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Abstract. Distributions of heavy particles suspended in incompressible turbulent
flows are investigated by means of high-resolution direct numerical simulations. It
is shown that particles form fractal clusters in the dissipative range, with prop-
erties independent of the Reynolds number. Conversely, in the inertial range, the
particle distribution is not scale-invariant. It is however shown that deviations from
uniformity depends only on a rescaled contraction rate, and not on the local Stokes
number given by dimensional analysis. Particle distribution is characterized by voids
spanning all scales of the turbulent flow; their signature on the coarse-grained mass
probability distribution is an algebraic behavior at small densities.
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1 Introduction

Spatial disributions of finite-size heavy impurities suspended in incompressible
flows is a crucial issue in engineering [1], planetology [2] and cloud physics [3].
Such particles possess inertia, and generally distribute in a strongly inhomo-
geneous manner. The common understanding of such preferential concentra-
tions relies on the idea that, in a turbulent flow, vortices act as centrifuges
ejecting such heavy particles [4]. This picture was successfully used to de-
scribe the small-scale particle distribution and, in particular, to show that
it depends only on the Stokes number Sη = τ/τη which is obtained by non-
dimensionalizing the particle response time τ with the characteristic time τη

of the small turbulent eddies.
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We confirm here that such a description is relevant at length scales which
are smaller than the dissipative scale η of the fluid turbulent flow. In partic-
ular, maximal clustering is found for Stokes numbers of the order of unity.
However, we show that particle concentration experiences also very strong
fluctuations at scales within the inertial range of turbulence. In analogy with
small-scale clustering, it is expected that for r ! η the relevant parameter
is the local Stokes number Sr = τ/τr, where τr is the characteristic time
of eddies of size r [5]. Surprisingly, we present evidences which are reported
with more details in [6], that such a dimensional argument does not apply to
describe the organization of particles in the inertial range of turbulence.

2 Model and DNS

In very dilute suspensions, small particles which are much heavier than the
fluid evolve according to the Newton equation [7]

τẌ = u(X, t) − Ẋ , (1)

where buoyancy is neglected. The response time τ is proportional to the square
of the particles size and to their density contrast with the fluid. The fluid
velocity u is a given solution to the incompressible Navier-Stokes equation
obtained numerically by direct pseudo-spectral simulations on cubic grids of
size L = 2π with 1283, 2563 and 5123 collocation points corresponding to
Taylor micro-scale Reynolds numbers Reλ ≈ 65, 105 and 185, respectively.
The fluid flow is forced by keeping constant the energy content in the two first
shells in Fourier space. Particles (N =7.5 millions for each set of 15 different
Stokes number in the range Sη ∈ [0.16 : 3.5]), initially seeded homogeneously
in space with velocities equal to the local fluid velocity, are evolved with (1) for
about two large-scale eddy turnover times. After this time, a statistical steady
state is reached and measurements are performed. Details on the numerics are
reported in [8].

3 Small-Scale Clustering

Below the Kolmogorov scale η, the velocity field is differentiable and the mo-
tion of particles is governed by the fluid strain. Their dissipative dynamics
leads their trajectories to converge to a dynamically evolving attractor, so
that their mass distribution is singular and generically scale-invariant with
fractal properties at small scales. In order to characterize such particle clus-
ters we measured the correlation dimension D2, which is estimated through
the small-scale behavior of the probability to find two particles at a distance
less than a given r: P2(r) ∼ rD2 . The dependence of D2 on Sη and Reλ is
shown in Fig. 1 (Left). We first notice that D2 depends very weakly on Reλ,
at least in the range of Reynolds numbers explored here. This observation
agrees with a recent numerical study [9], where particle clustering was equiva-
lently characterized in terms of the radial distribution function. This confirms
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Fig. 1. Left: Correlation dimension D2 vs Sη for three different Reλ, and proba-
bility P to find particles in non-hyperbolic (rotating) regions of the flow, shown for
Reλ ≈ 185 (multiplied by an arbitrary factor for plotting purposes). Right: Quasi-
Lagrangian PDF of the coarse-grained mass density ρr in log-log scale for Sη = 0.27,
0.37, 0.58, 0.80, 1.0, 1.33, 2.03, 3.31 (from bottom to top) at scale r = 32 grid points
and for Reλ ≈ 185. The solid line represent the Poisson distribution. Inset: exponent
α of the left algebraic tail vs Sη.

that τη, which varies by more than a factor 2 between the smallest and the
largest Reynolds number considered here, is the only relevant time scale to
characterize clustering below η and in particular that the effects of the flow
intermittency cannot be detected. For all values of Reλ, a maximum of clus-
tering (corresponding to a minimum of D2) is observed for Sη ≈ 0.6. Particle
positions strongly correlate with the local structure of the fluid velocity field.
This is evidenced in Fig. 1 where is plotted the probability P to find particles
in non-hyperbolic regions of the flow, i.e. at those points where the strain
matrix has two complex conjugate eigenvalues. This is consistent with the
traditional view relating particle clustering to vortex ejection.

4 Inertial Range Clustering

Fluctuations in the particle spatial distribution are qualitatively observed to
extend far inside the inertial range. To quantify this effect, we consider the
probability density function (PDF) P (QL)

r,τ (ρ) of the quasi-Lagrangian parti-
cle density coarse-grained on a scale r inside the inertial range. This quan-
tity is obtained by looking at the mass distribution in balls centered on a
given particle trajectory. This amounts to weighting each cell with the mass
it contains; for statistically homogeneous distributions, the quasi-Lagrangian
density is related to the Eulerian density by 〈ρp

r〉QL = 〈ρp+1
r 〉Eul (see [10]

for more details and a precise definition of quasi-Lagrangian averages). For
tracers, which are uniformly distributed, this PDF tends for infinite number
of particles, N → ∞, to a delta function centered at ρ = 1. For a large but
finite N , it is given by the asymptotic behavior of the binomial distribution.
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As seen from Fig. 1 (Right), strong deviations from a uniform distribution can
clearly be measured at both moderately small response times and for length
scales inside the inertial range. This indicates that concentration fluctuations
are important not only at dissipative scales but also in the inertial range.
A noticeable observation is that the low-density tail of the PDF (related to
voids) displays an algebraic behavior P (QL)

r,τ (ρ) ∼ ρα(r,τ). The dependence of
such an exponent for fixed r and varying the Stokes number Sη is shown in the
inset of Fig. 1 (Right). For low inertia (Sη → 0) the exponent tends to infin-
ity in order to recover the non-algebraic behavior of tracers. At larger Stokes
numbers the exponent approaches α = 1, indicating a non-zero probability
for totally empty areas.

Fixing the response time τ and increasing the observation scale r repro-
duces the same qualitative picture as fixing r and decreasing τ . A uniform
distribution is recovered in both limits r → ∞ or τ → 0. These two limits are
actually equivalent. At length-scales r ! η within the inertial range, the fluid
velocity field is not smooth: according to Kolmogorov (K41) theory, veloc-
ity increments behave as δru ∼ (εr)1/3. Standard turbulence theory suggests
that the physics at scale r is associated to time scales of the order of the
turnover time τr = r/δru ∼ ε−1/3r2/3. It is then clear that, for any finite
particle response time τ , the local inertia measured by Sr = τ/τr becomes so
small at sufficiently large scales that particles should behave as tracers and so
distribute uniformly in space [5]. Deviations from uniformity for finite Sr are
expected not to be scale-invariant [11]. In particular, phenomenology suggests
that the particle distribution should depend only on the local Stokes number
Sr as observed in random δ-correlated in time flows [12]. However this ar-
gument does not take into consideration some important aspects of realistic
flows.

We first notice that (1) can be rewritten as V = u − τA, where V = Ẋ
denotes the velocity of the particle and A = Ẍ its acceleration. Far enough
in the inertial range, we have Sr * 1 and the particle acceleration can be
approximated with the fluid acceleration: A ≈ a = ∂tu + u ·∇u. As a conse-
quence, the particles evolve as if transported by a synthetic compressible flow
[7, 11] whose divergence is ∇ · V = −τ∇ · (u · ∇u) ≈ τ∇2p. In this effective
velocity field, the only time scale Tr,τ relevant to the distribution of particles
at scale r is given by the inverse of the contraction rate of a volume of size r,
i.e.

1/Tr,τ = (1/r3)
∫

[0,r]3
∇ · V d3x ≈ (1/r3)

∫

[0,r]3
τ ∇2p d3x . (2)

Figure 2 (Left) displays the power spectrum of the pressure Ep(k), pressure
gradients E∇p(k) and of the velocity field Eu(k). As one can see in the range of
wavenumbers where the K41 scaling is observed, i.e. where Eu(k) ∼ k−5/3, we
find that Ep(k) ∼ k−5/3 and E∇p(k) ∼ k1/3, suggesting that δrp ∼ r1/3 and
δr∇p ∼ r−2/3, so that the scaling of pressure is there dominated by sweeping,
i.e. δr∇p = ∇δru2 ∼ U(εr)1/3/r, where U is the root mean square velocity.
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Fig. 2. Left: Pressure, pressure gradient and energy spectra vs the wavenumber k.
The straight lines indicate the scaling k−5/3 and k1/3. Right: PDF of the coarse-
grained mass in the inertial range for three values of the non-dimensional contraction
rate Γ (different collapsing curves refer to different Stokes numbers and different
scales). From bottom to top: Γ = 4.8 10−4, Γ = 2.1 10−3, and Γ = 7.9 10−3 (for
Sη = 1.60, 2.03, 2.67, 3.31). Inset: deviation from unity 〈ρ〉QL − 1 of the first-order
QL moment for scales r within the inertial range. For comparison, the behavior
∝ Γ 9/5 obtained when assuming point clusters of particles is shown as a solid line.
Both figures refer to Reλ ≈ 185.

Note that the scaling we observe is likely to be due to finite Reynolds num-
ber effects [13]. After one integration by part of (2), and plugging the above
scaling, the integral can be dimensionally estimated as 1/Tr,τ ∼ τUε1/3r−5/3.
We thus expect that the PDF of the coarse-grained mass density is not a
function of r and τ separately, but of the dimensionless contraction rate
Γ = τλε1/3r−5/3, where we have adimensionalized Tr,τ with the reference
time λ/U .

Figure 2 (Right) shows P (QL)
r,τ (ρ) for three choices of Γ obtained from

different sets of values of r and τ . The different curves collapse, giving strong
evidence in favor of the above argument. In particular, as represented in the
inset of Fig. 2 (Right), the deviations from unity of the first moment of density
collapse for all Sη investigated and for all scales inside the inertial range of
our simulation. This quantity is the same as the Eulerian 2nd-order moment
and gives the probability P2(r) to have two particles within a distance r (here
inside the inertial range). The particle distribution recovers uniformity at
large scales very slowly: much slower than if they were distributed as Poisson
point-like clusters, for which 〈ρ2〉−1 ∝ r−3 ∝ Γ 9/5 (shown in the inset for
comparison).

5 Summary and Conclusions

In conclusions we have shown that fluctuations of the concentration of heavy
particles are important, not only in the dissipative range of turbulence where



84 J. Bec et al.

they can be described by using tools borrowed by dynamical systems theory,
but also in the inertial range. Moreover, the PDF of the coarse-grained mass
density displays a rescaling property in the inertial range and only depends on
Γ = τλε1/3r−5/3, in relation with the scaling properties of the pressure field.
The presence of intermittency corrections cannot be excluded for high-order
statistics but they are not detectable by the present investigation. These find-
ings may be important for developing models for water droplet growth and
the scavenging of aerosol particles. Worth of further investigation is a char-
acterization of the large fluctuations of the particle density field by means of
statistical cluster analysis tools, such as minimum spanning trees or Minkovski
functionals.
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programme (RII3-CT-2003-506079). The unprocessed data of this study are
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