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§ Dipartimento di Fisica, Università dell’ Aquila, Via Vetoio 1, 67010 Coppito, L’Aquila, Italy
Istituto di Fisica dell’Atmosfera, CNR, Via Fosso del Cavaliere, 00133 Roma, Italy

Received 30 June 1999

Abstract. The problem of unpredictability in a physical system due to the incomplete knowledge
of the evolution laws is addressed. Major interest is devoted to the analysis of error amplification
in chaotic systems with many characteristic times and scales when the fastest scales are not
resolved. The parametrization of the unresolved scales introduces a non-infinitesimal uncertainty
(with respect to the true evolution laws) which affects the forecasting ability on the large resolved
scales. The evolution of non-infinitesimal errors from the unresolved scales up to the large scales
is analysed by means of the finite-size Lyapunov exponent. It is shown that proper parametrization
of the unresolved scales allows one to recover the maximal predictability of the system.

1. Introduction

The ability to predict the future state of a system, given its present state, stands at the
foundations of scientific knowledge with relevant implications from an applicative point of
view in geophysical and astronomical sciences. In the prediction of the evolution of a physical
system, e.g. the atmosphere, we are severely limited by the fact that we do not know the
evolution equations and the initial conditions with arbitrary accuracy. Indeed, one integrates a
mathematical model given by a finite number of equations. The initial condition, a point in the
phase space of the model, is only determined with a finite resolution (i.e., by a finite number
of observations) [1].

Using the concepts of dynamical systems theory, there has been some progress made in
understanding the growth of an uncertainty during the time evolution. An infinitesimal initial
uncertainty (δ0 → 0) in the long-time limit (t → ∞) grows exponentially in time with a
typical rate given by the leading Lyapunov exponentλ, |δx(t)| ∼ δ0 exp(λt). Therefore, if our
purpose is to forecast the system within a tolerance1, the future state of the system can only
be predicted up to thepredictability time, given by

Tp ' 1

λ
ln

(
1

δ0

)
. (1)

In the literature, the problem of predictability with respect to uncertainty on the initial
conditions is referred to aspredictability of the first kind.
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In addition, in real systems we must also cope with the lack of knowledge of the evolution
equations. Let us consider a system described by a differential equation

d

dt
x(t) = f(x, t) xf ∈ Rn. (2)

As a matter of fact, we do not know the equations exactly, and we have to devise a model
which is different from the true dynamics:

d

dt
x(t) = fε(x, t) where fε(x, t) = f(x, t) + εδf(x, t). (3)

Therefore, it is natural to wonder about the relation between the true evolution (reference
or true trajectoryxT (t)) given by (2) and the one effectively computed (perturbedor model
trajectoryxM(t)) given by (3). This problem is referred to aspredictability of the second kind.

Let us make some general remarks. At the foundation of the problem of predictability
of the second kind exists the issue ofstructural stability [2]: since the evolution laws are
only known with finite precision it is highly desirable that at least certain properties are not
too sensitive to the details of the equations of motion. For example, in a system with a
strange attractor, small generic changes in the evolution laws should not drastically change the
dynamics (see [3,4] for a discussion of non-generic perturbations).

In chaotic systems the effects of a small generic uncertainty on the evolution law are
similar to those due to the finite precision on the initial condition [5]. The model trajectory of
the perturbed dynamics diverges exponentially from the reference one with a mean rate given
by the Lyapunov exponent of the original system.

In dynamical systems theory, the first- and second-kind predictability problems are
understood essentially in the limit of infinitesimal perturbations. However, even in this limit
we must also consider the fluctuations of the rate of expansion which can lead to relevant
modifications of the predictability time (1), in particular for strongly intermittent systems [6–8].

As far as finite perturbations are considered, the leading Lyapunov exponent is not relevant
for the predictability issue. In the presence of many characteristic times and spatial scales the
Lyapunov exponent is related to the growth of small-scale perturbations which saturates for
short times and has very little relevance for the growth of large-scale perturbations [1, 9, 10].
To overcome this shortcoming, a suitable characterization of the growth of non-infinitesimal
perturbations, in terms of the finite-size Lyapunov exponent (FSLE), has been recently
introduced [11,12].

Additionally, in the case of predictability of the second kind, one often has to deal with
errors which are far from infinitesimal. Indeed, in real systems the size of an uncertainty
on the evolution equations is determinable onlya posteriori, based on the ability of the
model equations to reproduce some of the features of the phenomenon. Typical examples
are systems described by partial differential equations (e.g. turbulence, atmospheric flows).
The study of these systems is performed by using a numerical model with unavoidable severe
approximations, the most relevant of which is the necessity to cut off some degrees of freedom
(i.e. the small-scale variables).

The aim of this paper is to analyse the effects of limited resolution to our ability to
forecast the large-scale features. This raises two problems: in the first place one has to deal
with perturbations of the evolution equations which, in general, cannot be considered small;
second, the parametrization of the unresolved modes. The FSLE fits the first point very
well, being able to characterize and quantify the effects of uncertainty on the evolution laws at
different scales. As regards the second point, one can define the optimal parametrization as that
one for which the predictability on the large scales is no worse than the intrinsic predictability
of the system (i.e. due to uncertainties on the initial conditions). We shall show that with
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some phenomenological parametrization of the small scales one can recover on large scales
the intrinsic predictability of the system. This is far from clear in systems with some feedback
from the large scales toward the small ones.

This paper is organized as follows. In section 2 we report some known results concerning
the predictability problem of the second kind and recall the definition of the FSLE. In section 3
we present numerical results on a simple model. In section 4 we consider more complex
systems with many characteristic times. In section 5 we present some conclusions. In the
appendix we discuss the problem of the parametrization of the unresolved variables.

2. Effects of a small uncertainty on the evolution law

In the second-kind predictability problem, we can distinguish three general cases depending
on the original dynamics. In particular, equation (2) may display:

(i) trivial attractors: asymptotically stable fixed points or attracting periodic orbits;
(ii) marginally stable fixed points or periodic/quasi-periodic orbits as in integrable

Hamiltonian systems;
(iii) chaotic behaviour.

In case (i) small changes in the equations of motion do not modify the qualitative features
of the dynamics. Case (ii) is not generic and the outcome strongly depends on the specific
perturbationδf , i.e. it is not structurally stable. In the chaotic case (iii) one expects that the
perturbed dynamics is still chaotic. In this paper we will only consider the latter case.

Let us also mention that, in numerical computations of evolution equations (e.g. differential
equations), there are two unavoidable sources of error: the finite precision representation of
numbers which causes the computer phase space to be necessarily discrete, and the round-off
which introduces a sort of noise. As a consequence, any numerical trajectory is periodic.
Nevertheless, the period is usually very large, apart from very low computer precision [5].
Here we do not consider this source of difficulties. The round-off produces a perturbation in
(2) which can be written asδf(x, t) = w(x)f(x, t) andε ∼ 10−α (α = number of digits in
the floating-point representation), wherew = O(1) is an unknown function which may depend
on f and on the software [13]. In general, the round-off error is very small and may have a
positive role in selecting the physical probability measure, the so-callednatural measure, from
the set of ergodic invariant measures [14].

In chaotic systems the effects of a small uncertainty on the evolution law is, from many
aspects, similar to those due to imperfect knowledge of the initial conditions. This can be
understood through the following example. Consider the Lorenz system [15]

dx

dt
= σ(y − x)

dy

dt
= Rx − y − xz

dz

dt
= xy − bz.

(4)

In order to mimic an experimental error in the determination of the evolution law we
consider a small errorε on the parameterR: R → R + ε. Let us consider the difference
1x(t) = xM(t)−xT (t) with, for simplicity,1x(0) = 0, i.e. we assume a perfect knowledge
of the initial conditions. One has, with obvious notation

d1x

dt
= fε(xM)− f(xT ) ' ∂f

∂x
1x +

∂fε

∂R
ε. (5)
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At time t = 0 one has|1x(0)| = 0, therefore|1x(t)|only grows due to the effect of the second
term in (5). At later times, when|1x(t)| ≈ O(ε) the first term of (5) becomes the leading
one, and we recover predictability of the first kind for an initial uncertaintyδ0 ∼ ε. Therefore,
apart from an initial growth, which depends on the specific perturbation, the evolution of
〈log(|1x(t)|〉 follows the usual linear growth with the slope given by the leading Lyapunov
exponent. Typically, the value of the Lyapunov exponent computed using the model dynamics
differs from the true one by a small amount of orderε, i.e.λM = λT + O(ε) [5].

These considerations only apply to infinitesimal perturbations. The generalization to finite
perturbations can be obtained by considering the extension of the Lyapunov exponent to finite
errors. The definition of the FSLEλ(δ) is given in terms of the time,Tr(δ), which a perturbation
of initial sizeδ takes to amplify by a factorr (>1):

λ(δ) =
〈

1

Tr(δ)

〉
t

ln r (6)

where〈· · ·〉t denotes average with respect to the natural measure, i.e. along the trajectory (for
details see [11, 12]). For chaotic systems, in the limit of infinitesimal perturbations (δ → 0)
λ(δ) is simply the leading Lyapunov exponentλ [16]. Let us note that the above definition of
λ(δ) is not appropriate to discriminate cases withλ = 0 andλ < 0, since the predictability
time is positive by definition. Nevertheless, this is not a limitation as long as we deal with
chaotic systems.

In many realistic situations the error growth for infinitesimal perturbations is dominated
by the fastest scales, which are typically the smallest ones (e.g. small-scale turbulence). When
δ is no longer infinitesimal,λ(δ) is given by the fully nonlinear evolution of the perturbation.
In general,λ(δ) 6 λ, according to the intuitive picture that large scales are more predictable.
Outside the range of scales in which theδ error can be considered infinitesimal, the functionλ(δ)

depends on the details of the dynamics and in principle on the norm used. In fully developed
turbulence one has the universal lawλ(δ) ∼ δ−2 in the inertial range [11,12]. In general, the
behaviour ofλ(δ) as a function ofδ gives important information on the characteristic times
and scales of the system and it has also been applied to passive transport in closed basins [17].

Let us now return to example (4). We computeλT T (δ), the FSLE for the true equations,
andλTM(δ), the FSLE computed following the distance between one true trajectory and one
model trajectory starting at the same point. These are shown in figure 1.λT T (δ) displays a
plateau indicating a chaotic dynamics with leading Lyapunov exponentλ ' 1. With respect
to predictability of the second kind, forδ > ε the second term in (5) becomes negligible and
we observe the transition to the Lyapunov exponentλTM(δ) ' λT T (δ) ' λ. In this range of
errors the model system recovers the intrinsic predictability of the true system. For very small
errors,δ < ε, where the growth of the error is dominated by the second term in (5), we have
λTM(δ) > λT T (δ).

This example shows that it is possible to recover the intrinsic predictability of a chaotic
system even in the presence of some uncertainty in the model equations. This is rather clear
and intuitive for infinitesimal perturbations. The case of non-infinitesimal perturbation is more
subtle.

In the following we will consider more complex situations, in which strongly interacting
degrees of freedom with different characteristic times are involved. In these cases the correct
parametrization of the unresolved modes is crucial for the prediction of large-scale behaviour.
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Figure 1. FSLEsλT T (δ) (+) andλTM(δ) (×) versusδ for the Lorenz model (4) withσ = c = 10,
b = 8

3 , R = 45 andε = 0.001. The dashed line represents the leading Lyapunov exponent for the
unperturbed system (λ ≈ 1.2). The statistics is over 104 realizations.

3. Systems with two timescales

Before analysing in detail the effects of non-infinitesimal perturbations of the evolution laws
in some specific models let us clarify our aims. We consider a dynamical system written in
the following form:

dx

dt
= f(x,y)

dy

dt
= g(x,y)

(7)

wheref ,x ∈ Rn andg,y ∈ Rm and, in general,n 6= m. Now, let us suppose that the fast
variablesy cannot be resolved: a typical example is the sub-grid modes in partial differential
equation discretizations. In this framework, a natural question is: how must we parametrize
the unresolved modes (y) in order to predict the resolved modes (x)?

As discussed by Lorenz [10], to reproduce—at a qualitative level—a given
phenomenology, e.g. the El Niño southern oscillation (ENSO) phenomenon, one can drop
out the small-scale features without negative consequences. However, one unavoidably fails
in forecasting the ENSO (i.e., the actual trajectory) without taking into account in a suitable way
the small-scale contributions. Indeed it is not obvious that by introducing a finite perturbation
one can recover the intrinsic predictability of the system on large scales.

An example in which it is relatively simple to develop a model for the fast modes is
represented by the skew systems:

dx

dt
= f(x,y)

dy

dt
= g(y).

(8)

In this case, the fast modes(y) do not depend on the slow ones(x). One can expect that in this
case, neglecting the fast variables or parametrizing them with a suitable stochastic process,
should not drastically affect the prediction of the slow variables [18].
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On the other hand, ify feels some feedback fromx, we cannot simply neglect the
unresolved modes. In the appendix we discuss this point in detail. In practice one has to
construct an effective equation for the resolved variables:

dx

dt
= fM(x,y(x)) (9)

where the functional form ofy(x) andfM are found by phenomenological arguments and/or
by numerical studies of the full dynamics.

Let us now investigate an example with a recently introduced toy model of atmospheric
circulation [10,19] including large scalesxk (synoptic scales) and small scalesyj,k (convective
scales):

dxk
dt
= −xk−1(xk−2 − xk+1)− νxk + F −

J∑
j=1

yj,k

dyj,k
dt
= −cbyj+1,k(yj+2,k − yj−1,k)− cνyj,k + xk

(10)

wherek = 1, . . . , K andj = 1, . . . , J . As in [10] we assume periodic boundary conditions
on k (xK+k = xk, yj,K+k = yj,k) while for j we imposeyJ+j,k = yj,k+1. The variablesxk
represent some large-scale atmospheric quantities inK sectors extending on a latitude circle,
while theyj,k represent quantities on smaller scales inJ · K sectors. The parameterc is the
ratio between the fast and slow characteristic times, andb measures the relative amplitude.

As pointed out by Lorenz, this model shares some basic properties with more realistic
models of the atmosphere. In particular, the nonlinear terms, which model the advection, are
quadratic and conserve the total kinetic energy

∑
k(x

2
k +

∑
j y

2
j,k) in the unforced (F = 0),

inviscid (ν = 0) limit; the linear terms containingν mimic dissipation and the constant term
F acts as an external forcing preventing the total energy from decaying.

If one is interested in forecasting the large-scale behaviour of the atmosphere by using
only the slow variables, a natural choice for the model equations is

dxk
dt
= −xk−1(xk−2 − xk+1)− νxk + F −Gk(x) (11)

whereGk(x) represents the parametrization of the fast components in (10) (see the appendix).
The FSLE for the true system [20],λT T (δ), is shown in figure 2 and displays the two

characteristic plateau corresponding to a fast component (forδ � 0.1) and a slow component
for largeδ. Figure 2 also shows what happens when one simply neglects the fast components
yj,k (i.e.G(x) = 0). At very smallδ one hasλTM(δ) ' δ−1. This behaviour can be understood
by noting that ifδ � ε, the error grows as dδ/dt ∼ ε and thusλTM ∼ ε/δ.

For large errors we observe that, with this rough approximation, we are not able to capture
the intrinsic predictability of the original system. More refined parametrizations in terms of
stochastic processes with the correct probability distribution function and correlation times do
not improve the forecasting ability.

The reason for this failure is due to the presence of a feedback term in the equations
(10) which induces strong correlations between the variablexk and the unresolved coupling∑J

j=1 yj,k. For a proper parametrization of the unresolved variables we follow the strategy
discussed in the appendix. Basically, we adopt

G(x) = νexk (12)

in which νe is a numerically determined parameter. Figure 2 shows that, although small
scales are not resolved, the intrinsic large-scale predictability is well reproduced and one has
λTM(δ) ' λT T (δ) for largeδ.
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Figure 2. FSLEs for the Lorenz ’96 modelλT T (δ) (solid curve) andλTM(δ) versusδ obtained
by dropping the fast modes (+) and with eddy-viscosity parametrization (×) as discussed in (11)
and (12). The parameters areF = 10,K = 36, J = 10, ν = 1 andc = b = 10, implying
that the typicaly variable is ten times faster and smaller than thex variable. The value of the
parameterνe = 4 is chosen after a numerical integration of the complete equations as discussed in
the appendix. The statistics is over 104 realizations.

4. Large-scale predictability in a turbulence model

We now consider a more complex system which mimics the energy cascade in fully developed
turbulence. The model is in the class of the so-calledshell modelsintroduced some years ago for
a dynamical description of small-scale turbulence. For a recent review on shell models see [21].
This model has relatively few degrees of freedom but involves many characteristic scales and
times. The velocity field is assumed isotropic, and it is decomposed on a finite set of complex
velocity componentsun representing the typical turbulent velocity fluctuation on a ‘shell’ of
scales̀ n = 1/kn. In order to reach very high Reynolds number with a moderate number of
degrees of freedom, the scales are geometrically spaced askn = k02n (n = 1, . . . , N).

The specific model considered here has the form [22]

dun
dt
= i(kn+1u

∗
n+1un+2− 1

2knu
∗
n−1un+1 + 1

2kn−1un−2un−1)− νk2
nun + fn (13)

whereν represent the kinematic viscosity andfn is a forcing term which is only restricted to
the first two shells (in order to mimic large-scale energy injection).

Without entering into the details, we recall that the shell model (13) displays an energy
cascadèa la Kolmogorov from large scales (smalln) to dissipative scales (n ∼ N ) with
a statistical stationary energy flux. Scaling laws for the average velocity components are
observed:

〈|upn |〉 ' k−ζpn (14)

with exponents close to the Kolmogorov 1941 valuesζp = p/3.
From a dynamical point of view, model (13) displays complex chaotic behaviour which is

responsible of the small deviation of the scaling exponents (intermittency) with respect to the
Kolmogorov values. Neglecting the (small) intermittency effects, a dimensional estimate of
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the characteristic time (eddy turnover time, i.e. the typical time after whichun(t) is practically
independent ofun(0)) for scalen gives

τn ' `n

|un| ' k
−2/3
n . (15)

The scaling behaviour holds up to the Kolmogorov scaleη = 1/kd defined as the scale at
which the dissipative term in (13) becomes relevant. The Lyapunov exponent of the turbulence
model can be estimated as the fastest characteristic timeτd and one has the prediction [14]

λ ∼ 1

τd
∼ Re1/2 (16)

where we have introduced the Reynolds numberRe ∝ 1/ν. It is possible to predict the
behaviour of the FSLE by observing that the faster scalekn at which an error of sizeδ is still
active (i.e. below the saturation) is such thatun ' δ. Thusλ(δ) ∼ 1/τn and, using Kolmogorov
scaling, one obtains

λT T (δ) ∼
{
λ for δ 6 ud
δ−2 for ud 6 δ 6 u0.

(17)

To be more precise, there is an intermediate range between the two shown in (17). In addition,
it is remarkable that the predictionλT T (δ) ∼ δ−2, which can be derived within the multifractal
model for turbulence, it is not affected by intermittency and gives the law originally proposed
by Lorenz [23]. For a detailed discussion see [11,12].

In order to simulate a finite resolution in the model, we consider a modelization of (13)
in terms of an eddy viscosity [24]

dun
dt
= i(kn+1u

∗
n+1un+2− 1

2knu
∗
n−1un+1 + 1

2kn−1un−2un−1)− ν(e)n k2
nun + fn (18)

where nown = 1, . . . , NM < N and the eddy viscosity, restricted to the last two shells, has
the form

ν(e)n = κ
|un|
kn
(δn,NM−1 + δn,NM ) (19)

whereκ is a constant of order 1 (see the appendix). The model equations (18) are analogous to
the large eddy simulation (LES) in the shell model, which is one of the most popular numerical
method for integrating large-scale flows. Thus, although shell models are not realistic models
for large-scale geophysical flows (being, nevertheless, a good model for small-scale turbulent
fluctuations), the study of the effect of truncation in terms of eddy viscosity is of general
interest.

In figure 3 we showλMM(δ), i.e. the FSLE computed for the model equations (18) with
N = 24 at different resolutionsNM = 9, 15, 20. A plateau is detected for smallδ error
amplitudes corresponding to the leading Lyapunov exponent, which increases with increasing
resolution—being proportional to the fastest timescale—according toλ ∼ k

2/3
NM

. At largerδ
the curves collapse onto theλT T (δ), showing that the large-scale statistics of the model is not
affected by the small-scale resolution.

The capability of the model to satisfactorily predict the features of the ‘true’ dynamics is
not determined byλMM(δ) anyway, but byλTM(δ), as shown in figure 4.

Increasing the resolutionNM = 9, 15, 20 towards the fully resolved caseN = 24 the
model improves, in agreement with the expectation thatλTM approachesλT T for a perfect
model. At largeδ the curves practically coincide, showing that the predictability time for large
error sizes (associated with large scales) is independent of the details of small-scale modelling.
Better resolved models achieveλTM ' λT T for smaller values of the errorδ.
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Figure 3. The FSLE for the eddy-viscosity shell model (18)λMM(δ) at various resolutions
NM = 9(+), 15(×), 20(∗). For comparison the FSLEλT T (δ) curve is plotted (continuous curve).
Hereκ = 0.4, k0 = 0.05.
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Figure 4. The FSLE between the eddy-viscosity shell model and the full shell modelλTM(δ), at
various resolutionsNM = 9(+), 15(×), 20(∗). For comparison the FSLEλT T (δ) curve is plotted
(continuous curve). The total number of shells for the complete model isN = 24, withk0 = 0.05,
ν = 10−7.

5. Conclusions

The lack of knowledge of the exact evolution equation for a real system is a widespread
condition in scientific investigation. Even in those cases when the evolution law is known, it
often happens that the large number of variables involved calls for some modelization in order
to perform the numerical analysis.

In this paper the effects of uncertainties in the evolution laws on the predictability properties
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are investigated and quantitatively characterized by means of the FSLE. In particular, we have
considered systems involving several characteristic scales and times.

In situations where there is a feedback on the small scales by the large ones, the dynamics
of the former cannot be thoroughly discarded without affecting the ability to forecast large-
scales features. In the general case, there is no systematic procedure to construct a good model
for the small unresolved scales, i.e. a model such that the (second kind) predictability of large
scales is no worse than the intrinsic (first kind) predictability of the true system. By means of
the FSLE analysis we have shown that with a suitable parametrization of the small scales, e.g.
the eddy-viscosity modelization in turbulence, the ability to predict the large scales is basically
the same as one has in the case of uncertainties of the same size on the initial conditions.
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Appendix. Parametrization of small scales

Typically, a realistic problem (e.g. turbulence) involves many interacting degrees of freedom
with different characteristic times. Let us indicate withz the state of the system under
consideration, with an evolution law

dz

dt
= F (z) F , z ∈ RN. (A1)

The dynamical variablesz can be split into two sets

z = (x,y) (A2)

wherex ∈ Rn andy ∈ Rm (N = n + m), with x andy being respectively, the ‘slow’ and
‘fast’ variables. The distinction between slow and fast variables is often largely arbitrary.

The evolution equation (A1) is divided into two blocks, the first one containing the
dynamics of the slow variables and the second one associated with the dynamics of the fast
variables:

dx

dt
= F1(x) + F2(x,y)

dy

dt
= F̃1(x,y) + F̃2(y).

(A3)

If one is only interested in the slow variables it is necessary to write an ‘effective’ equation
for x. As far as we know there is only one case for which it is simple to find the effective
equations forx. If the characteristic times of the fast variables are much smaller than those of
thex (adiabatic limit), one can write

y = 〈y〉 + η(t) (A4)

whereη is a Wiener process, i.e. a zero-mean Gaussian process with

〈ηi(t)ηj (t ′)〉 = 〈δy2
i 〉δij δ(t − t

′
). (A5)

Therefore, for the slow variables one obtains

dx

dt
= F1(x) + δF1(x) + δW (x,η) (A6)
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where δF1(x) = F2(x, 〈y〉) + δF2, δF2,j = 1
2

∑
i ∂

2F2,j /∂y
2
j 〈δy2

i 〉 and δWi =∑
i ∂F2,j /∂yj |〈y〉ηi(t). Basically, the slow variablesx obey a nonlinear Langevin equation.

Here the role of the fast degrees of freedom becomes relatively simple: they give small
changes to the driftF1→ F1+δF1, and a noise termδW (x,η). We remark that the validity of
the above argument is rather limited. Even if one has a large timescale separation, the statistics
of the fast variables can be very far from the Gaussian distribution. In particular, in a system
with feedback (̃F1 6= 0) one cannot model the fast variabley independently of the resolvedx.

In the generic situation the construction of the effective equation forx requires one
to follow phenomenological arguments which depend on the physical mechanism of the
particular problem. For example, for the Lorenz ’96 model discussed in section 3, where
F2,k(x,y) =

∑
j=1,J yj,k, we use the following procedure for the parametrization of the fast

variables and the building of the effective equation forx. Instead of assuming (A4) we mimic
the fast variables in terms of the slow ones:

y(t) = g(x(t)) = 〈y|x(t)〉 + η(t) (A7)

where〈|x〉 stands for the conditional average andη(t) is a noise term. Inserting (A7) into the
first equation of (A3) one obtains

dx

dt
= F1(x) + F2(x,y) = F1(x) + F2(x, 〈y|x〉) + δF2(x) (A8)

where

δF2,i =
∑
j,k

∂2F2,i

∂yj ∂yk

∣∣∣∣
y=〈y|x〉

〈ηjηk〉. (A9)

In the Lorenz ’96 model (10), because of the linear coupling between the different scales, the
termsδF2 are absent and one has a close model for the large-scale variables:

dx

dt
= F1(x) + F2(x, 〈y|x〉). (A10)

The ansatz (A7) is well verified in the numerical simulations. We have computed the
λTM(δ) by using a best fit forF2 and we have obtained a good reproduction of theλT T (δ) for
largeδ. In the Lorenz ’96 model (10), where the coupling between slow and fast variables is
practically linear, one has thatF2,k(x, 〈y|x〉) =

∑
j=1,J 〈yj,k|xk〉 ' νexk.

Now we will discuss the case of the shell model parametrization which pertains to the
general issue of the sub-grid modelization. The literature on this field and the related problems
(e.g. closure in fully developed turbulence) is enormous and we do not pretend to discuss
this field in detail here. Let us only recall the basic idea introduced over a century ago by
Boussinesq, and later developed further by Taylor, Prandtl and Heisenberg—to mention some
of the most notable names—for fully developed turbulence [25]. In a nutshell, the idea is
to mimic the energy flux from the large to the small scales (in our terms from slow to fast
variables) by an effective dissipation: the effect of the small scales on the large ones can be
modelled as an enhanced molecular viscosity.

By simple dimensional arguments one can argue that the effects of small scales can be
replaced by an effective viscosity at scalesr, given by

ν(e) ∼ rδv(r) (A11)

whereδv(r) is the velocity fluctuation on the scaler.
The above argument for the shell model (13) gives [24]

ν(e)n = κ
|un|
kn

(A12)
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whereκ ∼ O(1) is an empirical constant. From (A11) one could naively consider using a
dimensional argument́a la Kolmogorov to set a constant eddy viscosityν(e)n ∼ k

−4/3
n . In

this way one forgets the dynamics and this can cause numerical blow up. More sophisticated
arguments that do not include the dynamics lead to similar problems.

Let us remark that the parametrization (A12) is not exactly identical to those obtained by
closure approaches where the eddy viscosity is given in terms of averaged quantities. In our
case this would mean writing〈u2

n〉1/2 instead of|un| in (A12).
After this discussion it is easy to recognize that the parametrization in terms of conditional

averages introduced for the Lorenz ’96 model is,a posteriori, an eddy-viscosity model.
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