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We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers,
a model for many aquatic motile microorganisms. By means of extensive numerical
simulations of the Navier–Stokes equations at different Reynolds numbers, we
investigate preferential sampling and small-scale clustering as a function of the
swimming (stability and speed) and shape parameters, considering in particular the
limits of spherical and rod-like particles. While spherical swimmers preferentially
sample local downwelling flow, for elongated swimmers we observe a transition from
downwelling to upwelling regions at sufficiently high swimming speed. The spatial
distribution of both spherical and elongated swimmers is found to be fractal at small
scales in a wide range of swimming parameters. The direct comparison between
the different shapes shows that spherical swimmers are more clusterized at small
stability and speed numbers, while for large values of the parameters elongated cells
concentrate more. The relevance of our results for phytoplankton swimming in the
ocean is briefly discussed.

Key words: microorganism dynamics, nonlinear dynamical systems, turbulent flows

1. Introduction

Understanding the dynamical and statistical properties of self-propelled agents (such
as motile microorganisms, microrobots or phoretic particles) in a flow is key to a
range of fields encompassing aquatic ecology (Kiørboe 2008; Guasto, Rusconi &
Stocker 2012), biomedicine (Nelson, Kaliakatsos & Abbott 2010) and active matter
(Marchetti et al. 2013). Recently, microswimmers have gathered much attention
in virtue of their collective behaviour (Marchetti et al. 2013; Elgeti, Winkler &
Gompper 2015). However, in the presence of a background flow, as typical in natural
and artificial aquatic environments, the dynamics of microswimmers can be highly
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non-trivial even at the level of the single swimmer or for dilute (non-interacting)
suspensions. Indeed, complex behaviour can originate from the interplay between
swimming, advection, the fluid velocity gradients that act on the particles by changing
their direction of propulsion, and the possible presence of biases (such as chemotaxis,
gravi/gyrotaxis, phototaxis, etc.) affecting the swimming direction (for a review see,
for example, Guasto et al. 2012). For instance, Torney & Neufeld (2007, 2008) were
among the first to put forward the possibility of fractal clustering and non-trivial
mixing properties for elongated microswimmers, with or without phototaxis, in
Taylor–Green vortical flows. Rusconi, Guasto & Stocker (2014) found that cell
elongation is responsible for aggregation and transport suppression of bacteria in
shear flows due to Jeffery orbits (Jeffery 1922). Reduced transport and vortical
trapping were observed for spherical microswimmers in a chaotic flow (Khurana,
Blawzdziewicz & Ouellette 2011).

In this work we focus on gyrotactic swimmers in turbulent flows. Many motile
phytoplankton species are gyrotactic, i.e. they swim in the direction resulting from the
competition between stabilizing torque due to buoyancy/gravity and the shear-induced
viscous torque (Kessler 1985; Pedley & Kessler 1992). The stabilizing torque can
originate either from bottom heaviness or from a fore–rear asymmetry (Ten Hagen
et al. 2014; Sengupta, Carrara & Stocker 2017), which tend to keep the swimming
direction oriented upwards, favouring vertical migration towards well-lit waters near
the surface. Like other forms of biased motility, gyrotaxis can impinge the transport
properties and spatial distribution of swimming plankton. In both laminar and turbulent
pipe flows, gyrotaxis leads to peculiar transport properties with respect to passive
particles (Bearon, Bees & Croze 2012; Croze et al. 2013). In laminar flows, it
induces remarkable beam-like accumulations in downwelling pipe flows (Kessler
1985) and in vortical flows (Cencini et al. 2016), and high-concentration layers in
horizontal shear flows (Durham, Kessler & Stocker 2009; Santamaria et al. 2014). In
moderately turbulent flows, as in the oceans, gyrotaxis can generate intense microscale
fractal patchiness (Durham et al. 2013; Zhan et al. 2014; Fouxon & Leshansky
2015; Gustavsson et al. 2016) and, in strong turbulence, accumulation in vortical
regions (De Lillo et al. 2014). Moreover, gyrotactic cells in turbulence have been
found to preferentially sample specific flow regions (Durham et al. 2013; Fouxon
& Leshansky 2015; Gustavsson et al. 2016). Indeed, direct numerical simulations
(DNS) in both turbulent (multiscale) and stochastic (single-scale) flows, corroborated
by theoretical considerations, have shown that spherical gyrotactic cells preferentially
visit downwelling regions of the flow (Durham et al. 2013; Fouxon & Leshansky
2015; Gustavsson et al. 2016), which can hinder the upward vertical cell migration.
Gustavsson et al. (2016) also found a dependence on cell morphology in stochastic
flows: elongated swimming particles can preferentially sample either downwelling or
upwelling flow regions, depending on their swimming speed and stability. This is
rather intriguing since some gyrotactic cells can change their morphology and biasing
direction when exposed to turbulence (Sengupta et al. 2017) and in this way control
their motility. Moreover, Zhan et al. (2014) and Gustavsson et al. (2016) found that
turbulent suspensions of elongated gyrotactic cells are generally less clustered than
spherical ones, but for the regime in which gyrotaxis is very weak.

Here we aim at clarifying the differences in the dynamics of turbulent suspensions
of spherical and elongated gyrotactic cells by means of DNS. The rest of the paper
is organized as follows. In § 2, we present the model and the numerical procedure.
In §§ 3.1 and 3.2 we present our results on preferential sampling of the vertical
component of fluid velocity and on fractal clustering, respectively. We end in § 4 by
summarizing and discussing our findings.
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2. Model equations and previous results

Following Kessler (1985) and Pedley & Kessler (1992), we model gyrotactic
swimmers as axisymmetric ellipsoids swimming with constant speed vs in the
direction p (|p| = 1), along the axis of symmetry of the ellipsoid. Owing to their size
being typically smaller than the Kolmogorov scale and their density being very close
to that of the carrier fluid, the microswimmers behave as tracers if not for the motility.
Neglecting interactions between swimmers (as appropriate for dilute suspensions) and
stochastic reorientations, the evolution of the position, x, and orientation, p, of each
swimmers is ruled by the following equations:

ẋ = u(x, t) +�p, (2.1)

ṗ = 1
2 

[ẑ � (ẑ · p)p] + 1
2
! ⇥ p + ↵[Sp � (p · Sp)p], (2.2)

where u, ! = r ⇥ u and Sij = (@jui + @iuj)/2 are the fluid velocity, vorticity and the
rate of strain tensor at the swimmer’s position. The three terms on the right-hand
side of (2.2) are: the buoyancy/gravity torque tending to rotate the cell upwards
(along the vertical unit vector ẑ) with a characteristic time B; rotation due to vorticity
and strain rate. The latter, so-called Jeffery term (Jeffery 1922), is proportional to
↵ = (l2 � d2)/(l2 + d2) (with l the length of the cell, along p, and d its width)
and is absent for spherical cells (↵ = 0). In general �1 < ↵ < 1, with the extremes
corresponding to flat disks and rods, respectively. In what follows, we will consider
only ↵ > 0, thus restricting ourselves to the case of spherical or prolate cells, being
the typical shapes of microorganisms. We remark that in (2.2) we have not included
a rotational stochastic term (Hill & Häder 1997) due to the biological reorientation
of the swimming direction (Polin et al. 2009) since this effect is expected to be
negligible with respect the reorientation induced by the small-scale turbulent flow.

As for the fluid velocity field, u, we will consider moderately turbulent flows
described by the Navier–Stokes equation for incompressible fluids (r · u = 0)

@u

@t
+ u · ru = �rp + r2

u + f , (2.3)

where ⌫ is the kinematic viscosity and p the pressure rescaled by the fluid density.
The turbulent flow is maintained in a statistically stationary state by the volume force
f , which injects energy at rate ✏, statistically equal to the rate of dissipation. Based
on the flow properties one can define the usual small-scale parameters, namely the
Kolmogorov scale ⌘ = (⌫3/✏)1/4, time ⌧⌘ = (⌫/✏)1/2 and velocity u⌘ = (⌫✏)1/4. The
large dynamics can be parameterized in terms of the r.m.s. value of the velocity
urms = ph|u|2i/3 (with h· · ·i denoting ensemble average). In the following, physical
variables will be made dimensionless by rescaling spatial and temporal coordinates
with the Kolmogorov scale ⌘ and time ⌧⌘, respectively, and velocities with the
Kolmogorov velocity u⌘. Correspondingly, swimmer motion will be governed by the
dimensionless swimming number � = vs/u⌘ and stability number  = B/⌧⌘, while the
flow is parameterized in terms of the Taylor-scale Reynolds number Re� = urms�/⌫,
where �= p

15⌫/✏urms.
Based on the model equations (2.1), (2.2), recent numerical and theoretical works

have provided insights into the properties of clustering of gyrotactic swimmers in
both turbulent and chaotic flows (Durham et al. 2013; Zhan et al. 2014; Fouxon &
Leshansky 2015; Gustavsson et al. 2016). In particular, it was first shown in Durham
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et al. (2013) that spherical gyrotactic swimmers in turbulence can form fractal
clusters. A phenomenological argument for this goes as follows. In the limit of fast
orientation  ! 0, cells tend to swim upwards ( p ! ẑ) so that their trajectories would
approximately follow the effective velocity field v = u +� ẑ, which is incompressible,
r · v = 0, and thus they do not cluster. Also in the limit of strongly unstable cells,
 � 1, there would be no accumulation, since the swimming direction would be
essentially random. However, when  ⌧ 1 (and � ⌧ 1) a perturbative solution of
(2.2) suggests (in analogy to inertial particles in the limit of small Stokes number
(Balkovsky, Falkovich & Fouxon 2001; Bec 2003)) that the effective velocity field,
v = u + �p

⇤ with p

⇤ = ( !y, � !x, 1), is compressible with r · v = � �r2uz.
Hence, for  ⌧ 1, cells behave as tracers in a compressible velocity field, and evolve
onto a fractal attractor. On the basis of this argument, one concludes that cells will
preferentially sample downwelling portions of the flow, where uz < 0 (Durham et al.
2013) (see Fouxon & Leshansky 2015, for a refined derivation). The same conclusion
was obtained with a perturbative approach in a stochastic single-scale velocity field in
Gustavsson et al. (2016). In the latter paper, however, the authors consider the general
case of elongated swimmers, ↵ > 0. Analytical results and simulations of stochastic
model indicate that while preferential sampling of downwards velocities is typical
of the limit max(�,  ) ⌧ 1 for small-aspect-ratio swimmers, this is reversed for
↵ > ↵c = 3/5, i.e. sufficiently elongated swimmers concentrate in upwelling regions.
Furthermore, the inversion is predicted to be present only for � > �c( ), with a
critical swimming parameter decreasing with  .

2.1. Numerical simulations
The Navier–Stokes equations (2.3) are solved in a three-dimensional, periodic cubic
domain of size L = 2p by means of a parallel, fully dealiased pseudospectral code at
resolutions of 643, 2563 and 10243 grid points, corresponding to Re�= 21, 68 and 173.
A constant energy input is provided by a deterministic, large-scale forcing f acting
on modes with wavenumbers in the spherical shell 1 < |k| < 3. Time integration is
implemented by a second-order Runge–Kutta scheme with exact integration of the
dissipative term. Accuracy at small scales is guaranteed by ensuring that kmax⌘& 1.9
for all simulations.

In each run, the trajectories of up to 128 000 swimmers per parameter set are
integrated according to (2.1), (2.2). The Eulerian velocity is interpolated at the particle
positions by third-order polynomials. The derivatives needed for the calculation of
! and Sij are computed by using the derivatives of the interpolating polynomials,
thus ensuring that they are second-order accurate. For each Re� we have explored
a wide range of cells’ parameters, with  2 [0.1 : 50], � 2 [0.1 : 30] and shape
parameter ↵ = 0, 0.5, 1, thus considering up to 90 different types of swimmer per
simulation. Swimmers are initialized with uniform random positions x in the domain
and orientations p on the unit sphere. At stationarity, data are collected for several
configurations (120–200) separated by about half a large-scale eddy turnover time to
ensure statistical convergence.

3. Results

3.1. Preferential sampling of fluid velocities
The vertical displacement in the water column of a gyrotactic swimmer following
(2.1) can be affected by fluid transport even in a flow with vanishing average
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FIGURE 1. Preferential sampling of the vertical component of fluid velocity by gyrotactic,
rod-like swimmers (↵= 1). (a) Average vertical component of the fluid velocity measured
along cell trajectories. Curves are computed at Re�= 173. (b,c) Distributions of swimmers
for populations marked in (a) with  = 1, � = 5 (b) and  = 10, � = 20 (c) plotted
on a colour map of the vertical velocity uz. Slower (b) or faster (c) swimmers sample
preferentially regions with negative (blue) or positive (red) vertical velocity.

velocity. Indeed, although the Eulerian average of the fluid velocity vanishes, the
average swimmer velocity hvi = huiS + �hpziẑ depends on the mean value of u

computed along particle trajectories (notice that in the above expression symmetry
implies hpx,yi = 0). While for the horizontal components one has huxiS = huyiS = 0
for symmetry reasons, gravitaxis breaks the up–down symmetry so that one can
have huziS 6= 0 (Fouxon & Leshansky 2015). Since the largest swimming speeds of
motile algae are typically of the order of u⌘ or smaller and urms � u⌘, preferential
sampling of regions of upwards or downwards flow can in principle strongly enhance
or hinder the swimmer’s drift towards the surface. Figure 1(a) shows the average
value of the vertical component of the fluid velocity along swimmer trajectories huziS.
The different curves are computed for rod-like cells (↵ = 1) and huziS is plotted for
several values of  as a function of the swimming parameter, �. It is clear that slow
swimmers tend to preferentially sample downwards fluid velocities (figure 1b), while
faster ones (figure 1c) spend more time where uz > 0.

For a more quantitative analysis, we focus at first on small values of �. In this
limit the behaviour of the curves is consistent with what observed is in (Durham et al.
2013), in that the average fluid velocity seen by the cells is increasingly negative
as cell velocity grows. This behaviour has been discussed for a d-dimensional,
random, single-scale flow in Gustavsson et al. (2016), where it was predicted that
in the small-� limit, huziS / ��Gd(↵)K( ), where Gd(↵) = [d(1 � ↵) + 2]/d and
K( ) =  /(2 + 1). That prediction is remarkably verified in our simulations,
as shown in figure 2, where the average fluid velocity along the trajectories is
plotted for different values of the shape parameter ↵, showing that the factor due
to particle geometry Gd(↵) is indeed correct. When the shape parameter ↵ is fixed,
the dependence on  is also fairly well satisfied (see inset). A similar prediction
is confirmed also on the small-� properties of clustering as shown in figure 2(b),
which will be discussed in the next section. In general, we can also conclude that
the small-� behaviour of this observable is independent of Re�. Figure 3(a–c)
show the vertical fluid speed curves for fixed  at various Re�. Notice that in our
non-dimensional units, based on the Kolmogorov velocity, the curves collapse in the
small-� region for each value of  (see also Durham et al. 2013, for the case of
spherical cells).

856 R1-5

�
!(

 �
!1

45
4�

6#
!�

�8
%%

"$
���

(
(

(
 �

1�
2#

94
75

 !
#7

��
!#

5 
�.0

�1
44

#5
$$

���
	�

 �
�


 �
� 

��
��!

 �
�


�/
�%

��
��

��
1%

��
��

��
�	

	�
�$

C2
:5

�%
�%!

�%8
5�

,1
�

2#
94

75
�,

!#
5�

%5
#�

$�
!6

�C
$5

��1
D1

9�1
2�

5�
1%

�8
%%

"$
���

(
(

(
 �

1�
2#

94
75

 !
#7

��
!#

5�
%5

#�
$ 

�8
%%

"$
���

4!
9 !

#7
��

� 
��

��
�:6

�
 �

��
� 

�

�

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.767


M. Borgnino, G. Bo�etta, F. De Lillo and M. Cencini

101

100

10-1

10-2

10-3

101

100

-
¯u

z˘ S
/(

G
d(

å)
K(

Á)
)

101

(ÁÏ)2Cd(å)
100

Ï
10-1 10210110010-1

(ÁÏ)2

Á = 0.1 å = 0
Á = 0.5 å = 0
Á = 0.1 å = 0.5

Á = 0.5 å = 0.5
Á = 0.1 å = 1
Á = 0.5 å = 1

N 
¢

 (3
-

D
2)

N 
¢

 (3
-

D
2)

10-2

101

100

10-1

10-2

10-3

10-4

10110010-110-2

100

10-1

101

Á = 0.1
Á = 0.5
Á = 1

100

å = 0 å = 0.5 å = 1

(a) (b)

FIGURE 2. Small-� behaviour of preferential sampling of fluid velocities and small-scale
clustering, compared with the theoretical predictions in Gustavsson et al. (2016) (dashed
lines). (a) Vertical component of fluid velocity conditioned on swimmer trajectories for
different elongations as labelled at  = 0.1. Inset: same as main panel but for rods (↵= 1)
at different  . (b) Accumulation index N rescaled with the stochastic prediction. Inset: the
same curves without rescaling.
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FIGURE 3. Average of the vertical fluid velocity, huziS, along swimmer trajectories for rod-
like (↵= 1) cells as a function of � = vs/u⌘ (a–c), and of �L = vs/urms (d–f ) for different
Re�, as labelled in (a). Whereas the small-� behaviour in (a–c) rescales consistently, the
transition to preferential sampling of positive values of uz is better rescaled by �L.

We now consider larger values of the swimming velocity. As noted above, fast
swimming cells tend to preferentially sample regions of upwards flow. As shown
by figure 3, the critical speed �c of transition from downwelling to upwelling
regions (defined as the point at which huziS = 0) is smaller for larger values of  .
However, numerical results show that �c saturates to a finite value for large  . This
has profound implications for the statistics of velocity and velocity gradients along
particle trajectories. While the correlation time of gradients is of the order of ⌧⌘, the
time it takes for a swimmer to cross the correlation length of gradients, ⌘, is of the
order of ⌧� = ⌘/vs = ⌧⌘/�, so that � > 1 implies that the gradients correlation time
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FIGURE 4. Critical value of �L (main panel) and � (inset) for various Re� as a function
of  . Dashed line: theoretical asymptotic value of �L,c (see text).

as seen by a swimmer is ⌧corr = min(⌧�, ⌧⌘) = ⌧� (Fouxon & Leshansky 2015). As a
consequence, the preferential sampling of upwards velocities cannot be understood in
terms of a quasiequilibrium solution, at variance with the huziS < 0 case for spherical
particles. However, an even more important difference is revealed if the actual
observed values of �c are considered. Indeed, when huziS is plotted at fixed  upon
changing the extension of the inertial range with simulations at different resolutions,
one can see that �c increases with Re�, and the corresponding values of the swimming
velocity are of the order of (or larger than) the large-scale velocity of the flow urms.
Figure 3(d–f ) shows the huziS as a function of a large-scale swimming parameter
�L = vs/urms. In this parameterization, the critical values �L,c( ) are independent of
Re�. For large  , the critical �L appears to asymptotically converge from above to
�L,1 ⇡ 0.86, which can be obtained as the  � 1 limit of the analytical expression
in Gustavsson et al. (2016). This numerical result is summarized in figure 4 and
is consistent with a picture in which the transition to upwards velocity sampling is
essentially controlled by the integral scale of the flow.

The fact that the inversion in preferential sampling is controlled by the large-scale
velocity has not been noted before, to our knowledge. Indeed it can be observed only
if a sufficient separation between large and small scales is present in the velocity field.
It is therefore important to note that this scale separation effect is not in contradiction
to the stochastic results in Gustavsson et al. (2016), and indeed the asymptotic value
of the critical swimming parameter defined with respect to urms is in quantitative
agreement with the prediction found in the same paper (dashed line in figure 4). The
techniques adopted in that paper relied on a flow with a single scale, so that both
gradients and velocities have the same correlation times. It is remarkable that those
techniques are able to capture a qualitative behaviour that is observed in a multiscale
flow. The observation that those features, in high-Re� flows, are found for very large
swimming velocities (of the order of urms instead of u⌘) can perhaps suggest why the
qualitative agreement between stochastic theory and simulations is so good. Indeed,
for very fast swimmers, as observed above, fluid fields can be described as noise
with correlation time inversely proportional to the swimming speed, losing the details
of the multiscale structure of the flow.

856 R1-7

�
!(

 �
!1

45
4�

6#
!�

�8
%%

"$
���

(
(

(
 �

1�
2#

94
75

 !
#7

��
!#

5 
�.0

�1
44

#5
$$

���
	�

 �
�


 �
� 

��
��!

 �
�


�/
�%

��
��

��
1%

��
��

��
�	

	�
�$

C2
:5

�%
�%!

�%8
5�

,1
�

2#
94

75
�,

!#
5�

%5
#�

$�
!6

�C
$5

��1
D1

9�1
2�

5�
1%

�8
%%

"$
���

(
(

(
 �

1�
2#

94
75

 !
#7

��
!#

5�
%5

#�
$ 

�8
%%

"$
���

4!
9 !

#7
��

� 
��

��
�:6

�
 �

��
� 

�

�

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.767


M. Borgnino, G. Bo�etta, F. De Lillo and M. Cencini

3.2. Fractal clustering
We now focus on the small-scale, fractal clustering properties of gyrotactic suspensions
by varying the shape parameter, ↵, with emphasis on the spherical (↵ = 0) and
rod-like (↵ = 1) limits. We start by considering the limit of stable ( ⌧ 1) and
slowly swimming (� ⌧ 1) cells.

In such limit, the perturbative approach originally developed in Durham et al.
(2013) for spherical cells (see § 2) can be extended to generic shapes by imposing
stationarity in (2.2) (Gustavsson et al. 2016). At the first order in  one obtains that
gyrotactic cells behave as tracers in an effective velocity field v

ẋ = v = u + �p

⇤, with p

⇤ = [ (!y + 2↵S13), (�!x + 2↵S23), 1]. (3.1)

The resulting velocity field, v, is compressible with divergence

r · v = �� [(1 + ↵)@2
z uz + (1 � ↵)(@2

x + @2
y )uz]. (3.2)

For rods, this expression reduces to r · v = �2� @2
z uz, while for spheres it gives

r · v = �� r2uz. Tracers advected by a weakly compressible flow field v(x, t) form
clusters of fractal codimension 3 � D ⇠hr · viS (Falkovich, Fouxon & Stepanov 2002).
Thus one can infer that swimmers should form clusters with codimension 3 � D ⇠
(� )2. For a generic ↵, in a d-dimensional stochastic Gaussian flow hr · viS can be
computed exactly at first order of a perturbative approach based on a Kubo expansion
(Gustavsson et al. 2016), obtaining the prediction

3 � D ⇠ (� )2Cd(↵) [Cd(↵) = [(d + 2)(d + 4) � 2d(d + 4)↵ + (4 + 2d + d2)↵2]/d].
(3.3)

We measured the fractal dimension of the clusters in terms of the correlation
dimension, D2, ruling the small-scale scaling behaviour of the probability to find a
pair of cells with distance less than r, i.e. p2(r) ⇠ rD2 when r ! 0. We estimated
D2 from the local slopes of such probability. When D2 ⇡ 3, as expected in the
limit  , � ⌧ 1 here considered, this kind of measure is affected by large errors,
so we also measured the accumulation index N which is obtained as follows. The
volume is divided in cubes of side `, and we count the average number of particles
in such cubes, hni`, and the standard deviation, � 2 = hn2i` � hni2

`. Then we define
N = (� � �P)/hni`, where �P =phni` is the standard deviation of a Poissonian process
having the same mean number of particles. As discussed in Durham et al. (2013), one
can show that if ` is small enough (here we have chosen `⇡ 2⌘) then N / 3 � D2.

In figure 2(b) we show N as a function of ( �)2Cd(↵) for different values of  ,�
and ↵ = 0, 1/2, 1. We observe a fair collapse of the data (compare with the inset
where the geometric constant Cd(↵) is removed) onto a curve that displays a linear
behaviour for small values of the abscissa, as predicted by (3.3), providing again (see
also the discussion of figure 2a) strong evidence that the first-order Kubo expansion of
Gustavsson et al. (2016) reproduces the small- and small-� limits of gyrotactic cells
also in turbulent multiscale flows. We observe that the linear limiting behaviour seems
to be more persistent for the spherical shapes. Similarly to inertial particles, which
display the maximal clustering for Stokes number of order 1 (Bec 2003), gyrotactic
cells also have a more pronounced clustering for  ⇠ 1 (Durham et al. 2013). Zhan
et al. (2014) showed that spherical cells are generally more clustered than elongated
swimmers, except for very large  . In figure 5 we compare vis a vis the behaviour of
D2 (estimated from the local slopes of p2(r)) for spherical (↵= 0) and rod-like (↵= 1)
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FIGURE 5. Correlation dimension of clusters for  = 0.5 (a), 1.0 (b) and 10 (c) as a
function of the swimming parameter �. Spherical swimmers (↵ = 0) concentrate more
than elongated cells (in this case, ideal rods) for small values of  (a), whereas rod-like
swimmers maintain observable clustering even for large  (c). For intermediate values of
 , slow (fast) elongated swimmers cluster less (more) than spherical ones (b).

as a function of the swimming number � for different values of  > 1. By comparing
figure 5(a,c), it is clear that spherical cells cluster more than elongated ones when  
is small enough, while the opposite is true for unstable cells  �1. The latter limiting
behaviour can be explained by noticing that at  ! 1 the dynamics of (2.1)–(2.2)
in the (x, p)-phase space has an average volume contraction rate equal to �↵(d + 2)
h p · S piS, which is identically zero for spherical cells. In other terms, the dynamics
of spherical cells with large  preserves volumes in phase space, and so does its
projection in position space (i.e. D2 = 3), while elongated swimmers obey a dissipative
dynamics which leads to fractal clustering. For intermediate values of  (figure 5b)
a non-trivial role is played by the swimming speed: slow spherical swimmers cluster
more than elongated ones, but the opposite is true for fast swimmers.

4. Conclusions and discussion

A systematic study of the statistical properties of gyrotactic swimmers, on varying
their shape (from spherical to rod-like) and other cell parameters, in realistic turbulent
flows has been presented. In particular, we focused on the characterization of their
aggregation in clusters and preferential sampling of the vertical component of the
fluid velocity field. The first property is relevant to many biological processes, such
as reproduction and predation (Kiørboe 2008), while the second has an impact on
the vertical migration of phytoplankton cells. The main conclusions are as follows:
(i) Sufficiently slow swimmers (with swimming speeds vs . u⌘), independently of
their shape, always sample downwelling regions, the effect being maximal for non-
dimensional reorientation times,  , of order 1 and increasing with the swimming
speed. (ii) Fast elongated swimmers can sample upwelling regions (thus acquiring an
extra vertical migration speed), whereas this behaviour is absent for spherical cells
(as previously shown in Durham et al. (2013), Gustavsson et al. (2016) and confirmed
here by simulations at large �, not shown). Simulations at different Reynolds numbers
show that the transition from downwelling to upwelling regions is controlled by the
large-scale velocity, and thus requires vs & urms. (iii) Both spherical and elongated
cells form fractal aggregates, which are more clustered for spherical (elongated) cells
in the regime of fast (slow) reorientation. For intermediate reorientation, the relative
strength of clustering depends on the swimming speed. (iv) We provided evidence that
some analytical results derived by Gustavsson et al. (2016) for a stochastic flow are
qualitatively in agreement with numerical data obtained from fully resolved turbulent
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flows. The agreement becomes quantitative in the regime of slow swimming (figure 2).
This is remarkable since the analytical results were obtained by a first-order Kubo
expansion for a single-scale flow.

Our results clarify several aspects of the dynamics and the statistics of gyrotactic
suspensions and are of particular importance for potential application to swimming
phytoplankton, also in virtue of recent evidence of possible morphological adaptations
(Sengupta et al. 2017). Most gyrotactic microorganisms have reorientation times in the
range 2–10 s, with swimming speeds around 100–300 µm s�1 and cell sizes around
10 µm (Guasto, Johnson & Gollub 2010; Harvey, Menden-Deuer & Rynearson
2015). Typical values for the energy dissipation rate in the ocean are in the range
✏ ⇠ 10�4–10�8 (Thorpe 2007) and therefore phytoplankton are able to explore the
parameter range 0.1. . 20–40 and 0.1.�. 3–5 in which small-scale clustering is
expected for both spherical and elongated cells. In contrast, given that the large-scale
velocity is typically of order cm s�1 or m s�1, it is unlikely that phytoplankton cells
are able to reach sufficiently high �L in order to exploit preferential concentration
in upwelling regions. This regime could be in principle accessible to faster natural
or artificial swimmers, as long as they are smaller than the Kolmogorov scale, as
required for the validity of (2.1).
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