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The problem of front propagation in a stirred medium is addressed in the case of cellular flows in
three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known
that a consequence of stirring is the enhancement of front speed with respect to the nonstirred case.
By means of numerical simulations and theoretical arguments we describe the behavior of front
speed as a function of the stirring intenslty, For slow reaction, the front propagates with a speed

proportional toU/

geometrical optics limit, the front speed asympto
Institute of Physics.[DOI: 10.1063/1.1457467

, conversely for fast reaction th

Front propagation in a stirred medium is an important
problem in a number of fields ranging from combustion
to plankton dynamics. For a realistic study of such a class
of problems one has to take into account the modification
of the advecting flow induced by the reaction, e.g., in
combustion. However, many features can be understood
by neglecting the back-reaction on the velocity field. The
problem addressed here is the enhancement of the front
speed induced by a certain class of flows. In particular,
we consider front propagation in a two dimensional lami-
nar flow with a stationary vortical structure in different
regimes, namely slow reaction, fast reaction and geo-
metrical optics limit. This last limit corresponds to a very
sharp front propagating as an optical front, i.e., accord-
ing to the Huygens principle. We provide predictions on
the dependence of the front speed on the flow intensity,
which are confirmed by numerical simulations.

I. INTRODUCTION

The study of front propagation of a stable phase into a
unstable one encompasses several issues of great ih&sest
flame propagation in gaséqopulation dynamics of biologi-
cal communities(plankton in oceans and chemical reac-

e front speed is proportiondltf. In the
tically behavet/dsU. © 2002 American

of chemicals does not modify the underlying flow. Therefore,
in the following, we consider the velocity field as given. This
approximation, hardly tenable in the context of flame propa-
gation in gases, is rather appropriate for chemical front
propagation in some liquid solutioRS:’ Under these sim-
plifying assumptions, the evolution @fis described by
0 6+u-VO=DAo+ %f(a), (2)
where the second term on the lhs accounts for the transport
by an incompressible velocity field. On the rhs the first term
describes molecular diffusion and the second one describes
the production process with time scateWe will first con-
sider a production term of Fischer—Kolmogorov—
Petrovskii—Piskund\/(FKPP type, i.e., a functiorf( ) con-
vex [f”(#)<0] and positive in the interval0,1), vanishing
at its extremes, and’(0)=1. Here we takef(6)=6(1
—0). It is also of interest to consider a production term in
the form of the Arrhenius lawf(6)=(1— 6)-exp(-6./6),
where 6, is the activation concentration. The latter choice is
fnore pertinent to the study of flames and/or chemical
reactions’
Until now we did not specify any details of the velocity
field. In many engineering applicationss turbulent. In this

tions in liquids® A common feature of all these phenomena is@ticle we investigate front propagation in laminar flows,
that they take place in a strongly deformable medium such a&hich, albeit simpler than turbulent ones, show remarkable
a fluid. The interplay among transport, diffusion and reactiorflu@litative similarities with more complex flowWsSpecifi-

is therefore a crucial problem with several open isq@ees.,
for questions concerning combustion, see Re&f. 5

In the most compact model of front propagation the stat
of the system is described by a single scalar fig{d,t),
which represents the concentration of products. The field
vanishes in the regions filled with fresh mater{gthe un-
stable phase equals unity where only inert products are left

cally, we consider a two dimensional stationary incompress-
ible flow with cellular structure(see also Refs. 10—12i

& (— dyi,0,) with the streamfunctiort
B UL  (2@Xx\ | [27y 2
¢(x,y)—ﬁsm I sin - (2)

We considered.-periodic boundary conditions iy and an

(the stable phaseand takes intermediate values whereverinfinite extent along the-axis. This kind of flow is interest-

reactants and products coexist, i.e., in the region where pr
duction takes place. Here we assume that the concentrati
1054-1500/2002/12(2)/481/8/$19.00 481
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ong because, in contrast to shear flows, all the streamlines are
arosed and, therefore, the front propagation is determined by
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the mechanisms of contamination of one cell to the otfi&.  1l. UPPER BOUND FOR THE FRONT SPEED
Since we are interested in the propagation inxfdrection,
the boundary conditions are set #f{—«,y;t)=1 and 6
(+,y;t)=0. The maximum principle ensures that at later

For a generic incompressible flow and a generic produc-
tion term which has a bounded growth rat€g), i.e.,

times the field still takes values in the range 8<1.! The 1f
instantaneous front speed is defined as Cmax~ S‘;pc( G)ZSZ‘F’; g =% (5)
1 (L o it is possible to establish an upper bound for the speed of
vi(t)= fo dyf_xdx dO(X,y;t). (3)  front propagation. Explicitly, we have
v<2VDeff Cmax (6)

This expression defines the so-called bulk burning ‘tate \yhere D, is the effective diffusion coefficient in the

which coincides with the front speed when the latter exists,_girection, which can be derived from E(}) by switching

but it is also a well defined quantity even when the frontoff the production term. The key ingredient in deriving the

itself is not well defined. The asymptoti@veragg front  pound(6) is that asymptotically a standard diffusive behavior

speedyy, is determined by ;=limy_..1/T[dt v«(t). takes place, which is indeed a generic feature in incompress-
In & medium at rest, it is known that EQL), for FKPP  ipje fiyids!® Therefore, in the sequel, we limit our discussion

nonlinearity, generates a front propagating, e.g., from left tqq the asymptotic front propagation properties in flows with

right with an asymptotic speed,=2yD/7 and a reaction standard diffusion. Non-asymptotic properties are surely in-

region of thicknesg=8D . In the more interesting case teresting, as studied in the context of passive transpdmit

of a moving medium, the front will propagate with an aver-they deserve a specific treatm@n@ind are beyond the

age speed greater tham,.***?The front velocityv; is the  present aim.

result of the interplay among the flow characteristics., We start the derivation of E@6) by recalling the funda-

intensity U and length scale.), the diffusivity D and the  mental relation among the solution of the PDB and the

production time scale. The goal of our analysis is to deter- trajectories of particles advected by a velocity fieit,t)
mine the dependence of on such quantities. In particular, and subject to molecular diffusiéh?

introducing the Damkioler number Da L/(U 7) (the ratio of .
advective to reactive time scajesnd the Pelet number Pe 0(x,t)={0(r(0),0)e oo (S):sNdsy 7)
s:egllz 43 ggeeggsg:r:ﬁgf ;\r/z :‘?oi?\;zztle\aeat!smaensz:;]riz/r?sion-r e average is performed over the trajectories evolving ac-
rding to the Langevin equation
functionv¢/vy= ¢(Da,Pe)}=1. We will see that a crucial role g g q
in determining such a function is played by the renormaliza- ~ dr(t)
tion of the diffusion constant and chemical time scale in- dt
duced by the advectioff:*® . . . 3 . . —
Moreover, we consider an important limit case, i.e., theWlth ending pointr (t) =x. _The_whlte_n0|se term/2D (1) .
so-called geometrical optics limit, which is realized for accounts for _molecular dlffu3|_on. Since the growth rate is
(D, 7)—0 maintainingD/ 7 constant® In this limit one has a bounded7) yields the inequality
nonzero bare front speed,, while the front thickness 6(t,x)=<(6(r(0),0)) ,€Xp(Crmat)- 9
goes to zero, i.e., the front is sharp. In this regime the fron
dynamics is well described by the so-callédequatio®*’

=u(r(t),t)+ 2D #(t) ®)

‘n the previous inequality, the term in angular brackets de-
notes the probability that the trajectory endingkawas ini-
tially located at the left of the front interface. For FKPP
E+u~VG=vo|VG|. 4) production term the maximum occurs f@r_=_0, i.e_., c(6)
ot <Cmha—C(0)=1/7. Under very broad conditions, i.e., non-
zero molecular diffusivity and finite variance of the velocity
The front is defined by a constant level surface of the scalavector potentiat??*2it is possible to show that asymptoti-
function G(r,t). Physically speaking, this limit corresponds cally the particles undergo a standard diffusion process with
to situations in which¢ is very small compared with the an effective diffusion coefficierD ., always larger than the
other length scales of the problem. Also in this case we promolecular valueD. The issue of single particle diffusion and
vide a simple prediction for the front speed, which turns outthe problem of finding the effective diffusivity has been the
to be expressible as an adimensional functiop/v, subject matter of a huge amount of wddee, e.g., Ref. 24
=y(Ulvg). for a recent review In the presence of an asymptotic stan-
The article is organized as follows. In Sec. Il we discussdard diffusion, we can substitute the terpd(r(0),0)),,
a theoretical upper bound for the front speed which becomewith  the  Gaussian  result -1 1/2erfc(=x/y2Dxt)
an equality in the limit ofvery) slow reaction. In Sec. Il we =exd —x%/(4Dgxt))/V27D oyt with exponential accuracy.
present a numerical study for slow and fast reaction, compaMe thus obtaing(x,t) <exp Cpad— X%/ (4Dgi ) V2 7D g t. It
ing the results with a phenomenological model. In Sec. IVis thus clear that at the point the field 6 is exponentially
we consider the geometrical optics limit. Section V is de-small until a timet of the order ofx/ 4D gt Cmay We finally
voted to some concluding remarks. The Appendix contain®btain the upper bound for the front velocity;
the details of the numerical method used in the simulations= 4D ¢ Cax Which is EQ.(6).
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The bound(6) becomes an equality in the limit of very
slow reaction. Ifr is the slowest time scale under consider-
ation, advection and molecular diffusion act jointly to build
an effective diffusion process, essentially unaffected by the
reaction. In this case the front width is large enough and the

reaction takes place in a region of effective diffusivity.
Therefore, it is allowed to substitute Eg) with an effective
reaction-diffusion equation atein,jDﬁ“ 0+ (Li7) £(0),
where Dﬁ-ﬁ is the eddy-diffusivity tensc? For the FKPP
nonlinearity, this last equation gives rise #¢=2/D .4/,
whereD =D$" 1% One can find a detailed derivation of
this formula in Ref. 14.

For cellular flows, it is known thaD4~/ULD.%~?’
Inserting this expression in E@6) one obtainsyocU4 10
remarkably close to the observed ones Ba<1 (see the
next sectioin

Ill. FRONT SPEED IN THE REACTION ADVECTION
DIFFUSION EQUATION

The bound(6) is very general and holds for generic in-

FIG. 1. Six snapshots of the fielélwithin the same cell, at six successive
times with a delayr6 (from left to right, top to bottorn as a result of the
numerical integration of Eq.1l). Here Da=0.4, Pe=315. Black stands for
6=1, white for =0.

the interaction of advection and production. Of course, also
the production term will be affected, i.€..—~F, but, as we

will see, such a modification is not dramatic. Indeed, the
modified production term turns always to be in the FKPP

compressible flows and production terms. Here, by means diniversality class.

numerical simulations, we consider the front propagation

The limiting speed of the front in the moving medium

problem arising in the reaction advection diffusion equationturns out to be ¢~ D/ e, Similar to Eq.(6).'* The prob-

(1) for the particular case of the cellular flo{&) of stirring
intensityU and FKPP nonlinearitywith characteristic time,

7). In our discussion, we always suppose that the diffusion

time scale is the slowest occurring one, il?/D<L/U,r
and thus P21 and DaP&1.

Now before presenting the numerical results it is helpful

lem is now reduced to derive the expressions for the renor-
malized parameters by means of physical considerations.
It is worthwhile to remark that modgl10) has just a
phenomenological origisee Refs. 10 and 1Supported by
numerical evidences.

In the following sections, using as an interpretative

to introduce a macroscopic description of the problem whicHramework the above described macroscopic model, we will
will reduce it to an effective reaction-diffusion process with Present the results of detailed numerical simulations for slow

renormalized coefficients.

The basic observation is that the dynamicgah cellu-
lar flows is characterized by the cell-sike so that we can
perform a space discretization that reduces each €gllto
a point,i, mapping the domain—a two-dimensional infinite
strip—onto a one-dimensional lattice. The figldbecomes a
function defined on the lattic®; = L‘chiedx dy. Integrat-

ing Eq. (1) over the cellC;, we obtain®;=J;.;—J;+ xi
whereJ; =L 2f:Dd, 0 dy is the flux of matter through the
left boundary of theith cell, andy;=L~2[c = ‘f(6)dx dy
is the rate of change @&, due to reaction taking place within
the cell. On the basis of the numerical resuitse below, we

(Da<1) and fast (D& 1) reaction.

A. Slow reaction regime

At small Da, the reaction is significantly slower than the
advection, and consequently the region where the reaction
takes place extends over several cells, i.e., the front is dis-
tributed. To obtain the expression Df; we neglect the re-
action term in Eq(1), which reduces to the equation for a
passive scalar in a cellular flow. This is a well studied prob-
lem, the solution of which 827

—1_pé?

Pe>1. (11

will show that the space-discretized macroscopic reaction-

diffusion equation

d 1
®i:Deff E@

1 1
a i+17 0+ 50 +7__eﬁF(®i) (10

For large PgD smal) the cell-to-cell diffusion mechanism
can be qualitatively understood in the following way. The
probability, p, for a particle to jump across the boundary of
the cell, within a circulation timé&./U, by virtue of molecu-

is a pretty good model for the front dynamics. The effect oflar diffusion can be estimated as the ratio of the diffusive

the advective field is taenormalizethe values of the diffu-
sivity, D—Dg(D,U,L), and the reaction time scale;

motion across streamline®(yDL/U), to advective motion
along streamline)(L). As a resulip~ (D/(UL))*? hence

— 71e1(7,U,L). This is why the velocity does not appear any the effective diffusivityD .4~p UL~DP€"2.

more in the effective dynamics, described by Egp).1%1
The renormalized diffusivityD .« accounts for the process of
diffusion from cell to cell as a result of the nontrivial inter-
action of advection and molecular diffusiéi.2’ The renor-
malized reaction timergs amounts to the time that it takes

To obtain the expression of the typical time it takes for a
whole cell to react, let us concentrate on the reaction in a
single cell: it is first invaded by a mixture of reactants and
products(with a low content of product®);<1) on the fast
advective time scale; subsequently complete reacti®n (

for a single cell to be filled by inert material, and depends or=1) is achieved on the slower time scalg=7 (see Fig. L
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FIG. 2. The ratio of measured front speagy, to the maximal one,

V4De/7, as a function of the Damkder number, Da. For Dal the front  FIG. 4. The renormalized reaction terire; F(®) for three different pa-

propagates with the maximal velocity whereas for=Hathe speed slows  yameter: Da=4 (O), Da=2 (O) and Da=0.4 (x). The continuous line

down with increasing Da. The straight line D# is drawn for reference. showsf(6). The dotted and dash-dotted lines are the sldpe® and 0.%
Note that there are two contributions to the error bars: from the uncertainty,rgportional to Da* in the region of slow advection.

on thev o and that one on the effective diffusion coefficiég .

In this regime, the front speed is well approximated by theupper bound6) we observe for fast reaction a significative
homogenization result;=2./D, discussed in the previous slowing down of the front speed signaled by a different scal-
section. To check these ideas, we performed numerical siming dependence on the parametersD, L, 7 (see Fig. 2
lations of Eq.(1), with a FKPP production ternisee the We now have to look at the shape of the effective reaction
Appendix for details on the numerical techniguin Fig. 2,  term 7_/F(®) appearing in the renormalized equati(ir0).
we show the result of the calculations for the front speed As shown in Fig. 4, for small Da, the effective production
in dependence on Da; the slow reaction corresponds to therm is indistinguishable from the “bare” one. Increasing
plateau at D&1. Da, the reaction rate tends to reduce, inducing the slowing
down of the front speed. F& ~0, the effective production
term essentially coincides with the microscopic one. How-
o ever, there is an intermediate regime characterized by a lin-
We now have to repeat the estimationnfs and e for  ear dependence on the cell-averaged concentration, with a
the fast reaction regime, i.e., for large Da. Since we Workslope proportional to D&. This is in agreement with a typi-
always in the regime of large Peclet numbers, all the abovey| effective reaction time 4~ Da [see below Eq(12)]. To
arguments for the effective diffusion still hold, while the ef- ,aasure the macroscopic quantitig®) and®, one simply

fective time scale is different. At large Da, the ratio of time jytegrates numerically bothandf(6) at a fixed time over a
scales reverses, and in(aow shorj time 7 two sharply g/l volume.

separated phases emerge inside the cell. In this regime in- ¢ js worthwhile to remark that, notwithstanding the
deed, the interface is thin compared to the cell size. The Ceﬂhange of shape of the effective chemical potential, the pro-
filling process is characterized by an inward spiral motion ofy,ction term remains in the FKPP universality class.
the outer, stable phagsee Fig. 3 at a speed proportional to Let us stress that what we call fast reaction regime is still
U, as it usually happens for a front in a shear flow at largéyot in the geometrical optics limit. Indeed, to obtain this
Da. Therefore, the#=1 phase fills the whole cell on the |t it is not sufficient to taker small, but one has to take
advective time scale, givinges=L/U. With respect to the 550D small in such a way that,~ 2D/ is constant when
(D,7) goes to zero and the front thickness D 7 is negli-
gible with respect to the cell size. In the fast reaction regime
studied here the condition on the front thickness holds.
Collecting the information about fast and slow reaction,

B. Fast reaction regime

e |1 Da<l,

— (12

7 |Da, Del,

and Ds~DPé&"?, we can derive the scaling of the effective
speed of front propagation for a cellular flow. Indeed, recall-
ing thatv{~ D/ 7o, We have the final result

v; [P Da<1lPe-1,
: — - - vo |PéDa 2 Da>1Pe-1
FIG. 3. Six snapshots of the fielélwithin the same cell, at six successive 0 ) ) .
times with a delay I(/U)/6 (left to right, top to bottoh Here Da=4, . . . L
Pe=315. A spiral wave invades the interior of the cell, with a speed 1N€ case of P&1 is less interesting because the dynamics is

comparable tdJ. dominated by diffusion.

(13
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FIG. 5. The front speed; as a function olJ, the typical flow velocity. The
lower curve shows data at=20.0 (fast advectioh The upper curve shows
data atr=0.2 (slow advection For comparison, the scalings** andU%*

are shown as dotted and dashed lines, respectively. The horizontal line i
dicatesvq, the front velocity without advection, for=0.2.

FIG. 6. Front velocity as a function of time(t) measured in the standard
way (3) (O), and asxy(t)/t (O). The straight lines represents the average
r(gver a periogl of the measured value, and the lower and upper bounds. The
simulation parameters até=4, vo=1 andL=21.

At small Da the front propagates with an effective ve- The problem addressed here is the dependence of the
locity scaling as the upper bound derived above, that is, asffective speedv; on the flow intensity,U, and the bare
P’ At large Da, the front speed enhanced is less effectiveelocity, v,, that is expected of the foftn
than at small Da: according to Eql3), we havevs/vg
~Da Y2 for Da>1. In terms of the typical velocity of the vt _ (E
cellular flow, we have ;U for slow reactionfU>L/, or Vo Vo
equivalently Da<1) whereasv;«U®* for fast reaction(U
<L/7, or Da>1). The scalingv;<U** for slow reaction
(i.e., fast advectionis a consequence of the well known
resultD .4>DP€"? (Ref. 29 in the homogenization limi:*
it has been obtained in Ref. 10. The numerical results ar
summarized in Fig. 5.

As a remark we mention that, for the class of boundary,[ion
conditions investigated here, where the region of initially
burnt material extends to infinity, no quenchifigakes place Ty
no matter the used production term. Indeed, Arrhenius-type v_o_e o (19
nonlinearity substantially gives the same results as those of
FKPP-type reaction presented above, i.e., one has the twghere d=1 and «=2. Now U indicates the root mean
scaling laws U andv > U¥* at fast and slow advection, Squared average velocitgee also Refs. 6 and BSThere-

respective'y(see Ref. 1% fore, from (15) one has thatif—> U/\/In(U) for U—oo.
For the cellular flow under investigation, albeit the exact

form of the functiony(Z{) is not known, a simple argument
IV. FRONT SPEED IN THE GEOMETRICAL OPTICS can be given for an upper and a lower bound by mapping the
REGIME front dynamics onto a one-dimensional problem. The starting
oint is the following observation. In the optical regime,
ince the interface is sharp, i.6(x,y) is a two-valued func-

, (14

where (i) is a function which depends on the flow details.
As far as we know, apart from very simple shear flows
(for which (1) =1+1),'>*® there are no methods to com-
Eute Y(U) from first principles. Mainly one has to resort to
umerical simulations and phenomenological arguments.
For turbulent flows, by means of dynamical renormaliza-
group techniques, Yakhtproposed

When the front thickness and the reaction time are muclg

smaller than the length and time scales of the velocity field;,, (=1 and#=0), we can track the farther edge of the
fluctuations one has the geometrical optics regiffé.in interface between product and materiaky,(t),yu(t)),

this case the front is a sharp interface separating the reactantsich is defined as the rightmost poifin the x-direction
from the products, and can be modeled in the framework of .\ hich 0(xy Yy :t)=1. Then we can define a velocity

the G-equation (4).5% Physically speaking, one uses the
G-equation when the front thickness is very thin and itis _ Xy(t)
hard to resolve the diffusive scale. Uf:t'”; Tt
As far as the cellular flow is concerned, the front border -
is wrinkled by the velocity field during propagation and its which gives an equivalent value of the standard definition
length increases until pockets of fresh material devéiol?  within less than 2%see Fig. 6. In Fig. 7 we show the time
After this, the front propagates periodically in space and timesvolution of the point Xy (t),ym(t)). After a transient, in
with an average speed, which is enhanced with respect to the unit cell[0,27] (we describe the case=2m, i.e., the
the propagation speeg of the fluid at rest (see Ref. 31 for one adopted heyethe point &y (t),ym(t)) moves to the
some pictorial views right along the separatrices of the streamfunc{®n so that

(16)
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FIG. 7. Time evolution of the edge poinky(t) (solid ling) and yy(t) FIG. 8. The measured/(U/v,) as a function ofU/v, (OJ), the Yakhot

(dashed ling The simulation parameters are the ones of Fig. 6. formula (15) with a=2 (O) and d=1/2, the function i, for ,3:11%
(dashed and dotted lineand for 3=0.89 (solid line). The dashed-dotted
line is the bound19).

ym(t) is essentially close to the values 0 or Along this

path one can reduce the edge dynamics to tirbblem simple one-scale vortical flow investigated here displays

B , such a behavior may be incidental. However, we believe that
T_00+U'B|S'n(x'\"(t))|’ 17) it can be due to physical reasons. Indeed, the large scale

features of the flow, e.g., the absence of open chartlilets

where the second term of the rhs is the horizontal componenf =« chear flow can be more important than the detailed
of the velocity field. We have neglected tjedependence, . i < ale properties of the flo

replacing it with consta_ne which takes into account the A definite answer to this question is beyond the scope of
average effect of the vertical component of the velocity f'eldthis article, however it could be an interesting point for fu-

along the path followed byxy, ,ym). By solving(17) in the ture investigations
interval x,, € (0,27) one obtains the timel, needed foixy, '
to reach the end of the cell. The front speed, as the speed Q/f
- . . . . NCLUSION
the edge particle, is then given by=27/T. The final result CONCLUSIONS
is We addressed the problem of front speed enhancement
induced by stirring due to a cellular flow in different re-
b ot = B —T I~ U+(UB)*~1 (18 gimes. In the slow reaction case a rather general résasted
B U-Jup)?-1/° on homogenization techniquegives vi~UY* for the fast

. . reaction case, physical arguments give- U%* In the geo-
Note that(18) is valid only for%lﬁ?}. We have takers metrical optics limit one finds that; is a linear function of
=1 for the upper bound and=; [which is the average of U, apart from logarithmic corrections. All these results has
|cos)| between O andr] for the Iowgr bounq. we h_ave also been confirmed by numerical simulations.
computed th? average WOSW(W n a.perlo.d Of.'ts evo- The steady cellular flow treated here, albeit its simplic-
lution (see Fig. 7, obtaining3~0.89 which gives indeed a

o ) ity, provides a paradigm that can be insightful for the study
very good approximation of the measured cufsee Fig. & of front propagation in more general flows. For instance, in

We stress that the theoretical curve is not a fit, but it just, geometrical optics limit the asymptotical behavigr
mvolve; the measureq pararneﬁer . ~U/In(U) is rather similar to the one found by Yakhai(
This agreement is an indication that the average of |, In(U)) (Ref. 34 for turbulent velocity fields.

|$]056|/(ME;))| dep_enolls I;)nU_ and f:od_\ézry Wetalfjly (as we One could conjecture that there are nontrivial reasons for
checked numerically Previous studies reported an essen- this similarity: the front propagation principally involves the

tially linear dependence of the front speed on the flow interWargest scales. In this context, it is not surprising that a mul-

fsny, |.e.,vfoculg‘oglgrgeu WE'Ch SQOt ttc))o far El:t.d'ﬁfr.ené ftiscale processas turbulenceor a single scale process can
rom our result. A rigorous bound has been obtained in Re yield similar results.

36 by using theG-equation:
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APPENDIX NUMERICAL METHOD ...................... e

We introduce a lattice of mesh sizex and Ay (for the
sake of simplicity we assumAx=Ay) so that the scalar
field is defined on the pointg, ,=(NAX,mAYy): 6, ()
=60(nAx,mAy,t). FIG. 9. Pictorial scheme of the numerical algorithm for RAD systems. Here

Giving the field at timet, the algorithm computes the #*=.2D At W® whereW® is a standard Gaussian variable.
field at timet+ At, and the integration method depends on
which kind of physical regime we are interest in: reaction-
advection-diffusion equatiofil) or optical limit (4).

At
1. Reaction diffusion equation FA X)=x+Uu(X)At, Gpz=0+ ?f(e).
r

In numerical approaches one is forced to discretize the _ _ .
dynamics, so let us consider the case of a velocity fielqo From andalgoArlthrTélc p:ém of V'EW (tjhgdwgqle prﬁcess
which is always zero apart fror-impulses at times=0, etweent an H t, Eq.( .)’ can be divide into t_ree
AL +2AL +3AL - steps:(1) diffusive, (2) advective, and3) reactive. The first

' ' ' two steps determine the origin of the Lagrangian trajectory
evolving with a given noise realizatiop and ending irx. In

U(Xi):n;w u(x) 6(t—nAt). (Al)  the third step, the reaction at point for the advected/

diffused passive scalatis computed:
In such a case the Lagrangian evolution is given by a con-

servative mag(in 2D the map is symplectic due to incom- (1) backward diffusionx—x—2DAt», -
pressibility) (2) backward advection by the Lagrangian map:

x— V2D At p—F 4Y(x— 2DAt #),

o

X(t+AD=FHX(D). (A2) " (3) forward reaction:
If also the production term is zero apart frofimpulses, O(t+At) =G, (0(1)).
B . B These three steps can be numerically implemented as fol-
f(a)_n;x 9(0)a(t=nAt), (A3) lows. For each grid poink,,, one usesN independent

Gaussian process&¥“, «=1,... N, N>1, and computes
X m=Xnm— V2D At W®. Then, using the Lagrangian back-
O(t+At) =G, (6(1)). (A4)  ward propagatory = F‘A‘(Y,‘{m). For 6, m(t+At) one

Let us remark that choosing &impulsed production term needs thea values af at timet n th? posmonsrn’m.. Typi-
cally thery . are not on the grid pointsndx,mAy); never-

can be particularly relevant in some experimental settings, o . .
. . S L L theless, we can compute the valééry ,,t) using simple
i.e., when one considers periodic illumination in light- . . : :

o : : : . linear interpolation fromg,, ,(t). Therefore, we have
sensitive chemical reactions as in Ref. 39. The concentration :

one can introduce a reaction map

field 6(x,t+At—0) is obtained from 6(x,t+0) 1 N

=Gu(0(x,t)) solving the bare diffusion equatiord,d Onm(t+At)= N 2 G[o(ry D]

=DV?2¢: a=1

O(x,t+At—0) To correctly simulate the diffusion process we have to im-

pose a relation betwedn, Ax and At to assure that diffu-

1 2 — sion transports a particle over distances/2D At much
B (ZW)aizf e TP0(x=V2DAt p,t+0)d, (AS5) larger than the grid sizAx (see Fig. 9.

or, in other terms,

O(x,t+At)=(Gy(O(F % (x— VZDAt’?(t))-t))>n'(A6) 2. Geometrical optics limit
o . . Similar to the previous case, one can integrate the dy-
which is equivalent to Eq(7). Let us remark that EGAS) is namics of the optical front using a two step discrete-time

exact if both the velocity field and the reaction are . : . .
. rocess. Starting from the fielg}, ,, at timet, one can obtain
s-impulsed processes. However, one can also use the foj- '

mula(A6) as a practical method for the numerical integration he field at timet + At with the following algorithm:
of Eq. (1) if one assumes small enougtt, so that the La- (1) Using the Lagrangian propagator one evolves the inter-
grangian and reaction maps are given at the lowest order by face between burned and unburned region.
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