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Abstract

We review a recently proposed approach to the computation of the �-entropy of a given signal
based on the exit-time statistics, i.e., one codes the signal by looking at the instants when the
uctuations are larger than a given threshold, �. Moreover, we show how the exit-times statistics,
when applied to experimental turbulent data, is able to highlight the intermediate-dissipative-range
of turbulent uctuations. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this contribution is twofold. First, we review an approach for the deter-
mination of the (�; �)-entropy, based on the analysis of exit-times, recently proposed
in Ref. [1]. In few words, the idea consists in looking at the information-content of a
string of data, without analysing the signal with a constant sampling time, �, but only
when the uctuations are larger than some �xed threshold, �.
Second, we also present a recent application of exit-time analysis to experimental

turbulent data [2]. In this latter case, we show that the exit-time events are natu-
rally dominated by laminar uctuations in the turbulent ows and, therefore, show a
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much extended intermediate-dissipative-range than the usual observable based on direct
velocity uctuations.

2. Exit-time for ”-entropy

It is commonplace to look at natural system as a source of information. The natural
problem arising from such a point of view is to quantify the degree of complexity of
the investigated system (for a nice review see Ref. [3]). The typical questions may
range from the aim to distinguish between stochastic or chaotic systems to the more
pragmatic goal of determining the degree of complexity (read predictability) at varying
the resolution in phase-space and time [4,5].
To address quantitatively and unambiguously (in principle) the �rst question the

proper mathematical tool is the Kolmogorov–Sinai (KS) entropy, hKS [6]. The main idea
is very natural: we must look at the information [7] contained in the time sequence as a
probe of the underlying dynamics. This is realized by studying the symbolic dynamics
obtained by assigning di�erent symbols to di�erent cells of a �nite partition of the phase
space. The probability distribution of allowed sequences (words) is selected by the
dynamical evolution. The average information-gain is de�ned by comparing sequences
of length m and m + 1, in the limit of large m. Letting the length of the words, m,
to in�nity and going to in�nitely re�ned partition, one obtains the KS-entropy. The
KS-entropy measures the degree of complexity of the trajectory and corresponds to the
rate of information transmission necessary to unambiguously reconstruct the signal.
Unfortunately, only in simple, low-dimensional, dynamical systems such a procedure

can be properly carried out with conventional methods [4,5,8,9]. The reason is that for
high-dimensional systems the computational resources are not su�cient to cope with
the very high resolution and extremely long time series required. Moreover, in many
systems, like in turbulence, the existence of non-trivial uctuations on di�erent time
and spatial scales cannot be captured by the KS-entropy. This calls for a more general
tool to quantify the degree of predictability which depends on the analysed range of
scales and frequencies. This was the aim leading Shannon [10] and Kolmogorov [11,12]
to introduce the so-called �-entropy, later generalised to the (�; �)-entropy [4,8,9]. Con-
ceptually it corresponds to the rate of information transmission necessary to recon-
struct a signal with a �nite accuracy �, and with a sampling time interval �. The
naive (�; �)-computation is usually performed by looking at the Shannon entropy of the
coarse-grained dynamics on an (�; �)-grid in the phase-space and time. However, this
method su�ers of many computational drawbacks and it is almost useless for many
realistic time-series [5]. Another attempt in this direction is the introduction of the
�nite size Lyapunov exponent [13,14]. Let us just briey recall the conventional way
to calculate the (�; �)-entropy for the case of a time-continuous signal x(t), recorded
during a (long) time interval T . One de�nes an �-grid on the phase-space and a �-grid
on time. If the motion is bounded, the trajectory visits only a �nite number of cells;
therefore to each subsequence of length n · � from x(t) one can associate a word of
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length n, out of a �nite alphabet: Wn
t (�; �)= (St ; St+�; : : : ; St+(n−1)�), where St labels the

cell containing x(t). From the probability distribution of the above words one calculates
the block entropies Hn(�; �):

Hn(�; �) =−
∑

{Wn(�;�)}
P(Wn(�; �)) ln P(Wn(�; �)) : (1)

the (�; �)-entropy per unit time, h(�; �) is �nally de�ned as

hn(�; �) =
1
�
[Hn+1(�; �)− Hn(�; �)] ; (2)

h(�; �) = lim
n→∞ hn(�; �) =

1
�
lim
n→∞

1
n
Hn(�; �) ; (3)

where for practical reasons the dependence on the details of the partition is ignored,
while the rigorous de�nition is given in terms of the in�mum over all possible partitions
with elements of diameter smaller than � [4]. Note that the above-de�ned (�; �)-entropy
is nothing but the Shannon entropy of the sequence of symbols (St ; St+�; : : :) associ-
ated with the analysed signal. The Kolmogorov–Sinai entropy, hKS , is obtained by:
hKS=lim�→0 lim�→0 h(�; �). In the case of discrete-time systems, one can de�ne h(�) ≡
h(�; �= 1), and hKS = lim�→0 h(�). In usual continuous-time systems the � dependence
disappears from h(�; �), so one can still de�ne an �-entropy per unit time h(�). In
particular, also in a pure deterministic ow one can put h(�) = h(�; �= 1).
Let us remind that for a genuine deterministic chaotic system one has 0¡hKS ¡∞

(hKS=0 for a regular motion), while for a continuous random process hKS=∞. There-
fore, in order to distinguish between a purely deterministic system and a stochastic
system it is necessary to perform the limit � → 0 in (3). Obviously, from a physi-
cal and=or numerical point of view this is impossible. Nevertheless, by looking at the
behaviour of the (�; �)-entropy at varying � one can have some qualitative and quan-
titative insights on the chaotic or stochastic nature of the process. For most of the
usual stochastic processes one can explicitly give an estimate of the entropy scaling
behaviour when � → 0 [4]. For instance, in the case of a stationary Gaussian process
with power spectrum S(!) ∼ !−2 one has [4]

h(�) ≡ lim
�→0

h(�; �) ∼ 1
�2
: (4)

Let us now introduce the main point by discussing in detail the di�culties that may
arise in measuring the �-entropy for the following non-trivial example of a chaotic-
di�usive map [15], xt+1 = xt + p sin 2�xt . When p¿ 0:7326 : : : ; one has a di�usive
behaviour on large scales, so one expects

h(�) ' � for �¡ 1; h(�)˙
D
�2

for �¿ 1 ; (5)

where � is the Lyapunov exponent and D is the di�usion coe�cient. The numerical
computation of h(�), using the standard codi�cation, is highly non-trivial already in
this simple system. Indeed, behaviour (5) in the di�usive region is roughly obtained
by considering the envelope of hn(�; �) evaluated for di�erent values of �; while looking
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Fig. 1. Numerically computed lower bound (Squares) and upper bound (with �e = 0:1〈t(�)〉) (Circles) for
the (�; �e)-entropy in the case of a self-a�ne signal with � = 1

3 evaluated by using the exit-time approach.
The two straight lines show the scaling �−3.

at any single (small) value of � (one would like to put � = 1) one obtains a rather
inconclusive result (see Fig. 1 of Ref. [1]). This is due to the fact that one has to
consider very large block lengths n when computing h(�; �), in order to obtain a good
convergence for Hn(�; �)− Hn−1(�; �) in (3). Indeed, in the di�usive regime, a simple
dimensional argument shows that the characteristic time of the system is T� ≈ �2=D.
If we consider, for example, � = 10 and typical values of the di�usion coe�cient the
characteristic time, T�, is much larger than the elementary sampling time �= 1.
Our approach to calculate h(�) di�ers from the usual one in the procedure to construct

the coding sequence of the signal at a given level of accuracy. Speci�cally, instead of
coding a trajectory according to the symbols St , which label the cells visited by the
trajectory at constant time intervals, �, we code it by considering the exit-time, t(�), and
the exit direction (up or down) on an alternating grid of cell size �. We consider the
original continuous-time record x(t) and a reference starting time t= t0; the subsequent
exit-time, t1, is then de�ned as the �rst time necessary to have an absolute variation
equal to �=2 in x(t), i.e., |x(t0 + t1) − x(t0)|¿�=2. This is the time the signal takes
to exit the cell of size �. Then starting from t1 we look for the next exit-time t2, i.e.,
the �rst time such that |x(t0 + t1 + t2) − x(t0 + t1)|¿�=2 and so on. Let us note that,
with this de�nition, the coarse-graining grid is not �xed, but it is always centred in the
last exit position. In this way we obtain a sequence of exit-times, {ti(�)}, and, moreover,
to distinguish the direction of the exit (up or down out of a cell), we introduce the
label ki =±1, depending whether the signal is exiting above (+1) or below (−1). At
the end, the trajectory is univocally coded with the required accuracy, by the sequence
((t1; k1); (t2; k2); : : : ; (tM ; kM )), where M is the total number of exit-time events observed
during the total time T . Correspondingly, an “exit-time word” of length n is a sequence
of couples of symbols 
ni (�)=((ti; ki); (ti+1; ki+1); : : : ; (ti+n−1; ki+n−1)). From these words
one �rstly calculates the block entropies, H
n (�), and then the exit-time �-entropies:
h
(�) ≡ limn→∞H
n+1(�)−H
n (�). Let us note that h
(�) is an �-entropy per exit and
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that M=T=〈t(�)〉. The exit-time coding is a faithful reconstruction with accuracy � of the
original signal. Therefore, the total entropy, h
(�)M , of the exit-time sequence, 
M (�),
is equal to the total entropy, h(�)T = h(�)N�, of the standard codi�cation sequence,
WN (�). Namely, for the �-entropy per unit time, we obtain

h(�) =Mh
(�)=T =
h
(�)
〈t(�)〉 : (6)

Now we are left with the determination of h
(�). This implies a discretisation, �e, of the
exit-times. The exit-time entropy h
(�) becomes an exit-time (�; �e)-entropy, h
(�; �e),
obtained from the sequence {�i; ki}, where �i identi�es the exit-time cell containing ti.
Eq. (6) becomes now

h(�) = lim
�e→0

h
(�; �e)=〈t(�)〉 ' h
(�; �e)=〈t(�)〉 ; (7)

the latter relation being valid for small enough �e. However, in all practical situations
there exist a minimum �e given by the highest acquisition frequency, i.e., the limit �e →
0 cannot be reached. The discretisation interval �e can be thought as the equivalent to
the � entering in the usual (�; �)-entropy, so that

h(�; �e) = h
(�; �e)=〈t(�)〉 : (8)

At this point it is important to stress that in most of the cases the leading � contribution
to h(�) in (7) is given by the mean exit-time 〈t(�)〉 and not by h
(�; �e). Anyhow, the
computation of h
(�; �e) is compulsory in order to recover a zero entropy for regular
(e.g. periodic) signals. It is easy to obtain the following bounds [1]:

h
({ki})
〈t(�)〉 6h(�)6

h
({ki}) + c(�) + ln(〈t(�)〉=�e)
〈t(�)〉 ; (9)

where h
({ki}) is the Shannon entropy of the sequence {ki} and c(�) = − ∫
p(z)

lnp(z) dz, and p(z) is the probability distribution function of the rescaled exit-time
z(�) = t(�)=〈t(�)〉.
The above bounds are rather good, and typically 〈t(�)〉 shows the same scaling

behaviour as h(�). One could wonder why the exit-time approach is better than the
usual one. The reason is simple (and somehow deep): in the exit-time approach it
is not necessary to use a very large block size since, at �xed �, the typical time at
that scale is automatically given by 〈t(�)〉. This fact is particularly clear in the case of
Brownian motion. In such a case 〈t(�)〉˙ �2=D, where D is the di�usion coe�cient. As
previously discussed, the computation of the h(�) with the standard methods implies
the use of very large block sizes, of order �2=D.
Let us now briey comment the limit �→ 0 for a discrete-time system (e.g. maps). In

this limit the exit-time approach coincides with the usual one: we have just to observe
that practically the exit-times always coincide with the minimum sampling time and to
consider the possibility to have jumps over more than one cell, i.e., the ki symbols may
take values ±1;±2; : : : . Let us now discuss the �-entropy for a self-a�ne stochastic
signal with H�older-exponent � = 1

3 , i.e., |x(t) − x(t + �t)| ∼ (�t)1=3. Such a signal
can be seen as a stochastic surrogate of a turbulent signal (ignoring intermittency) and



54 M. Abel et al. / Physica A 280 (2000) 49–59

can be constructed in di�erent ways (see Ref. [16] and references therein). A simple
dimensional estimate, which is rigorous for Gaussian processes [11,12], tells us that
the leading contribution to the �-entropy scaling is given by h(�) ∼ �−3. To generate
the self-a�ne signal we use a recent algorithm [16], where x(t) is obtained as product
of Langevin processes. In Fig. 1 we show the bounds (9) for (�; �e)-entropy calculated
via the exit-times. We observe an extended region of well-de�ned scaling, which is
the same for 1=〈t(�)〉 ∼ �−3. The usual approach (not shown) gives a poor estimate
for the scaling as the envelope of h(�; �) computed for various � (see, for example,
Figs. 15–18 in Ref. [4]).

3. Exit-times in turbulence

The study of the exit-times statistics have been also demonstrated highlighting for
studying some features of turbulent ows. The key point consists in understanding
which kind of turbulent events dominate the exit-time statistics, and therefore, what
one can learn about turbulence by measuring the exit-times probability distribution.
Let us suppose to have a one-dimensional string of turbulent data (typically the

output of an anemometer �xed in some spatial location in the ow). Then one usu-
ally investigates velocity uctuations by studying the so-called structure functions, i.e.,
moments of velocity increments over a time-delay �: Sp(�) = 〈〈[(v(t + �) − v(t)]p〉〉,
where 〈〈·〉〉 indicates the usual time average. It is well known that for time increment
corresponding to the inertial range, structure functions develop an anomalous scaling
behaviour: Sp(�) ∼ ��(p), where �(p) is a non-linear function, while far inside the
dissipative range they show the laminar scaling: Sp(�) ∼ �p.
Beside the huge amount of theoretical, experimental and numerical studies devoted

to the understanding of velocity uctuations in the inertial range (see Ref. [17] for
a recent overview), only few — mainly theoretical — attempts have focused on the
intermediate dissipation range (IDR), introduced in Ref. [18] (see also Refs. [19–22]).
By IDR we mean the range of scales, � ∼ �d, between the inertial and the dissipative
range, where with �d we denote the dissipative Kolmogorov time.
A non-trivial IDR is connected to the presence of intermittent uctuations in the

inertial range. Namely, anomalous scaling law characterized by the exponents �(p),
can be explained by assuming that velocity uctuations in the inertial range are char-
acterized by a spectrum of di�erent local scaling exponents: ��v= v(t + �)− v(t) ∼ �h
with the probability to observe at scale � a value h given by P�(h) ∼ �3−D(h). This
is the multifractal picture of the energy cascade which has been con�rmed by many
independent experiments [17]. The non-trivial dissipative statistics can be explained by
de�ning the dissipative cut-o� as the scale where the local Reynolds number is order
of unity

Re(�d) =
�dv�d
�

∼ O(1) : (10)
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By inverting (10) we obtain a prediction of a uctuating �d: �d(h) ∼ �1=(1+h), where
for sake of simplicity we have assumed the large scale velocity, U0, and the outer
scale, L0, both �xed to one.
We review here a recently proposed investigation of exit-time statistics in such a

turbulent ows, which has been shown to be able to, to highlight the IDR properties [2].
The main idea is to take a one-dimensional string of turbulent data, v(t), and to analyse
the statistical properties of the exit times from a set of de�ned velocity-thresholds.
Roughly speaking a kind of inverse structure functions [23].
Fluctuations of viscous cut-o� are particularly important for all those regions in the

uid where the velocity �eld is locally smooth, i.e., the local uctuating Reynolds
number is small. In this case, the matching between non-linear and viscous terms
happens at scales much larger than the Kolmogorov scale, �d ∼ �3=4. It is natural,
therefore, to look for observable which are more sensitive to laminar events. A possible
choice is to measure the exit-time moments through a set of velocity thresholds. More
precisely, given a reference initial time t0 with velocity v(t0), as in Section 2, we
de�ne �(�v) as the �rst time necessary to have an absolute variation equal to �v in
the velocity data, i.e., |v(t0) − v(t0 + �(�v))| = �v. By scanning the whole time series
we recover the probability density functions of �(�v) at varying �v from the typical
large scale values down to the smallest dissipative values. Positive moments of �(�v)
are dominated by events with a smooth velocity �eld, i.e., laminar bursts in the turbulent
cascade. Let us de�ne the inverse structure functions (Inverse-SF) as

�p(�v) ≡ 〈〈�p(�v)〉〉 ; (11)

where now one has to consider an average di�erent from the one used to de�ne the
�-entropy (see below). According to the multifractal description we suppose that, for
velocity thresholds corresponding to inertial range values of the velocity di�erences,
��dv ≡ vm.�v.vM ≡ �T0v, the following dimensional relation is valid: ��v ∼ �h →
�(�v) ∼ �v1=h. The probability to observe a value � for the exit time is given by
inverting the multifractal probability, i.e., P(� ∼ �v1=h) ∼ �v[3−D(h)]=h. Made this ansatz,
the prediction for the inverse-SF, �p(�v) evaluated for velocity thresholds within the
inertial range is:

�p(�v) ∼
∫ hmax

hmin

dh �v[p+3−D(h)]=h ∼ �v�(p) ; (12)

where the RHS has been obtained by a saddle point estimate

�(p) = min
h
{[p+ 3− D(h)]=h} : (13)

Let us now consider the IDR properties.
For each p the saddle point evaluation (13) selects a particular h=hs(p), where the

minimum is reached. Let us also remark that from (10) we have an estimate for the
minimum value assumed by the velocity in the inertial range given a certain singularity
h : vm(h)=��d(h)v ∼ �h=(1+h). Therefore, the smallest velocity value at which the scaling
�p(�v) ∼ �v�(p) still holds depends on both � and h. Namely, �vm(p) ∼ �hs(p)=1+hs(p).
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The most important consequence is that for �v¡�vm(p) integral (12) is not any more
dominated by the saddle point value but by the maximum h value still dynamically alive
at that velocity di�erence, 1=h(�v) =−1− log(�)=log(�v). This leads for �v¡�vm(p)
to a pseudo-algebraic law

�p(�v) ∼ �v[p+3−D(h(�v))]=h(�v) : (14)

The presence of this p-dependent velocity range, intermediate between the inertial
range, �p(�v) ∼ �v�(p), and the pure dissipative scaling, �p(�v) ∼ �vp, is the IDR
signature. Then, it is easy to show that inverse-SF should display an enlarged IDR.
Indeed, for the usual direct structure functions the saddle point hs(p) value is reached,
if p¿ 0, for h¡ 1

3 . This pushes the IDR to a range of scales very di�cult to observe
experimentally [20]. On the other hand, as regards the inverse-SF, the saddle point
estimate of positive moments is always reached for hs(p)¿ 1

3 . This is an indication
that we are probing the laminar part of the velocity statistics. Therefore, the presence
of the IDR must be felt much earlier in the range of available velocity uctuations.
Indeed, if hs(p)¿ 1

3 , the typical velocity �eld at which the IDR shows up is given by
�vm(p) ∼ �hs(p)=(1+hs(p)), that is much larger than the Kolmogorov value �vrd ∼ �1=4.
Let us make a technical remark. If one wants to compare predictions (12) and (14)

with the experimental data, it is necessary to perform the average over the time-statistics
in a weighted way. This is due to the fact that by looking at the exit-time statistics
we are not sampling the time-series uniformly, i.e., the higher the value of �(�v) is,
the longer it is detectable in the time series. Let us call �1(�v); �2(�v); : : : ; �N (�v) the
string of exit time values obtained by analysing the velocity string data consecutively
for a given �v. N is the number of times for which ��v reaches a given threshold. It
is easy to realize [13,14] that the sequential time average of any observable based on
exit-time statistics, 〈�p(�v)〉 ≡ (1=N )

∑N
i=1 �

p
i , is connected to the uniformly-in-time

multifractal average, 〈〈(·)〉〉 ≡ ∫
dh(·), by the relation

〈〈�p(�v)〉〉=
N∑
i=1

�pi
�i∑N
j=1 �i

=
〈�p+1〉
〈�〉 ; (15)

where �i=
∑N

j=1 �i takes into account the non-uniformity in time. Incidentally, we
observe that according to Eq. (15), the average exit-time used in the de�nition of
the �-entropy (6) corresponds to �−1(�) which is proportional to �−3, so that even
considering the intermittency correction for one-dimensional turbulent signal one has
h(�) ∼ �−3.
Let us now go back to the typical behaviour showed by high-Reynolds inverse-SF.

As one can see in Fig. 1 of Ref. [2], the inverse-SF have a very poor scaling behaviour
also at high Reynolds. We interpret this as a clear evidence of IDR’s contamination
into the whole range of available velocity values for the inverse-SF cases.
In order to better understand the scaling properties of �p(�v) we also investi-

gated a synthetic multi-a�ne �eld obtained by combining successive multiplications
of Langevin dynamics [16]. The advantage of using a synthetic �eld is that one can
control analytically the scaling properties of direct structure functions in order to have
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the same scaling laws observed in experimental data. An IDR can be introduced in
the synthetic signals by smoothing the original dynamics on a moving time-window of
size �T . Imposing a smoothing time-window is equivalent to �xing the Reynolds num-
bers, Re∼ �T−4=3. The purpose to introduce this stochastic multi-a�ne �eld is twofold.
First we want to reach high Reynolds numbers enough to test the inverse-multifractal
formula (13). Second, we want to test that the very extended IDR observed in the ex-
perimental data is also observed in this stochastic �eld. This would support the claim
that the experimental result is the evidence of an extended IDR.
As for the �rst point, it was shown in Ref. [2] that the inverse-SF, �1(�v), measured

in the multia�ne synthetic signal at high-Reynolds numbers are in perfect agreement
with prediction (13). The same agreement also holds for higher moments, see Table 1
of Ref. [2]. Let us now go back to the most interesting question about the statistical
properties of the IDR. In order to study this question we have smoothed the stochastic
�eld, v(t), by performing a running-time average over a time-window, �T . Then we
compare inverse-SF scaling properties at varying Reynolds numbers, i.e., for di�erent
dissipative cut-o�: Re ∼ �T−4=3.
Expression (14) predicts the possibility to obtain a data collapse of all curves with

di�erent Reynolds numbers by rescaling the inverse-SF as follows [18,19]:

− ln(�p(�v))
ln(�T=�T0)

vs: − ln(�v=U )
ln(�T=�T0)

; (16)

where U and �T0 are adjustable dimensional parameters. Within the same experimental
(or synthetic) set up they are Reynolds number independent (i.e., �T independent).
The rationale for rescale (16) stems from the observation that, in the IDR, hs(p) is

a function of ln(�v)=ln(�) only. Therefore, identifying Re˙ �−1, relation (16) directly
follows from (14). This rescaling was originally proposed as a possible test of IDR
for direct structure functions in [18] but, as already discussed above, for the latter
observable it is very di�cult to detect any IDR due to the extremely small scales
involved [20].
Fig. 2 shows the rescaling (16) of the inverse-SF, �1(�v), for the synthetic �eld at

di�erent Reynolds numbers and for the experimental signals. As it is possible to see,
the data-collapse is very good for both the synthetic and experimental signal. This is a
clear evidence that the poor scaling range observed for the experimental signal can be
explained as the signature of the IDR. The same behaviour holds for higher moments
(not shown).
It is interesting to remark that for a self-a�ne signal (i.e., a unique possible value

for h and D(h= 1
3)=3), the IDR is highly reduced and the inverse-SF, scaling trivially

as �p(�v) ∼ (�v)3p, do not bring any new information.
Let us summarize the results here discussed. First, by de�ning the exit-time

moments, �p(�v), we argued that they must be dominated by the laminar part of
the energy cascade. This implies that they depend only on the part of D(h) which
falls to the right of its maximum, i.e., h¿ 1

3 . These h’s values are not testable by the
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Fig. 2. Data collapse of the inverse-SF, �1(�v), obtained by rescaling (16) for the smoothed synthetic signals
(with time windows: �T=4:8×10−4; 3×10−5; 2×10−6) and the experimental data (EXP). The two straight
lines have the dissipative (solid line) and the inertial range (dashed) slope.

direct structure functions. Inverse-SF are the natural tool to test any model concerning
velocity uctuations less singular than the Kolmogorov value �v ∼ �1=3.
Second, by analysing high-Reynolds data and synthetic �elds, we have proved that

the extension of the IDR for �p(�v) is magni�ed. Moreover, the rescaling (16) based
on the assumption (10) gives a good data collapse of all curves for di�erent Reynolds
numbers. This is a clear evidence of the IDR.

4. Conclusions

In conclusion, we have reviewed some recent investigations on the exit-time approach
to calculate �-entropy in stochastic and deterministic systems [1] and on the exit-time
approach to highlight the IDR of turbulent data [2]. In both cases we have shown
how to look at ‘inverse’ statistical estimator can improve our understanding of the
underlying dynamics, both from the entropic-point of view as for the case of the
�-entropy calculation or for the role played by viscous dissipation at not too small
scales as for the case of the intermediate-dissipative-range.
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