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The problem of front propagation in a stirred medium is addressed in the case of cellular flows in
three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known
that a consequence of stirring is the enhancement of front speed with respect to the nonstirred case.
By means of numerical simulations and theoretical arguments we describe the behavior of front
speed as a function of the stirring intensity,U. For slow reaction, the front propagates with a speed
proportional toU1/4, conversely for fast reaction the front speed is proportional toU3/4. In the
geometrical optics limit, the front speed asymptotically behaves asU/ ln U. © 2002 American
Institute of Physics.@DOI: 10.1063/1.1457467#
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Front propagation in a stirred medium is an important
problem in a number of fields ranging from combustion
to plankton dynamics. For a realistic study of such a class
of problems one has to take into account the modification
of the advecting flow induced by the reaction, e.g., in
combustion. However, many features can be understood
by neglecting the back-reaction on the velocity field. The
problem addressed here is the enhancement of the fron
speed induced by a certain class of flows. In particular,
we consider front propagation in a two dimensional lami-
nar flow with a stationary vortical structure in different
regimes, namely slow reaction, fast reaction and geo
metrical optics limit. This last limit corresponds to a very
sharp front propagating as an optical front, i.e., accord-
ing to the Huygens principle. We provide predictions on
the dependence of the front speed on the flow intensity
which are confirmed by numerical simulations.

I. INTRODUCTION

The study of front propagation of a stable phase into
unstable one encompasses several issues of great intere1 as
flame propagation in gases,2 population dynamics of biologi-
cal communities~plankton in oceans!3 and chemical reac
tions in liquids.4 A common feature of all these phenomena
that they take place in a strongly deformable medium suc
a fluid. The interplay among transport, diffusion and react
is therefore a crucial problem with several open issues~e.g.,
for questions concerning combustion, see Ref. 5!.

In the most compact model of front propagation the st
of the system is described by a single scalar fieldu(r ,t),
which represents the concentration of products. The fielu
vanishes in the regions filled with fresh material~the un-
stable phase!, equals unity where only inert products are le
~the stable phase! and takes intermediate values wherev
reactants and products coexist, i.e., in the region where
duction takes place. Here we assume that the concentra
4811054-1500/2002/12(2)/481/8/$19.00
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of chemicals does not modify the underlying flow. Therefo
in the following, we consider the velocity field as given. Th
approximation, hardly tenable in the context of flame prop
gation in gases, is rather appropriate for chemical fr
propagation in some liquid solutions.2,5–7 Under these sim-
plifying assumptions, the evolution ofu is described by

] tu1u•“u5DDu1
1

t
f ~u!, ~1!

where the second term on the lhs accounts for the trans
by an incompressible velocity field. On the rhs the first te
describes molecular diffusion and the second one descr
the production process with time scalet. We will first con-
sider a production term of Fischer–Kolmogorov
Petrovskii–Piskunov8 ~FKPP! type, i.e., a functionf (u) con-
vex @ f 9(u),0# and positive in the interval~0,1!, vanishing
at its extremes, andf 8(0)51. Here we takef (u)5u(1
2u). It is also of interest to consider a production term
the form of the Arrhenius law,f (u)5(12u)•exp(2uc /u),
whereuc is the activation concentration. The latter choice
more pertinent to the study of flames and/or chemi
reactions.6,7

Until now we did not specify any details of the velocit
field. In many engineering applicationsu is turbulent. In this
article we investigate front propagation in laminar flow
which, albeit simpler than turbulent ones, show remarka
qualitative similarities with more complex flows.9 Specifi-
cally, we consider a two dimensional stationary incompre
ible flow with cellular structure~see also Refs. 10–12! u
5(2]yc,]xc) with the streamfunction13

c~x,y!5
UL

2p
sinS 2px

L D sinS 2py

L D . ~2!

We consideredL-periodic boundary conditions iny and an
infinite extent along thex-axis. This kind of flow is interest-
ing because, in contrast to shear flows, all the streamlines
closed and, therefore, the front propagation is determined
© 2002 American Institute of Physics
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the mechanisms of contamination of one cell to the other.10,14

Since we are interested in the propagation in thex-direction,
the boundary conditions are set tou(2`,y;t)51 and u
(1`,y;t)50. The maximum principle ensures that at la
times the field still takes values in the range 0<u<1.1 The
instantaneous front speed is defined as

v f~ t !5
1

L E
0

L

dyE
2`

`

dx ] tu~x,y;t !. ~3!

This expression defines the so-called bulk burning ra11

which coincides with the front speed when the latter exis
but it is also a well defined quantity even when the fro
itself is not well defined. The asymptotic~average! front
speed,v f , is determined byv f5 limT→`1/T*dt v f(t).

In a medium at rest, it is known that Eq.~1!, for FKPP
nonlinearity, generates a front propagating, e.g., from lef
right with an asymptotic speedv052AD/t and a reaction
region of thicknessj58ADt.8 In the more interesting cas
of a moving medium, the front will propagate with an ave
age speedv f greater thanv0 .11,12The front velocityv f is the
result of the interplay among the flow characteristics~i.e.,
intensity U and length scaleL!, the diffusivity D and the
production time scalet. The goal of our analysis is to dete
mine the dependence ofv f on such quantities. In particula
introducing the Damko¨hler number Da5L/(Ut) ~the ratio of
advective to reactive time scales! and the Pe´clet number Pe
5UL/D ~the ratio of diffusive to advective time scales!, we
seek for an expression of the front speed as an adimens
functionv f /v05f(Da,Pe)>1. We will see that a crucial role
in determining such a function is played by the renormali
tion of the diffusion constant and chemical time scale
duced by the advection.14,15

Moreover, we consider an important limit case, i.e., t
so-called geometrical optics limit, which is realized f
(D,t)→0 maintainingD/t constant.16 In this limit one has a
nonzero bare front speed,v0 , while the front thicknessj
goes to zero, i.e., the front is sharp. In this regime the fr
dynamics is well described by the so-calledG-equation2,6,17

]G

]t
1u•“G5v0u“Gu. ~4!

The front is defined by a constant level surface of the sc
function G(r ,t). Physically speaking, this limit correspond
to situations in whichj is very small compared with the
other length scales of the problem. Also in this case we p
vide a simple prediction for the front speed, which turns o
to be expressible as an adimensional functionv f /v0

5c(U/v0).
The article is organized as follows. In Sec. II we discu

a theoretical upper bound for the front speed which beco
an equality in the limit of~very! slow reaction. In Sec. III we
present a numerical study for slow and fast reaction, com
ing the results with a phenomenological model. In Sec.
we consider the geometrical optics limit. Section V is d
voted to some concluding remarks. The Appendix conta
the details of the numerical method used in the simulatio
Downloaded 27 May 2002 to 193.175.8.51. Redistribution subject to AIP
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II. UPPER BOUND FOR THE FRONT SPEED

For a generic incompressible flow and a generic prod
tion term which has a bounded growth rate,c(u), i.e.,

cmax5sup
u

c~u!5sup
u

1

t

f ~u!

u
,`, ~5!

it is possible to establish an upper bound for the speed
front propagation. Explicitly, we have

v f<2ADeff cmax, ~6!

where Deff is the effective diffusion coefficient in the
x-direction, which can be derived from Eq.~1! by switching
off the production term. The key ingredient in deriving th
bound~6! is that asymptotically a standard diffusive behav
takes place, which is indeed a generic feature in incompr
ible fluids.18 Therefore, in the sequel, we limit our discussio
to the asymptotic front propagation properties in flows w
standard diffusion. Non-asymptotic properties are surely
teresting, as studied in the context of passive transport,19 but
they deserve a specific treatment20 and are beyond the
present aim.

We start the derivation of Eq.~6! by recalling the funda-
mental relation among the solution of the PDE~1! and the
trajectories of particles advected by a velocity fieldu(r ,t)
and subject to molecular diffusion21,22

u~x,t !5^u~r ~0!,0!e*0
t c(u(r (s),s))ds&h . ~7!

The average is performed over the trajectories evolving
cording to the Langevin equation

dr ~ t !

dt
5u~r ~ t !,t !1A2D h~ t ! ~8!

with ending pointr (t)5x. The white noise termA2Dh(t)
accounts for molecular diffusion. Since the growth rate
bounded,~7! yields the inequality

u~ t,x!<^u~r ~0!,0!&hexp~cmaxt !. ~9!

In the previous inequality, the term in angular brackets
notes the probability that the trajectory ending atx was ini-
tially located at the left of the front interface. For FKP
production term the maximum occurs foru50, i.e., c(u)
<cmax5c(0)51/t. Under very broad conditions, i.e., non
zero molecular diffusivity and finite variance of the veloci
vector potential,18,23,24it is possible to show that asymptot
cally the particles undergo a standard diffusion process w
an effective diffusion coefficientDeff , always larger than the
molecular valueD. The issue of single particle diffusion an
the problem of finding the effective diffusivity has been t
subject matter of a huge amount of work~see, e.g., Ref. 24
for a recent review!. In the presence of an asymptotic sta
dard diffusion, we can substitute the term̂u(r (0),0)&h ,
with the Gaussian result 12 1/2erfc(2x/A2Deff t)
.exp@2x2/(4Deff t)#/A2pDeff t with exponential accuracy
We thus obtainu(x,t)<exp@cmaxt2x2/(4Deff t)#/A2pDeff t. It
is thus clear that at the pointx the field u is exponentially
small until a timet of the order ofx/A4Deff cmax. We finally
obtain the upper bound for the front velocityv f

<A4Deff cmax, which is Eq.~6!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The bound~6! becomes an equality in the limit of ver
slow reaction. Ift is the slowest time scale under conside
ation, advection and molecular diffusion act jointly to bui
an effective diffusion process, essentially unaffected by
reaction. In this case the front width is large enough and
reaction takes place in a region of effective diffusivi
Therefore, it is allowed to substitute Eq.~1! with an effective
reaction-diffusion equation] tu5( i , jDi j

eff]ij
2u1 (1/t) f (u),

where Di j
eff is the eddy-diffusivity tensor.24 For the FKPP

nonlinearity, this last equation gives rise tov f.2ADeff /t,
whereDeff5D11

eff .5,10,11One can find a detailed derivation o
this formula in Ref. 14.

For cellular flows, it is known thatDeff;AULD.25–27

Inserting this expression in Eq.~6! one obtainsv f}U1/4,10

remarkably close to the observed ones forDa!1 ~see the
next section!.

III. FRONT SPEED IN THE REACTION ADVECTION
DIFFUSION EQUATION

The bound~6! is very general and holds for generic in
compressible flows and production terms. Here, by mean
numerical simulations, we consider the front propagat
problem arising in the reaction advection diffusion equat
~1! for the particular case of the cellular flow~2! of stirring
intensityU and FKPP nonlinearity~with characteristic time,
t!. In our discussion, we always suppose that the diffus
time scale is the slowest occurring one, i.e.,L2/D!L/U,t
and thus Pe@1 and Da Pe!1.

Now before presenting the numerical results it is help
to introduce a macroscopic description of the problem wh
will reduce it to an effective reaction-diffusion process w
renormalized coefficients.

The basic observation is that the dynamics ofu in cellu-
lar flows is characterized by the cell-sizeL, so that we can
perform a space discretization that reduces each cell,Ci , to
a point, i , mapping the domain—a two-dimensional infini
strip—onto a one-dimensional lattice. The fieldu becomes a
function defined on the latticeQ i5L22*Ci

u dx dy. Integrat-

ing Eq. ~1! over the cellCi , we obtainQ̇ i5Ji 112Ji1x i

whereJi5L22* leftD]xu dy is the flux of matter through the
left boundary of thei th cell, andx i5L22*Ci

t21f (u)dx dy

is the rate of change ofQ i due to reaction taking place withi
the cell. On the basis of the numerical results~see below!, we
will show that the space-discretized macroscopic react
diffusion equation

d

dt
Q i5DeffS 1

2
Q i 112Q i1

1

2
Q i 21D1

1

teff
F~Q i ! ~10!

is a pretty good model for the front dynamics. The effect
the advective field is torenormalizethe values of the diffu-
sivity, D→Deff(D,U,L), and the reaction time scale,t
→teff(t,U,L). This is why the velocity does not appear a
more in the effective dynamics, described by Eq.~10!.10,14

The renormalized diffusivityDeff accounts for the process o
diffusion from cell to cell as a result of the nontrivial inte
action of advection and molecular diffusion.25–27 The renor-
malized reaction timeteff amounts to the time that it take
for a single cell to be filled by inert material, and depends
Downloaded 27 May 2002 to 193.175.8.51. Redistribution subject to AIP
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the interaction of advection and production. Of course, a
the production term will be affected, i.e.,f→F, but, as we
will see, such a modification is not dramatic. Indeed, t
modified production term turns always to be in the FKP
universality class.

The limiting speed of the front in the moving mediu
turns out to beveff;ADeff /teff, similar to Eq.~6!.14 The prob-
lem is now reduced to derive the expressions for the ren
malized parameters by means of physical considerations

It is worthwhile to remark that model~10! has just a
phenomenological origin~see Refs. 10 and 19! supported by
numerical evidences.

In the following sections, using as an interpretati
framework the above described macroscopic model, we
present the results of detailed numerical simulations for s
(Da!1) and fast (Da@1) reaction.

A. Slow reaction regime

At small Da, the reaction is significantly slower than th
advection, and consequently the region where the reac
takes place extends over several cells, i.e., the front is
tributed. To obtain the expression ofDeff we neglect the re-
action term in Eq.~1!, which reduces to the equation for
passive scalar in a cellular flow. This is a well studied pro
lem, the solution of which is25–27

Deff

D
;Pe1/2, Pe@1. ~11!

For large Pe~D small! the cell-to-cell diffusion mechanism
can be qualitatively understood in the following way. Th
probability, p, for a particle to jump across the boundary
the cell, within a circulation timeL/U, by virtue of molecu-
lar diffusion can be estimated as the ratio of the diffus
motion across streamlines,O(ADL/U), to advective motion
along streamlines,O(L). As a resultp;(D/(UL))1/2, hence
the effective diffusivityDeff;p UL;DPe1/2.

To obtain the expression of the typical time it takes fo
whole cell to react, let us concentrate on the reaction i
single cell: it is first invaded by a mixture of reactants a
products~with a low content of products,Q i!1! on the fast
advective time scale; subsequently complete reactionQ i

'1) is achieved on the slower time scaleteff.t ~see Fig. 1!.

FIG. 1. Six snapshots of the fieldu within the same cell, at six successiv
times with a delayt/6 ~from left to right, top to bottom!, as a result of the
numerical integration of Eq.~1!. Here Da.0.4, Pe.315. Black stands for
u51, white foru50.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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484 Chaos, Vol. 12, No. 2, 2002 Abel et al.
In this regime, the front speed is well approximated by
homogenization resultv f52ADeff, discussed in the previou
section. To check these ideas, we performed numerical s
lations of Eq. ~1!, with a FKPP production term~see the
Appendix for details on the numerical technique!. In Fig. 2,
we show the result of the calculations for the front speedv f

in dependence on Da; the slow reaction corresponds to
plateau at Da!1.

B. Fast reaction regime

We now have to repeat the estimation ofDeff andteff for
the fast reaction regime, i.e., for large Da. Since we w
always in the regime of large Peclet numbers, all the ab
arguments for the effective diffusion still hold, while the e
fective time scale is different. At large Da, the ratio of tim
scales reverses, and in a~now short! time t two sharply
separated phases emerge inside the cell. In this regime
deed, the interface is thin compared to the cell size. The
filling process is characterized by an inward spiral motion
the outer, stable phase~see Fig. 3!, at a speed proportional t
U, as it usually happens for a front in a shear flow at la
Da. Therefore, theu51 phase fills the whole cell on th
advective time scale, givingteff.L/U. With respect to the

FIG. 2. The ratio of measured front speed,veff , to the maximal one,
A4Deff /t, as a function of the Damko¨hler number, Da. For Da!1 the front
propagates with the maximal velocity whereas for Da@1 the speed slows
down with increasing Da. The straight line Da21/2 is drawn for reference.
Note that there are two contributions to the error bars: from the uncerta
on theveff and that one on the effective diffusion coefficientDeff .

FIG. 3. Six snapshots of the fieldu within the same cell, at six successiv
times with a delay (L/U)/6 ~left to right, top to bottom!. Here Da54,
Pe5315. A spiral wave invades the interior of the cell, with a spe
comparable toU.
Downloaded 27 May 2002 to 193.175.8.51. Redistribution subject to AIP
e

u-

he

k
e

in-
ll
f

e

upper bound~6! we observe for fast reaction a significativ
slowing down of the front speed signaled by a different sc
ing dependence on the parametersU, D, L, t ~see Fig. 2!.
We now have to look at the shape of the effective react
term teff

21F(Q) appearing in the renormalized equation~10!.
As shown in Fig. 4, for small Da, the effective productio
term is indistinguishable from the ‘‘bare’’ one. Increasin
Da, the reaction rate tends to reduce, inducing the slow
down of the front speed. ForQ'0, the effective production
term essentially coincides with the microscopic one. Ho
ever, there is an intermediate regime characterized by a
ear dependence on the cell-averaged concentration, wi
slope proportional to Da21. This is in agreement with a typi
cal effective reaction timeteff;tDa @see below Eq.~12!#. To
measure the macroscopic quantitiesF(Q) andQ, one simply
integrates numerically bothu and f (u) at a fixed time over a
cell volume.

It is worthwhile to remark that, notwithstanding th
change of shape of the effective chemical potential, the p
duction term remains in the FKPP universality class.

Let us stress that what we call fast reaction regime is s
not in the geometrical optics limit. Indeed, to obtain th
limit it is not sufficient to taket small, but one has to take
alsoD small in such a way thatv0;2AD/t is constant when
(D,t) goes to zero and the front thicknessj}ADt is negli-
gible with respect to the cell size. In the fast reaction regi
studied here the condition on the front thickness holds.

Collecting the information about fast and slow reactio

teff

t
;H 1 Da!1,

Da, Da@1,
~12!

andDeff;DPe1/2, we can derive the scaling of the effectiv
speed of front propagation for a cellular flow. Indeed, reca
ing thatv f;ADeff /teff, we have the final result

v f

v0
;H Pe1/4, Da!1,Pe@1,

Pe1/4Da21/2, Da@1,Pe@1.
~13!

The case of Pe!1 is less interesting because the dynamics
dominated by diffusion.

ty

FIG. 4. The renormalized reaction termt/teff F(Q) for three different pa-
rameter: Da.4 ~h!, Da.2 ~s! and Da.0.4 ~3!. The continuous line
shows f (u). The dotted and dash-dotted lines are the slopes~0.2 and 0.4!
proportional to Da21 in the region of slow advection.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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At small Da the front propagates with an effective v
locity scaling as the upper bound derived above, that is
Pe1/4. At large Da, the front speed enhanced is less effec
than at small Da: according to Eq.~13!, we havev f /v0

;Da21/2 for Da@1. In terms of the typical velocity of the
cellular flow, we havev f}U1/4 for slow reaction~U@L/t, or
equivalently Da!1! whereasv f}U3/4 for fast reaction~U
!L/t, or Da@1!. The scalingv f}U1/4 for slow reaction
~i.e., fast advection! is a consequence of the well know
resultDeff}DPe1/2 ~Ref. 25! in the homogenization limit;11,14

it has been obtained in Ref. 10. The numerical results
summarized in Fig. 5.

As a remark we mention that, for the class of bound
conditions investigated here, where the region of initia
burnt material extends to infinity, no quenching28 takes place
no matter the used production term. Indeed, Arrhenius-t
nonlinearity substantially gives the same results as thos
FKPP-type reaction presented above, i.e., one has the
scaling lawsv f}U1/4 andv f}U3/4 at fast and slow advection
respectively~see Ref. 14!.

IV. FRONT SPEED IN THE GEOMETRICAL OPTICS
REGIME

When the front thickness and the reaction time are m
smaller than the length and time scales of the velocity fi
fluctuations one has the geometrical optics regime.16,29 In
this case the front is a sharp interface separating the reac
from the products, and can be modeled in the framework
the G-equation ~4!.6,16 Physically speaking, one uses th
G-equation when the front thickness is very thin and it
hard to resolve the diffusive scale.

As far as the cellular flow is concerned, the front bord
is wrinkled by the velocity field during propagation and
length increases until pockets of fresh material develop.30–32

After this, the front propagates periodically in space and ti
with an average speedv f , which is enhanced with respect t
the propagation speedv0 of the fluid at rest33 ~see Ref. 31 for
some pictorial views!.

FIG. 5. The front speedv f as a function ofU, the typical flow velocity. The
lower curve shows data att520.0 ~fast advection!. The upper curve shows
data att50.2 ~slow advection!. For comparison, the scalingsU1/4 andU3/4

are shown as dotted and dashed lines, respectively. The horizontal lin
dicatesv0 , the front velocity without advection, fort50.2.
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s
e

re

y

e
of
o

h
d

nts
f

r

e

The problem addressed here is the dependence of
effective speedv f on the flow intensity,U, and the bare
velocity, v0 , that is expected of the form6

v f

v0
5cS U

v0
D , ~14!

wherec(U) is a function which depends on the flow detai
As far as we know, apart from very simple shear flow

~for which c(U)511U!,10,16 there are no methods to com
putec(U) from first principles. Mainly one has to resort t
numerical simulations and phenomenological arguments

For turbulent flows, by means of dynamical renormaliz
tion group techniques, Yakhot34 proposed

v f

v0
5ed(U/v f)

a
, ~15!

where d51 and a52. Now U indicates the root mean
squared average velocity~see also Refs. 6 and 35!. There-
fore, from ~15! one has thatv f→U/Aln(U) for U→`.

For the cellular flow under investigation, albeit the exa
form of the functionc(U) is not known, a simple argumen
can be given for an upper and a lower bound by mapping
front dynamics onto a one-dimensional problem. The start
point is the following observation. In the optical regim
since the interface is sharp, i.e.,u(x,y) is a two-valued func-
tion ~u51 andu50!, we can track the farther edge of th
interface between product and material (xM(t),yM(t)),
which is defined as the rightmost point~in the x-direction!
for which u(xM ,yM ;t)51. Then we can define a velocity

ṽ f5 lim
t→`

xM~ t !

t
, ~16!

which gives an equivalent value of the standard definit
within less than 2%~see Fig. 6!. In Fig. 7 we show the time
evolution of the point (xM(t),yM(t)). After a transient, in
the unit cell @0,2p# ~we describe the caseL52p, i.e., the
one adopted here! the point (xM(t),yM(t)) moves to the
right along the separatrices of the streamfunction~2!, so that

in-

FIG. 6. Front velocity as a function of time,v f(t) measured in the standar
way ~3! ~h!, and asxM(t)/t ~s!. The straight lines represents the avera
~over a period! of the measured value, and the lower and upper bounds.
simulation parameters areU54, v051 andL52p.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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yM(t) is essentially close to the values 0 orp. Along this
path one can reduce the edge dynamics to the 1d-problem

dxM

dt
5v01Ubusin~xM~ t !!u, ~17!

where the second term of the rhs is the horizontal compon
of the velocity field. We have neglected they-dependence
replacing it with a constantb which takes into account th
average effect of the vertical component of the velocity fi
along the path followed by (xM ,yM). By solving ~17! in the
interval xMP(0,2p) one obtains the time,T, needed forxM

to reach the end of the cell. The front speed, as the spee
the edge particle, is then given byv f52p/T. The final result
is

cb~U!5pA~Ub!221 ln21S U1A~Ub!221

U2A~Ub!221
D . ~18!

Note that ~18! is valid only for Ub>1. We have takenb
51 for the upper bound andb5 1

2 @which is the average o
ucos(y)u between 0 andp# for the lower bound. We have als
computed the average ofucos(yM(t))u in a period of its evo-
lution ~see Fig. 7!, obtainingb'0.89 which gives indeed a
very good approximation of the measured curve~see Fig. 8!.
We stress that the theoretical curve is not a fit, but it j
involves the measured parameterb.

This agreement is an indication that the average
ucos(yM(t))u depends onU and v0 very weakly ~as we
checked numerically!. Previous studies32 reported an essen
tially linear dependence of the front speed on the flow int
sity, i.e.,v f}U for largeU which is not too far but different
from our result. A rigorous bound has been obtained in R
36 by using theG-equation:

v f>U/~ log~11U/v0!!. ~19!

As one can see from Fig. 8, the lower bound~19! seems to be
closer to the numerical data than the one obtained withb
5 1

2 in ~18!. From Eq.~18!, asymptotically~i.e., for U@v0)
one hasv f;U/ ln(U) which corresponds to~15! for a51.
Expressions as~15! have been proposed for flows with man
scales as, e.g., turbulent flows, and in the literature differ
values ofa have been reported.6,37 The fact that also the

FIG. 7. Time evolution of the edge point:xM(t) ~solid line! and yM(t)
~dashed line!. The simulation parameters are the ones of Fig. 6.
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simple one-scale vortical flow investigated here displa
such a behavior may be incidental. However, we believe
it can be due to physical reasons. Indeed, the large s
features of the flow, e.g., the absence of open channels~like
for the shear flow!, can be more important than the detaile
multi-scale properties of the flow.38

A definite answer to this question is beyond the scope
this article, however it could be an interesting point for f
ture investigations.

V. CONCLUSIONS

We addressed the problem of front speed enhancem
induced by stirring due to a cellular flow in different re
gimes. In the slow reaction case a rather general result~based
on homogenization techniques! gives v f;U1/4; for the fast
reaction case, physical arguments givev f;U3/4. In the geo-
metrical optics limit one finds thatv f is a linear function of
U, apart from logarithmic corrections. All these results h
been confirmed by numerical simulations.

The steady cellular flow treated here, albeit its simpl
ity, provides a paradigm that can be insightful for the stu
of front propagation in more general flows. For instance,
the geometrical optics limit the asymptotical behaviorv f

;U/ ln(U) is rather similar to the one found by Yakhot (v f

;U/Aln(U)) ~Ref. 34! for turbulent velocity fields.
One could conjecture that there are nontrivial reasons

this similarity: the front propagation principally involves th
largest scales. In this context, it is not surprising that a m
tiscale process~as turbulence! or a single scale process ca
yield similar results.
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APPENDIX: NUMERICAL METHOD

We introduce a lattice of mesh sizeDx andDy ~for the
sake of simplicity we assumeDx5Dy! so that the scala
field is defined on the pointsxn,m5(nDx,mDy): un,m(t)
5u(nDx,mDy,t).

Giving the field at timet, the algorithm computes th
field at time t1Dt, and the integration method depends
which kind of physical regime we are interest in: reactio
advection-diffusion equation~1! or optical limit ~4!.

1. Reaction diffusion equation

In numerical approaches one is forced to discretize
dynamics, so let us consider the case of a velocity fi
which is always zero apart fromd-impulses at timest50,
6Dt,62Dt,63Dt,...:

u~x,t !5 (
n52`

`

u~x!d~ t2nDt !. ~A1!

In such a case the Lagrangian evolution is given by a c
servative map~in 2D the map is symplectic due to incom
pressibility!

x~ t1Dt !5FDt~x~ t !!. ~A2!

If also the production term is zero apart fromd-impulses,

f ~u!5 (
n52`

`

g~u!d~ t2nDt !, ~A3!

one can introduce a reaction map

u~ t1Dt !5GDt~u~ t !!. ~A4!

Let us remark that choosing ad-impulsed production term
can be particularly relevant in some experimental settin
i.e., when one considers periodic illumination in ligh
sensitive chemical reactions as in Ref. 39. The concentra
field u(x,t1Dt20) is obtained from u(x,t10)
5GDt(u(x,t)) solving the bare diffusion equation] tu
5D¹2u:

u~x,t1Dt20!

5
1

~2p!d/2 E e2 h2/2u~x2A2DDt h,t10!dh, ~A5!

or, in other terms,

u~x,t1Dt !5^GDt~u~F2Dt~x2A2DDth~ t !!,t !!&h ,
~A6!

which is equivalent to Eq.~7!. Let us remark that Eq.~A6! is
exact if both the velocity field and the reaction a
d-impulsed processes. However, one can also use the
mula~A6! as a practical method for the numerical integrati
of Eq. ~1! if one assumes small enoughDt, so that the La-
grangian and reaction maps are given at the lowest orde
Downloaded 27 May 2002 to 193.175.8.51. Redistribution subject to AIP
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FDt~x!.x1u~x!Dt, GDt.u1
Dt

t r
f ~u!.

From an algorithmic point of view the whole proce
betweent and t1Dt, Eq. ~A6!, can be divided into three
steps:~1! diffusive, ~2! advective, and~3! reactive. The first
two steps determine the origin of the Lagrangian traject
evolving with a given noise realizationh and ending inx. In
the third step, the reaction at pointx for the advected/
diffused passive scalaru is computed:

~1! backward diffusion:x→x2A2DDth,
~2! backward advection by the Lagrangian map:

x2A2DDt h→F2Dt(x2A2DDt h),
~3! forward reaction:

u(t1Dt)5GDt(u(t)).

These three steps can be numerically implemented as
lows. For each grid pointxn,m , one usesN independent
Gaussian processesWa, a51, . . . ,N, N@1, and computes
x̃n,m

a 5xn,m2A2D Dt Wa. Then, using the Lagrangian back
ward propagator,rn,m

a 5F2Dt( x̃n,m
a ). For un,m(t1Dt) one

needs the values ofu at time t in the positionsrn,m
a . Typi-

cally thern,m
a are not on the grid points (nDx,mDy); never-

theless, we can compute the valueu(rn,m
a ,t) using simple

linear interpolation fromun,m(t). Therefore, we have

un,m~ t1Dt !5
1

N (
a51

N

G@u~rn,m
a ,t !#.

To correctly simulate the diffusion process we have to i
pose a relation betweenD, Dx andDt to assure that diffu-
sion transports a particle over distances;A2D Dt much
larger than the grid sizeDx ~see Fig. 9!.

2. Geometrical optics limit

Similar to the previous case, one can integrate the
namics of the optical front using a two step discrete-tim
process. Starting from the fieldun,m at timet, one can obtain
the field at timet1Dt with the following algorithm:

~1! Using the Lagrangian propagator one evolves the in
face between burned and unburned region.

FIG. 9. Pictorial scheme of the numerical algorithm for RAD systems. H
ha5A2D Dt Wa whereWa is a standard Gaussian variable.
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~2! At each point of the evolved interface one construct
circle of radius v0 Dt, burning the points within the
circles.

To numerically implement such an algorithm one can p
ceed as follows: starting in a grid point,xn,m , of the scalar
field at timet1Dt one applies the backward evolution arri
ing at the pointy5F2Dtxn,m at the timet. On this point we
construct the circle of radiusv0 Dt. If in this circle there is at
least one burned point of the scalar field at timet, we fix
u(xn,m ;t1Dt)51, otherwiseu(xn,m ;t1Dt)50, see Fig. 10.

Also in this case we have to care that the radius of cir
v0 Dt has to be much larger than the grid sizeDx.
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