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3INFM-CNR, SMC Dept. of Physics, Università ‘La Sapienza’, P.zzle A. Moro 2, and ISC-CNR, Via dei

Taurini 19, 00185 Roma, Italy
4ISAC-CNR, Via Fosso del Cavaliere 100, 00133 Rome and INFN, Sez. Lecce, 73100 Lecce, Italy

5Department of Physics and Department of Mathematics and Computer Science, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands

6Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137, 00161 Roma, Italy

(International Collaboration for Turbulence Research)

(Received 25 June 2009; revised 9 December 2009; accepted 23 December 2009)

The statistics of velocity differences between pairs of heavy inertial point particles
suspended in an incompressible turbulent flow is studied and found to be
extremely intermittent. The problem is particularly relevant to the estimation of
the efficiency of collisions among heavy particles in turbulence. We found that when
particles are separated by distances within the dissipative subrange, the competition
between regions with quiet regular velocity distributions and regions where very
close particles have very different velocities (caustics) leads to a quasi bi-fractal
behaviour of the particle velocity structure functions. Contrastingly, we show that for
particles separated by inertial-range distances, the velocity-difference statistics can be
characterized in terms of a local roughness exponent, which is a function of the scale-
dependent particle Stokes number only. Results are obtained from high-resolution
direct numerical simulations up to 20483 collocation points and with millions of
particles for each Stokes number.

1. Introduction
Two effects have recently been singled out to explain the speed-up of collisions

between small finite-size particles suspended in turbulent flows (see Sundaram &
Collins 1997; Falkovich, Fouxon & Stepanov 2002; Shaw 2003). The first is preferential
concentration, which is the development of strong inhomogeneities in their spatial
distribution (see figure 1a) (Zhou, Wexler & Wang 1998, 2001; Reade & Collins 2000;
Goto & Vassilicos 2008). The second is the formation of fold caustics (a phenomenon
also called the sling effect), which results in high probabilities that very close particles
exhibit large relative velocities (see figure 1b) (Bec et al. 2005; Wilkinson & Mehlig
2005; Wilkinson, Mehlig & Bezuglyy 2006; Falkovich & Pumir 2007; Olla 2008).
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(a) (b)

Figure 1. (a) Snapshot of the position of particles for St = 2 in a slice of size 5η×100η×100η
for Reλ ≈ 400. (b) Particle velocity field in the same slice for a larger Stokes, St = 20, showing
the existence of regions where particles have different velocities (highlighted by grey and black
arrows, respectively).

Improving the collision kernels used in kinetic models for atmospheric physics,
astrophysics and engineering requires quantifying precisely the individual contribution
of these two effects and, in particular, to what extent turbulence might affect them,
i.e. how they depend on the Taylor-scale Reynolds number Reλ of the flow (see e.g.
Derevyanko, Falkovich & Turitsyn 2008; Xue, Wang & Grabowski 2008).

We consider suspensions of small, heavy and dilute particles, neglecting gravity.
As observed by Ayala et al. (2008) for dynamics of water droplets in warm clouds,
gravitational settling is found to dominate the statistics of velocity differences between
particles. However, this effect acts mainly between particles of different sizes that fall
at different speeds. Present results could apply, for example, to early stage of cumulus
cloud evolution during which the droplets are almost monodisperse and might play
an important role in explaining the size spectral broadening observed in clouds.

We found two main results. First, we show for the first time that velocity differences
between two particles enjoy a very intermittent distribution for separation scales
inside the viscous dissipative range, with saturation of the scaling exponents for high-
order moments of separations. Second, in the inertial range, velocity differences can
be characterized in terms of a scale-dependent Stokes number, measuring the ratio
between the particle response time and the eddy turnover time at the considered scale.
Both results show the highly non-trivial statistics of heavy particle distribution and
velocities in turbulent flows. Before detailing the results, we introduce the physical
and the numerical set-up of our study.

We consider point particles that are simply dragged by viscous forces and each
individual trajectory X(t) solves the equation:

Ẍ = −1

τ

[
Ẋ − u(X, t)

]
, (1.1)

where dots denote time derivatives, u the fluid velocity field, solution of the
incompressible Navier–Stokes equation and τ = a2(2ρp + ρf )/(9νρf ) the particle
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response time, also called Stokes time; where ρp and ρf are the particle and fluid
densities, respectively, a is the particle radius and ν is the fluid kinematic viscosity
(see Toschi & Bodenschatz 2009 for a recent review). The importance of inertia in
the particle dynamics is quantified by the Stokes number St = τ/τη, where τη is the
dissipative Kolmogorov time scale. Following Reade & Collins (2000), the collision
rates between particles are evaluated using the ghost-particle approach, which assumes
that particles can occupy any point of space independently of the positions of others.
This approximation is valid in the asymptotics of very diluted suspensions, and has
the advantage of relying on stationary dynamical statistics: the geometrical collision
rate is then determined by the value at r = 2a of the approaching rate (see Bec et al.
2005):

κ(r; St) = −
〈
Ṙ

∣∣ R=r and Ṙ � 0
〉

p2(r; St) . (1.2)

Here R denotes the distance between two particles with Stokes number St , and
p2(r; St) is the probability density to find two particles at separation r . The average
is performed over time and particle pairs, with the condition to be separated by a
distance r and to approach each other. Clearly the behaviour of κ(r; St) prescribes
the dependence of the collision rate upon the particle attributes (size and mass density
contrast). Caustics and preferential concentration (figure 1) intricately appear in (1.2)
affecting the conditional average of the velocity difference Ṙ and the r-dependence
of p2, respectively. In the dissipative range (r � η),

p2(r; St) ∝ rD2(St)−1,

where D2(St) ∈ [0, d] is the correlation dimension of the particle distribution in d

dimensions (see for instance Grassberger 1983) and non-trivially depends on the
Stokes number as shown by Bec et al. (2007). We remark that in the literature (see
e.g. Reade & Collins 2000) the contribution of preferential concentration to collisions
is often accounted in terms of the radial distribution function g(r), which can be
expressed as the ratio between the actual number of particles inside an infinitesimally
thin shell of radius r centred on a given particle and the number that would be
expected if the particles were uniformly distributed. The enhancement of the collision
probability due to preferential concentration is typically associated to the divergence
of g(r) for r � η (see Reade & Collins 2000; Zhou, Wexler & Wang 2001). It is
not difficult to see that the probability density p2(r; St) in (1.2) is straightforwardly
related to the radial distribution function. In particular, the small-scale behaviour of
the radial distribution function is linked to that of p2, and one has that g(r) ∼ rD2(St)−d .
Therefore, for particles uniformly distributed, D2(St) = d , so that g(r) ∼ O(1). On the
contrary, when D2(St) <d , the signature of particle clustering, g(r) diverges as r → 0.

We focus here on the velocity contribution to the approaching rate by studying
the behaviour as a function of the separation r of the longitudinal particle velocity
structure functions

Sp(r; St) =
〈

|Ṙ|p
∣∣ R=r

〉
. (1.3)

The choice of defining structure functions with absolute values is motivated by
the definition of the collision kernel (via the approaching rate). When focusing
on the behaviour of κ(r) as a function of the separation r , scaling properties are
not affected when performing averages over positive or negative velocities. Indeed,
similarly to fluid velocity increments, an asymmetry in the distribution of velocity
difference is observed; however, we checked that such a skewness does not affect the
behaviour of moments as a function of the spatial scale. For this reason, one can
therefore estimate: κ(r) ∝ rD2(St)−1S1(r; St) (see Bec et al. 2005). Evaluating Sp(r; St)
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N Reλ η dx ε ν τη dt

Run A 512 185 1 × 10−2 1 × 10−2 0.9 2 × 10−3 4.7 × 10−2 4 × 10−4

Run B 2048 400 3 × 10−3 3 × 10−3 0.9 3.5 × 10−4 2 × 10−2 1.2 × 10−4

Table 1. Eulerian and Lagrangian parameters for the two runs analysed in the text. N : number
of grid points per spatial direction; Reλ: Taylor-scale Reynolds number; η: Kolmogorov
dissipative scale; dx: grid spacing; τη =

√
ν/ε: Kolmogorov dissipative time scale, ε: energy

dissipation; ν: kinematic viscosity; dt: temporal discretization. Total number of particle for
each Stokes value is 7.5 × 106 for run A and ∼108 for run B. The Navier–Stokes equations
are solved on a cubic grid of size N3 with periodic boundary conditions. Energy is injected by
keeping constant the spectral content of the two smallest wavenumber shells (Chen et al. 1993).
The viscosity is chosen so to have a Kolmogorov length scale η ≈ dx. This conservative choice
yields to Reynolds numbers smaller than other direct numerical simulations at comparable
resolution (see e.g. Gotoh, Fukayama & Nakano 2002; Yeung, Pope & Sawford 2006; Ishihara,
Gotoh & Kaneda 2009). On the other hand, it ensures a good resolution of the small-scale
velocity dynamics. We use a fully de-aliased pseudo-spectral algorithm with second-order
Adams–Bashforth time-stepping (for details see Bec et al. 2006). Particle dynamics is evolved
with a time steps from 10 to 1000 times smaller than the Stokes time, leading to an accurate
resolution of the particle trajectories. Tri-linear interpolation is used to determine the value of
the velocity field at the particle position. The high spatial Eulerian resolution ensure a smooth
differentiable velocity field. Some raw data of particle trajectories are freely available from the
iCFDdatabase (http://cfd.cineca.it).

for values of p different from 1, besides providing a more complete characterization
of the velocity statistics, allows one to account also for fluctuations of the local
approaching rate, which can vary significantly from place to place in the flow. High-
order statistics give crucial information on the mechanisms for such fluctuations and
are thus a pre-requisite for determining the validity of mean-field kinetic models used
in application fields. In the limit of small inertia, the particle dynamics approaches that
of tracers and consequently the velocity difference Ṙ is essentially coincident with the
fluid longitudinal increment over a separation R. Conversely, when St → ∞, particles
move ballistically in the flow with uncorrelated velocities and the structure functions
Sp(r; St) become independent of r . For intermediate values of the Stokes number,
one expects a non-trivial behaviour of Sp as a function of r and St . Data analysed
in this study come from direct numerical simulations up to Reλ ≈ 400 (see table 1 for
details). Figure 2 shows the behaviour of the second-order structure function S2(r; St)
for two different values of the carrier flow Reynolds number. One distinguishes
different regimes, depending whether r is within the dissipative or inertial range of
the turbulent carrier flow. While the dissipative-range behaviour directly relates to
inter-particle collisions, the inertial-range behaviour has important implications in
general on the relative dispersion of particles in turbulent flow as shown by Bec et al.
(2009), and for pollution models in particular. In the sequel we investigate these two
regimes separately.

2. Dissipative range
In the dissipative range, the structure functions display a power-law behaviour

Sp(r; St) ∝ rξp(St).

The two asymptotics of weak and strong inertia imply that ξp(St) � p for St � 1 and
ξp(St) → 0 for St → ∞. For intermediate values of the Stokes number, p �→ ξp(St) is
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Figure 2. Second-order longitudinal velocity structure function for particles with various
Stokes numbers and for two Reynolds numbers. Velocity increments are normalized with the
fluid velocity at the Kolmgorov scale. The straight dashed lines correspond to the expected
smooth scaling in the dissipative range, ∼r2, and the expected Kolmogorov scaling in the
inertial range, ∼r2/3.
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Figure 3. Dissipative-range scaling exponent, ξ1(St), versus the Stokes number St for two
values of Reλ. Inset: correlation dimension D2(St) as a function of St .

a convex function of the order p with values in [0, p]. Figure 3 shows the first-order
exponent ξ1(St) as a function of the Stokes number. One can clearly observe that for
St = O(1), the exponent ξ1(St) takes non-trivial values spanning the whole interval
[0, 1]. The dependence of the exponent upon Reλ in the range spanned by our two
simulations is very weak, if any.

At first glance the continuous variation of the exponent ξ1(St) from 1 to 0 at
increasing St seems inconsistent with a naive picture of the role of caustics in velocity
statistics. Fold caustics are a part of catastrophe theory (Arnold, Shandarin &
Zel’dovich 1982); they occur when fast particles catch up with slower ones to create
regions where particles with different velocities can be found at the same spatial
location as seen in figure 1(b). If particles conserve their velocity and move ballistically,
such caustics will extend over the whole domain; whence the analogy with caustics
formed by light rays as detailed in Falkovich et al. (2002), Wilkinson & Mehlig (2005)
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Figure 4. Scaling exponents ξp(St) of the particle velocity structure functions Sp(r) for various
St and Reλ ≈ 400. Inset: saturation exponents ξ∞(St) as a function of St for two values of Reλ;
the dashed line represents a fit of the form ∝ ln(7/St). Exponents are obtained by measuring
the mean logarithmic derivative of Sp(r) in 0.2 � (r/η) � 2; errors correspond to the largest
deviations observed in the fitting range. Moments of higher orders (not represented here to
lighten the figure) were also computed; their behaviour confirms saturation of the exponents
to a limiting finite value.

and Wilkinson et al. (2006). The typical velocity difference between two particles
becomes independent of their distance, meaning that structure functions tend to a
constant as r → 0, and thus ξp(St) = 0, for any value of p. However, there are two clear
reasons why this continuous-field picture may fail. First, because of their dissipative
dynamics, particles concentrate on dynamical attractors in the position-velocity phase
space (Bec et al. 2005). Such sets are fractal and correlated with the fluid and lead to
the formation of caustics of various strength with non-trivial probabilities. Second,
as the particle velocity relaxes to the fluid velocity, the spatio-temporal extent of such
caustics may also have complex statistical properties.

To better quantify the contribution from caustics, we extend our investigation to the
particle velocity scaling exponents in the dissipative range ξp(St) with orders p other
than 1, shown in figure 4 for various values of the Stokes number. At low orders,
the exponents are almost tangent to the line ξp(St) = p while, at large orders, they
saturate to an asymptotic value ξ∞(St), monotonically decreasing with St as shown
in the inset. The crossover between these two regimes shifts to low orders when
increasing the Stokes number, leading to a less and less sharp transition. Numerical
data suggests for the limiting saturation exponent:

ξ∞(St) ∝ ln(7/St) for St � 7,

ξ∞(St) � 0 for St � 7.

}
(2.1)

Let us notice that critical Stokes number value for which ξ∞ ≈ 0, i.e. St∗ = 7, is very
close to that for which D2(St) ≈ 3 (see inset of figure 3). As discussed by Derevyanko
et al. (2007) a saturation of D2(St) to the space dimension is indeed expected for
St values at which caustics become dominating. In this respect, we also notice that
the saturation exponent ξ∞(St) can be interpreted as the codimension of large fold
caustics associated to order-unity velocity jumps. Indeed, such caustics contribute to
the structure function Sp(r; St) a term of the form Vp P (r) where Vp is the pth-order
moment of the velocity difference inside the caustics and P (r) is the probability
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of having such a caustic present in a box of size r . The saturation of the scaling
exponents suggests that P (r) ∝ rξ∞(St), so that D(c) ≡ 3 − ξ∞(St) is the (statistical)
Hausdorff dimension of the set of caustics.

At smaller orders, the statistics is dominated by other events for which one can
figure out two conceivable scenarios. A first possibility is that caustics distribution
spans all possible sizes with non-trivial codimensions, i.e. is a multi-fractal. In this
case they affect all orders and give rise to multi-scaling and to a non-trivial behaviour
of the exponents ξp(St) as a function of p, before the saturation (Celani et al. 2000).
The alternative possibility is that the caustics are randomly distributed with a typical
size and dominate the velocity statistics at large moments only, while small orders are
controlled by the smooth regions of the particle velocity. In that case the structure
function would display a bi-fractal behaviour similar to that present in random
solutions to the Burgers equation (see e.g. Bec & Khanin 2007), namely

ξp(St) = p if p � ξ∞(St),

ξp(St) = ξ∞(St) if p � ξ∞(St).

}
(2.2)

As seen from figure 4, the measured exponents are very close to the bi-fractal
behaviour. The observed deviations could be due to a real small multi-fractal
component or to artifacts due to the presence of subleading terms or logarithmic
corrections as shown by Biferale et al. (2004) and Mitra et al. (2005). Note that
deviations from a bi-fractal behaviour seem very strong at large Stokes numbers,
suggesting a softer distinction between smooth regions and caustics. However, the
low values of the exponents in this asymptotics make even more difficult the estimation
of subleading terms.

Numerical observations give strong evidence in favour of a saturation of the
scaling exponents ξp at large orders. This suggests that caustics, while randomly
distributed in space, have a typical velocity amplitude, which is entailed in the
finiteness of the moments Vp introduced above. This ‘size of caustics’ depends of
course on particle inertia, and thus on the Stokes number. Such a dependence is not
visible when investigating the exponents ξp as a function of St , but can however be
estimated through the asymptotics of weak and strong particle inertia. When St � 1,
the relaxation of particles dynamics is so fast that caustics never develop except at
locations where the fluid velocity gradient takes extreme values, thus leading to large
velocity differences. Conversely, when St � 1, caustics fill the whole space but, as
shown in Abrahamson (1975), particles individual velocities decrease as St−1/2 and
caustics amplitude becomes very small. The contribution of caustics amplitude to the
approaching rate thus acts to compensate the size effect observed in the ξ1 dependence
on St . This implies that for a fixed (large) density ratio ρp/ρf there exists an optimal
particle size a such that (a/η)2 = O(ρf /ρp) (i.e. St = O(1)), for which the monodisperse
collision rate attains a maximum.

3. Inertial range
We finally turn to the behaviour of the velocity structure function for separations

within the inertial range of turbulence, i.e. for η � r � L. As seen from figure 2,
particle velocity structure functions recover the fluid ones when r becomes very large.
Indeed as r increases the associated eddy turnover time grows as r2/3 (where we used
the Kolmogorov 1941 scaling (K41)) so that the effective strength of inertia reduces.
Similarly to random self-similar carrier flows (see Bec et al. 2008), this effect can be
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Figure 5. First-order local exponent ξ̂1(r) as a function of the local Stokes number Ŝt(r) for
Reλ ≈ 400. The horizontal dashed line represents tracers K41 expectation.

put on a quantitative ground in terms of a scale-dependent Stokes number,

Ŝt(r) = τ/(ε−1/3r2/3), (3.1)

defined as the ratio between the particle response time and the turnover time associated
to the scale r , where ε denotes the mean dissipation rate of kinetic energy. We check
whether the local scaling exponent

ξ̂p(r; τ ) ≡ (d ln Sp(r; St))/(d ln r)

does depend on Ŝt(r) only, as observed in random self-similar flows by Bec et al.
(2008). Figure 5 shows a good collapse of the values of ξ̂1(r, τ ) associated to various
τ and of r , once represented as a function of Ŝt(r). Moreover, the curve ξ̂1(Ŝt(r)) has
a shape qualitatively very similar to that of ξ1(St) observed in the dissipative range
and shown in figure 3, this fact is relevant to heavy particle dispersion in turbulent
flows (see e.g. Bec et al. 2009). Let us stress that data corresponding to small Ŝt(r) in
figure 5 show deviations from the K41 scaling that are similar to those expected for
tracers-like statistics.

4. Concluding remarks
To summarize, we have presented high-resolution direct numerical simulations

of heavy particles evolution in homogeneous isotropic turbulence. We have studied
both small-scales and inertial-range distribution of velocity differences between two
particles; the former being relevant to the development of models for the collision
kernel. We have found strong evidences of a highly intermittent distribution of
caustics, leading to a quasi bi-fractal law for the scaling exponents of moments
of velocity increments. The inertial-range statistics is governed by a scale-dependent
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Stokes number, built in terms of the particle response time and of the scale-dependent
eddy turn over time of the underlying flow. Both results may be crucial for a correct
modelling of particle–particle interactions in real flows. In particular, the strong
intermittency shown by the velocity increments in the viscous subrange suggests the
importance of including fluctuations in the modelling of the collision kernel for large
Stokes numbers.

We have estimated here collision rates in the framework of the ‘ghost particles’
approximation. This means that we let particle overlap whenever they reach a distance
smaller than the sum of their radii. This assumption pertains to the asymptotics of
very dilute suspensions, where the typical time between two successive collisions of
a given particle is much longer than the relaxation time of its dynamics towards
a statistically stationary regime. This approach has the advantage that all results
discussed here are independent of the particle radii (except, of course, through the
Stokes number), of the particle number density and of the type of collisions they
experience. The motivation of studying such an asymptotic regime is to highlight
universal mechanisms that are responsible for an increase of collisions rates due to
particle inertia.

Finally, it is worth stressing that up to now, the design of efficient and realistic two-
fluid models has been slowed down by the intricate behaviour of particle velocities
that was studied in details here. The observed intermittency explains the difficulty
of projecting the particle phase-space dynamics in order to construct a synthetic
velocity field that advects the particles. Actually such concerns extend to the study of
conditional distributions or the reduction of dimensionality in a much broader range
of dissipative dynamical systems.

This study benefited from fruitful discussions with L. Collins, G. Falkovich,
B. Mehlig, L.-P. Wang and M. Wilkinson. J. Bec and A. Lanotte acknowledge
support from NSF under grant No. PHY05 51164 for their stay at the Kavli Institute
for Theoretical Physics in the framework of the 2008 ‘Physics of Climate Change’
program. Part of this work was supported by ANR under grant No. BLAN07-
1 192604. Simulations were performed at CASPUR and CINECA (Italy), and in the
framework of the DEISA Extreme Computing Initiative supported by the DEISA
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