Dispersion of passive tracers in closed basins: Beyond the diffusion
coefficient
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We investigate the spreading of passive tracers in closed basins. If the characteristic length scale of
the Eulerian velocities is not very small compared with the size of the basin the usual diffusion
coefficient does not give any relevant information about the mechanism of spreading. We introduce
a finite size characteristic timeg(5) which describes the diffusive process at scéléVhen§ is

small compared with the typical length of the velocity field one hé8)~\ "1, where\ is the
maximum Lyapunov exponent of the Lagrangian motion. At lafgbe behavior ofr(5) depends

on the details of the system, in particular the presence of boundaries, and in this limit we have found
a universal behavior for a large class of system under rather general hypothesis. The method of
working at fixed scaled makes more physical sense than the traditional way of looking at the
relative diffusion at fixed delay times. This technique is displayed in a series of numerical
experiments in simple flows. @997 American Institute of Physid$$1070-663(197)03111-5

I. INTRODUCTION dx
a=u(x,t)+ 7(t), (1)
The understanding of diffusion and transport of passive
tracers in a given velocity field has both theoretical and pracwhereu(x,t) is the Eulerian incompressible velocity field at
tical relevance in many fields of science and engineeringthe pointx and timet, #(t) is a Gaussian white noise with
e.g., mass and heat transport in geophysical flfarsa re-  zero mean and
view, see Refs. 1 and )2 combustion, and chemical
engineerin@ <77i(t)77j(t’)>:2D05ij5(t_t,)’ (2)
.One common interest is the study of thg mechamsm%hereDo is the (bare molecular diffusivity.
which lead to transport enhancement as a fluid is driven far- - penoting® (x,t) the concentration of tracers, one has:
ther from the motionless state. This is related to the fact that
the Lagrangian motion of individual tracers can be rather J0+(u-V)0@=DyA0. 3
complex even in simple laminar flos.

The dispersion of passive scalars in a given velocity fieloFor an Eulerian velocity field periodic in space, or anyway

defined in infinite domains, the long-time, large-distance be-

Lfitt)rl]:orr?:'u:?\oﬁgalz rgjli?fzgi;r?r;t:(\j“j(’j\?;givoondl|f;erzr::i;?|r;_r havior of the diffusion process is described by the effective
: - " P ' diffusion tensorDiEj (eddy-diffusivity tensor

one can have rather fast transport, even without molecular
diffusion, in the presence dfagrangian chaoswhich is the e o1
sensitivity to initial conditions of Lagrangian trajectories. In  Dij= im 5 {(xi(t) = (X)) (;(1) = {X}))), (4)
addition, also for a two-dimensioné2D) stationary velocity =
field, where one cannot have Lagrangian cHaiosthe pres-  \where nowx(t) is the position of the tracer at timte i, |
ence of a particular geometry of the streamlines the diffusion=1 ... d (d being the spatial dimensidrand the average is
can be much larger than the one due only to the moleculataken over the initial positions or, equivalently, over an en-
contribution, as in the case of spatially periodic stationarysemble of test particles. The tenslbﬁ gives the long-time,
flows."® large-distance equation f¢®), i.e., the concentration field
Taking into account the molecular diffusion, the motion locally averaged over a volume of linear distance much
of a test particle(the tracey is described by the following larger than the typical length, of the velocity field, accord-
Langevin equation: ing to
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d 2 R2(0)exp(L(2)t)  if R(t)Y2<]
H) ) = E— 2 ~ u
7(®) i,jZ:lD”&Xi&Xj<®>. ©) R 2Dt if R3(t)Y%>1,

The above case, with finiﬂaﬁ , Is the typical situation where whereL (2)=2\ is the generalized Lyapunov exponéht?

the diffusion, for very large times, is a standard diffusionp s the diffusion coefficient, and the overbar denotes the
process. However, there are also cases showing the so-callgderage over initial conditions.

anomalous diffusianThe spreading of the particles does not In this paper we prefer to study the relative diffusi@
behave linearly with time but has a power la®@ with v instead of the usual absolute diffusion. For spatially infinite
#1/2. Transport anomalies are, in general, indicators of theases, without mean drift there is no difference; for closed
presence of strong correlation in the dynamics, even at larggasins the relative dispersion is, for many aspects, more in-

, ®

time and space scalés._ _ _ o teresting than the absolute one and, in addition, the latter is
In t_he case of infinite spat_lal domalns_and periodic Eu-dominated by the sweeping induced by large scale flow.
lerian fields the powerful multiscale techniq(&so known Furthermore we underline that although the dynamics of

as homogenization in mathematical literajugéses a useful  the ocean circulation is dominated by large mesoscale gyres,
tool for studying standard diffusion and, with some precauthe smaller scales activities within the gyres control impor-
tions, also the anomalous situatiofls. tant local phenomena such as deep water formation in the
On the other hand we have to stress the fact that diffuNorth Atlantic and in the Mediterranean basfrTherefore
sivity tensor(4) is mathematically well defined only in the the study of relative diffusion could be relevant to describe
limit of infinite times, therefore it gives a sensible result only this small-scale motion and can give crucial information on
if the characteristic length, of the velocity field is much the way to parametrize the subgrid scales in the ocean nu-
smaller than the size of the domain. merical global modet®
The case wheh, andL are not well separated is rather  Another, at first sight rather artificial, way to describe
common in many geophysical problems, e.g., the spreadinghe above behavior is by introducing the “doubling time”
of pollutants in the Mediterranean or the Baltic sea, and alsg( ) at scales as follows: We define a series of thresholds
in plasma physics. Therefore it is important to introducesM=r"5©) where 89 is the initial size of the cloud, de-
some other characterizations of the diffusion propertiegined according td6), and then we measure the tifiés(?))
which can be used also in nonideal cases. For instance, Reftakes for the growth fron®®) to 5")=r 59, and so on for
11 proposes to employ exit times for the study of transport inT(5) T(53)), . . ., up to thdargest scale under consider-
basins with complicated geometry. ation. For the threshold rate any value can be chosen but
In Sec. Il we introduce a characterization of the diffusiontoo large ones might not separate different scale contribu-
behavior in terms of the typical time(5) at scaled; this  tions, though strictly speaking the term “doubling time” re-
allows us to define a finite size diffusion coefficiddt 6) fers to the threshold rate=2.
~ &°/7(5). From the shape of(J) as a function ofs, one Performing ./ >1 experiments with different initial
can distinguish different spreading regimes. conditions for the cloud, we define the typical doubling time
In Sec. Il we present the results of numerical experi-r(5) at scales as
ments in closed basins and present new results relative to the -
behavior of the diffusion coefficient near the boundéay 1
detailed discussion is in the Appengix 7(8)=(T( 5)>e:7}21 Ti(9). ©
In Sec. IV we summarize our results, present conclu-
sions, and discuss the possibility of treatment of experimenl-€t Us stress the fact that the averagédnis different from

tal data according to the method introduced in Sec. Il the usual time average. _ o
From the average doubling time we can define the finite

size Lagrangian Lyapunov exponent as

II. FINITE SIZE DIFFUSION COEFFICIENT Inr

AN =—=,
Before a general discussion let us start with a simple 7(9)
example. Consider the relative diffusion of a cloud\otest  which is a measure of the average rate of separation of two
particles in a smooth, spatially periodic velocity field with particles at a distancé. Let us remark thak (5) is indepen-
characteristic length,. We assume that the Lagrangian mo-dent of r, for r—1". For very small separation§.e., &
tion is chaotic, i.e., the maximum Lyapunov exponanis  <I) one recovers the standard Lagrangian Lyapunov expo-
positive. Denoting wittR?(t) the square of the typical radius nentA,

(10

of the cloud 1

RE(D) = ({xi (D) = (((D) %)), ) A=limZmsin (D

6—0
where
N See Ref. 16 for a detailed discussion about these points. In
1 this framework the finite size diffusion coefficiebt( ) di-

()= Ng‘l xi(t) @) mensionally turns out to be

we expect the following regimes to hold D(8)= 5%\ (6). (12
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Note the absence of the factor 2, as one can expect by tHd. NUMERICAL RESULTS
definition (4), in the denominator db () in Eq. (12); this is

due to the fact thatr(6) is a difference of times. For a
standard diffusion proce$3(5) approaches the diffusion co-
efficientD [see Eq(8)] in the limit of very large separations

(6>1,). This result stems from the scaling of the doubling ) . . .
times 7(8)~ &2 for normal diffusion We choose a passive tracer trajectory having a chaotic

Thus the finite size Lagrangian Lyapunov eXpom}mbehawor, i.e., with a positive maximum Lyapunov exponent,

\(8), or its counterparD(3), embody the asymptotic be- computed by using standard algorithfsThen we placeN
' ’ —1 passive tracers around the first one in a cloud of initial

Here we present some numerical experiments in simple
models with Lagrangian chaos in the zero molecular diffu-
sion limit. Before showing the results, we describe the nu-
merical method adopted.

haviors .
size
R(0)=6(0)= 6",
A(8)~ A if <y (13) with R(0) defined by Eq(6). In order to have average prop-
( D/6% if 5>1,. erties we repeat this procedure reconstructing the passive

cloud around the last position reached by the reference cha-
otic tracer in the previous expansion. This ensures that the
initial expansion of the cloud is exponential in time, with a

One could ”""'V‘E'y cqnglude, matching the pehaworsﬁat typical exponential rate equal to the Lyapunov exponent.

~ly, thatD~N\Ij. This is not always true, since one can Further we define a series of thresho® =r"s5© (as

have a rather large range for the crossover due to the fact th%scribed in Sec.Jin=1 n.and we measure the time
. - y - =~ dimax

nontrivial correlations can be present in the Lagrangian, spent in expanding from™ to 61, The value oh
n . max

dynamicst’ h .
. . as to be chosen in such a way taémad~ &, wheresd .,
Another case where the behaviora{®) as a function of corresponds to the uniform distribution of the tracers in the

S is essentially well understood is 3D fully developed turbu'basin(see forthcoming discussion and the AppejdBach
lence. For the sake of simplicity we neglect intermittencyrealization stops wher(t) = &Mma)

effects. There are then three different ranges: Therefore following Ref. 16 we define a scale-dependent

(1) 6<p= Kolmogorov length: 14 8)~\: Lagrangian Lyapunov exponent as

(2) n< <= typical size of the energy containing eddies: 1
from the Richardson lawR?(t)~t® one has 1#(4) O Inr= Inr. (14)
~5—2/3; <Tn>e 7‘(5(n))

(3) &>1 : usual diffusion behavior ¥(5)~ 5" 2. In Eq. (14) we have implicitly assumed that the evolution of

One might wonder that the proposal to introduce thethe sized(t) of the cloud is continuous in time. This is not
time () is just another way to look @&2(t) as a function true in the case of discontinuous processes such as maps or
of t. This is true only in limiting cases, when the different " the analysis of experimental data taken at fixed delay

. . . R 4 B - . -~ l
characteristic lengths are well separated and intermittency fémes. DenotingT,, the time to reach sizé=6""" from
weak. In Refs. 18—20 rather close techniques are used for th&", now & is a fluctuating quantity, Eq(14) has to be
computation of the diffusion coefficient in nontrivial cases. modified as follows'?

The method of working at fixed scalé allows us to ~
extract the physical information at that spatial scale avoiding ) sy = In i (15)
unpleasant troubles associated with the method of working at (To)e 5 .

a fixed delay time. For instance, if one has a strong inter-

mittency, and this is a rather usual situati®3(t) as a func-  Inour numerical experiments we have the regimes described
tion of t can appear very different in each realization. Typi-in Sec. Il: exponential regime, i.e\(5) =X\, and diffusion-
cally one can have, see Figal, different exponential rates ke regime, i.e.\(8)=D/4 at least if the sizd. of the

of growth for different realizations, producing a rather oddPasin is large enough. _

behavior of the average?(t) without any physical meaning. For cloud sizes close to the saturation valfg,, we

For instance, in Fig. (b) we show the averaggZ(t) versus expect the following behavior to hold for a broad class of

. . e . systems:
timet; at large times we recover the diffusive behavior but at y

intermediate times there appears an apparent anomalous re- D(8) (Smax—9)

gime which is only due to the superposition of exponential ~ A(8)= v T s (16)

and diffusive contributions by different samples at the same

time. On the other hand exploiting the tool of doubling timesThe constant of proportionality is given by the second eigen-

one has an unambiguous redqdee Fig. 1c)]. value of the Perron—Frobenius operator which is related to
Of course the interesting situations are those where thehe typical time of the exponential relaxation of the tracers’

different characteristic lengthsy(l,L) are not very different  density to the uniform distribution. Actually, the analytical

and therefore each scaling regime R4(t) is not well evi-  evaluation of this eigenvalue can be performed only for ex-

dent. tremely simple dynamical system$or instance, random
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FIG. 1. (a) Three realizations ofR%(t) as a function oft built as follows: R?(t)= &3 exp(2yt) if R*(t)<1 and R%*(t)=2D(t—t,) with
y=0.08, 0.05, 0.3, and,=10, D=1.5.(b) R?(t) as function oft averaged on the three realizations showfain The apparent anomalous regime and

the diffusive one are showiic) \(8) vs 8, with Lyapunov and diffusive regimes.
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walkers, as shown in the AppendliXAs a consequence the jectories and asymptotic diffusive behavior is the standard
range of validity for(16) can be assessed only by numerical (Chirikov—Taylon mapping® It is customarily defined as
simulation. _ .
Xne1=X,+K siny,, (19)

A. A model for transport in Rayleigh—Be “nard Yn+1=YntXni1 mod 2.
convection This mapping conserves the area in the phase space. It is

The advection in two-dimensional incompressible flowswidely known that for large enough values of the nonlinear-
is described, in absence of molecular diffusion, by theity strength paramete(>K.=1 the motion is strongly cha-
Hamiltonian equation of motion where the Hamilton func-otic in almost all the phase space. In this case the standard

tion is the stream functiogy: map, in thex direction mimics the behavior of a one-
dimensional random walker, still being deterministic, and so
d_X: ‘9_‘” d_y: _ ‘9_‘” (17) one expects the behavior af 5) to be quite similar to the
dt gy’ dt X’ one already encountered in the model for RayleighneBe

If 4 is time dependent the syste(i) is nonautonomous and convection without boundaries. Numerical iteration(d9)

in general nonintegrable, then chaotic trajectories may exisfo" @ cloud of particles clearly shows the two regimes de-
One example is the model introduced in Ref. 22 to de_scnbed in(13), similar to that shown for the model discussed

scribe the chaotic advection in the time-periodic Rayleigh—IN the previous section.

Benard convection. It is defined by the stream function: We turn now to the more interesting case in which the
domain is limited by boundaries reflecting back the particle.

A : To achieve the confinement of the trajectory inside a

pixy.H= Kk sinfk{x+B sin(wt) [W(y), (18 bounded region we modify the standard map in the following

whereW(y) is a function that satisfies rigid boundary con- way

ditions on the surfacey=0 and y=a [we use W(y) Xnt1=Xp+ KF(Xp41)SINY,. (20)
= sin(wy/a)]. The directiony is identified with the vertical
direction and the two surfacgs=a andy=0 are the top and
bottom surfaces of the convection cell. The time dependent

term Bsin(wt) represents lateral oscillations of the roll pat- Wheref(x) IS a.fun_ctlon .Wh'c.h has .'t§ only zeros mL.
tern which mimic the even oscillatory instabilf. Since the mapping is defined in implicit form, the shapé of

Trajectories starting near the roll separatrices could hav ust be chosen in such a way as to assure a unique definition

a positive Lyapunov exponent and thus display chaotic mo'°' ()i”:hl’y”“) givezr:) (n,Yn). For ta;]nyf fulfillixgt 'ghils rﬁ'.
tion and diffusion in thex direction. It is remarkable that in d4€sSt e mapping20) conserves the area. flal choice

Yn+1=YntXns1— Kf'(Xq11)cOSy,  mod 2,

spite of the simplicity of the model, the agreement of theCOUId be
numerical results with experimental ones is quite gtfod. 1, |x|<7

Defining a passive cloud in ttve direction (i.e., a seg- f(x)= L—|x| 7 _ (21)
mend and performing the expansion experiment described in —/ /<|x|<L

the previous section we have that, urdiis below a fraction

of the dimension of the celh(8) =X\ [Fig. 2a)]. For larger  Strictly speaking this is not quite an appropriate choice, since
values of8 we have the standard diffusior(8)=D/s2 with it renders the map discontinuous [af =/, but this is an
good quantitative agreement with the value of the diffusionifrelevant point and it is easy to bypass this obstacle by as-
coefficient evaluated by the standard technique, i.e., usinguming a suitably smoothed version (@fl).

R2(t) as a function of time [compare Fig. @) with Fig. Performing the doubling times computati¢® one re-

2(b)]. covers both the exponential and diffusive regimesx¢b6),
To confine the motion of tracers in a closed domain, i.e.&"d in addition one has the saturation regifb®. Figure 4
xe[—L,L], we must slightly modify the streamfunction shows the behavior of the scale dependent diffusion coeffi-

(18). We have modulated the oscillating term in such a wayc€ntD(8) (12). Approaching the saturation valu,,, the
that for|x| =L the amplitude of the oscillation is zero, i.e., diffusion coefficient quickly drops to zero, following the
B—B sin(wx/L) with L=2 &n/k (n is the number of con- asymptotic Iav\{(16) derived in the Appendix. Thg gualitative
vective cell. In this way the motion is confined in pehawors in Fig. 4 do not depend on the details of the func-
[—L,L]. tion f.

In Fig. 3 we show\ (6) for two values ofL. If L is large ¢ point vortices in a disk
enough one can well see the three regimes, the exponential

one, the diffusive one, and the saturation given by @6). . As another example, we consider thg two—d.imensional
DecreasingL decreases the range of the diffusive regime lime-dependent flow generated by the motioMgoint vor-
and for small values of it disappears. tices in a closed domaff. For a disk of unit radius the

positions of the vorticesx{=r; cosé,,y,=r; sin 6, with cir-
culationT’;, evolve according to the Hamiltonian dynamics

. 1 0H . 1 0H

Yi= T o (22

B. Modified standard map

One of the simplest deterministic dynamical systems dis- -
playing both exponential growth of separation for close tra- LT ay
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FIG. 2. Lagrangian motion given by the Rayleigh-Bed convection model withA=0.2, B=0.4, w=0.4, k=1.0, a=, the number of realizations is
/"'=2000 and the series of thresholds ds=or"™ with §,=10"% and r=1.05. (a) \(6) vs &, the horizontal line indicates the Lyapunov exponent

A=0.022, the dashed line B2 with D=0.26. (b) R?(t) as a function ot, the line is Dt with D=0.26.

where the Hamiltonian is hand from Fig. 6 one can see rather clearly that, with the
9. 2 method of working at fixed scale, only two regimes survive:
He LE T log ri+ri—2rr; cog6—6)) the exponential one and that one due to the saturation. Com-
4asi U 1+ri2rj2_2rirj cog 6;— 6,)) paring Figs. 5 and 6 one understands that the mechanism
N described in Sec. Il has to be held responsible for this spu-
4 iE I'2 log(1—r2) 23) rious anomalous diffusion. We stress the fact that these mis-
Agsy 9 e leading behaviors are due to the superposition of different

regimes and that the method of working at fixed scale has the
advantage of eliminating this trouble.
r2+ri2—2rri cog 6— 6,) 1 The absence of the diffusive rang¢s)~ 62 is due to

Passive tracers evolve according 1) with ¢ given by

" the fact that the characteristic length of the velocity field,
1+ror{—2rr; cod 60— 6;) which is comparable with the typical distance between two
(29 close vortices, is not much smaller than the size of the basin.
wherex=r cosgandy=r sind denote the tracer position.
Figure 5 shows the relative diffusion as a function of IV. CONCLUSIONS
time in a system with four vortices. Apparently there is an  In this paper we investigated the relative dispersion of
intermediate regime of anomalous diffusion. On the otheipassive tracers in closed basins. Instead of the customary

1 N
W(Xy)=— EZ [’ log
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which characterizes the diffusive process at fixed séale

approach based on the average size of the cloud of tracers amximum Lagrangian Lyapunov exponent which is positive
a function of time, we introduced a typical inverse tim@g5)
For very small values of5, \(8) coincides with the

in the case of chaotic Lagrangian motion. For largethe
shape of\ (5) depends on the detailed mechanism of spread-
ing which is given by the structure of the advecting flow,

o
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which is in turn conditioned by the presence of boundaries.
In the case of diffusive regime, one expects the scaling
N(8)=4"2, which leads to a natural generalization of the

diffusion coefficient ad (8) =\ () 5.
The effectiveness of finite size quantitie$s) or D(5)

D 72

T= (A4)

-1
kz) , k=0,x1,%x2,....

At large times p approaches the uniform solutiopg
=1/2L. Writing p as p(x,t)=pg+ dp(x,t) we have, fort

in characterizing the dispersion properties of a cloud of pars- 7|

ticles is demonstrated by several numerical examples.

Furthermore, wher$ gets close to its saturation value
(i.e., the characteristic size of the bgsia simple argument
gives the shape of(8) which is expected to be universal
with respect to a wide class of dynamical systems.

In the limiting case when the characteristic length of the

Eulerian velocityl, and the size of the basih are well

separated, the customary approach and the proposed method
give the same information. In presence of strongly intermit-

tent Lagrangian motion, or whe /L is not much smaller

op~ exp—t/1y). (A5)

The asymptotic behavior for the relative dispersif(t) is

than one, the traditional method can give misleading resultsyherefore fors(t)=R(t) one has
for instance apparent anomalous scaling over a rather wide

time interval, as demonstrated by a simple example.

We want to stress that our method is very powerful in

R?(t)= %J' (x—x")2p(x,t)p(x’,t)dxdx . (AB)
For t> 7, using (A5) we obtain
2
Rz(t)~(%—Ae“Tl). (A7)
L 3A
5(t)~(ﬁ—\/2——l_e‘”ﬂ . (A8)

separating the different scales acting on diffusion and conse- ) )
quently it could give improvement about the parametrizationhe saturation value ob is Smax=LI\/3, so fort=>r;, or
of small-scale motions of complex flows. The proposedequivalently for Gma—4)/6<1, we expect

method could be also relevant in the analysis of drifter ex-
perimental data or in numerical models for Lagrangian trans-
port, in particular for addressing the question about the exis-

tence of low dimensional chaotic flows.
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APPENDIX: ASYMPTOTIC BEHAVIOR

In this Appendix we present the derivation of the
asymptotic behaviof16) of A () for & near to the saturation,
for a one-dimensional Brownian motion in the domain
[—L,L], with reflecting boundary conditions. The evolution
of the probability densityp is ruled by the Fokker—Planck
equation

p 1
=20 (A1)
with the Neumann boundary conditions
0—p( +L)=0. (A2)
X
The general solution ofAl) is
p(x,t):k_zm p(k,0)ek*e Ut c.c., (A3)

where
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fulfilled at least in nonpathological cases. In the terminology
of chaotic systems the exponential relaxation to asymptotic
distribution corresponds to have the second eigenvaloé

the Perron—Frobenius operator inside the unitary circle; now
the relaxation time is;= —In|a].®
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