we
recover the Kolmogorov scaling, which has been used in
simulations presented in Sec. IV B.
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13G. Károlyi and T. Tél, ‘‘Chaotic tracer scattering and fractal basin boun
aries in a blinking vortex-sink system,’’ Phys. Rep.290, 125 ~1997!.

14G. Buffoni, P. Falco, A. Griffa, and E. Zambianchi, ‘‘Dispersion process
and residence times in a semienclosed basin with recirculating gyres
application to the Tyrrhenian sea,’’ J. Geophys. Res.102, 18699~1997!.

15P. Castiglione, M. Cencini, A. Vulpiani, and E. Zambianchi, ‘‘Transpo
in finite size systems: An exit time approach,’’ Chaos~in press!.

16E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, ‘‘Growt
of nonifinitesimal perturbations in turbulence,’’ Phys. Rev. Lett.77, 1262
~1996!; ‘‘Predictability in the large: An extension of the concept
Lyapunov exponent,’’ J. Phys. A30, 1 ~1997!.

17V. Artale, G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, ‘‘Disper
sion of passive tracers in closed basins: Beyond the diffusion coefficie
Phys. Fluids9, 3162~1997!.
ro

e

-

y

f

-

-

-

-

s
n

,’’

18R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, ‘‘On the multifract
nature of fully developed turbulence and chaotic systems,’’ J. Phys. A17,
3521 ~1984!.

19G. Paladin and A. Vulpiani, ‘‘Anomalous scaling laws in multifract
objects,’’ Phys. Rep.156, 147 ~1987!.

20S. Benkadda, Y. Elskens, B. Ragot, and J. T. Mendoc¸a, ‘‘Exit times and
chaotic transport in Hamiltonian systems,’’ Phys. Rev. Lett.72, 2859
~1994!.

21A. N. Yannacopoulos and G. Rowlands, ‘‘Calculation of diffusion coef
cients for chaotic maps,’’ Physica D65, 71 ~1993!.

22R. Sabot and M. A. Dubois, ‘‘Diffusion coefficient in a finite domain from
exit times and application to the tokamak magnetic structure,’’ Phys. L
A 212, 201 ~1996!.

23T. H. Solomon and J. P. Gollub, ‘‘Chaotic particle transport in tim
dependent Rayleigh-Be´nard convection,’’ Phys. Rev. A38, 6280~1988!;
‘‘Passive transport in steady Raleigh-Be´nard convection,’’ Phys. Fluids
31, 1372~1988!.

24H. Aref, ‘‘Integrable, chaotic, and turbulent vortex motions in two dime
sional flows,’’ Annu. Rev. Fluid Mech.15, 345 ~1983!.

25G. Boffetta, A. Celani, and P. Franzese, ‘‘Trapping of passive tracers
point vortex system,’’ J. Phys. A29, 3749~1996!.

26R. Rammal and G. Tolouse, ‘‘Random walks on fractal structures
percolation clusters,’’ J. Phys.~France! Lett. 44, L13 ~1983!; F. D. A.
Aaarão Reis, ‘‘Finite-size scaling for random walks on fractals,’’ J. Phy
A 28, 6277~1995!.

27P. M. Poulain, ‘‘Drifter observations of surface circulation in the Adriat
Sea between December 1994 and March 1996,’’ J. Mar. Sys.~in press!.

28A. Artegiani, D. Bregant, E. Paschini, N. Pinardi, F. Raicich, and
Russo, ‘‘The Adriatic Sea general circulation, parts I and II,’’ J. Ph
Oceanogr.27, 1492~1997!.

29G. Lacorata, E. Aurell, and A. Vulpiani, ‘‘Drifter dispersion in the Adri
atic Sea: lagrangian data and chaotic model,’’ Ann. Geophys.

30L. F. Richardson, ‘‘Atmospheric diffusion shown on a distance-neigh
graph,’’ Proc. R. Soc. London, Ser. A110, 709 ~1926!.

31A. Monin and A. Yaglom,Statistical Fluid Mechanics~MIT Press, Cam-
bridge, Massachusetts, 1975!, Vol. 2.

32L. Biferale, G. Boffetta, A. Celani, A. Crisanti, and A. Vulpiani, ‘‘Mim-
icking a turbulent signal: Sequential multiaffine processes,’’ Phys. Rev
57, R6261~1998!.

33V. S. L’vov, E. Podivilov, and I. Procaccia, ‘‘Temporal multiscaling i
hydrodynamic turbulence,’’ Phys. Rev. E55, 7030~1997!.

34G. Boffetta, A. Celani, A. Crisanti, and A. Vulpiani, ‘‘Relative dispersio
in fully developed turbulence: Lagrangian statistics in synthetic flow
Europhys. Lett.46, 177 ~1999!.

35F. W. Elliott, Jr. and A. J. Majda, ‘‘Pair dispersion over an inertial ran
spanning many decades,’’ Phys. Fluids8, 1052~1996!.

36J. C. H. Fung and J. C. Vassilicos, ‘‘Two-particle dispersion in turbule
like flows,’’ Phys. Rev. E57, 1677~1998!.

37J. C. H. Fung, J. C. R. Hunt, N. A. Malik, and R. J. Perkins, ‘‘Kinema
simulation of homogeneous turbulence by unsteady random Fou
modes,’’ J. Fluid Mech.236, 281 ~1992!.

38R. W. Easton, J. D. Meiss, and S. Carver, ‘‘Exit times and transport
symplectic twist maps,’’ Chaos3, 153 ~1993!.

39C. Beck and F. Schlo¨gl, Thermodynamics of Chaotic Systems~Cambridge
University Press, Cambridge, 1993!.

40H. A. Rose and P. L. Sulem, ‘‘Fully developed turbulence and statist
mechanics,’’ J. Phys.~Paris! 39, 441 ~1978!.


