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Abstract. We present results from recent direct numerical simulations of heavy
particle transport in homogeneous, isotropic, fully developed turbulence, with grid
resolution up to 5123 and Rλ ≈ 185. By following the trajectories of millions of
particles with different Stokes numbers, St ∈ [0.16 : 3.5], we are able to characterize
in full detail the statistics of particle acceleration. We focus on the probability density
function of the normalised acceleration a/arms and on the behaviour of their root-
mean-squared acceleration arms as a function of both St and Rλ. We explain our
findings in terms of two concurrent mechanisms: particle clustering, very effective
for small St, and filtering induced by finite particle response time, taking over at
larger St.

Keywords: Lagrangian turbulence, heavy particles, Stokes particles, accel-
eration statistics

1 Introduction

Small impurities, as for example dust, droplets or bubbles, suspended in an
incompressible flow are finite-size particles whose density, in general, differs
from that of the underlying advecting fluid. Hence such particles cannot be
modeled as point-like tracers. The description of their motion must account for
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inertia whence the name inertial particles. Ultimately such inertial particles
concentrate onto nonuniform sets that evolve together with the fluid motion
and display strong spatial inhomogeneity, often called preferential concentra-
tion (see [1] in this same volume). The role of inertia is also reflected into a
slow response of these particles to changes in the fluid velocity. The combined
effects of non-uniform sampling of the physical space (preferential concen-
tration) and of the finite response time of the particles explain the observed
behaviour of particle acceleration.

2 Heavy Particle Dynamics and Numerical Simulations

The equations of motion of a small, rigid, spherical particle immersed in an
incompressible flow have been derived from first principles in [2]. For particles
much heavier than the surrounding fluid, these equations take the form

dX

dt
= V (t) ,

dV

dt
= −V (t) − u(X(t), t)

τs
. (1)

Here, X(t) denotes the particle trajectory, V (t) its velocity, u(x, t) is the
fluid velocity. The Stokes response time is τs = 2ρpa2/(9ρfν) where a is the
particle radius ρp and ρf are the particle and fluid density, respectively, and
ν is the fluid kinematics viscosity. The Stokes number is defined as St =
τs/τη (τη = (ν/ε)1/2 being the Kolmogorov timescale and ε the average rate
of energy injection). Equation (1) holds for very dilute suspensions, where
particle-particle interactions (collisions) and hydrodynamic coupling can be
neglected. The fluid evolves according to the incompressible Navier-Stokes
equations:

Dtu = (∂tu + u · ∇u) = − 1
ρf

∇p + ν∆u + f , ∇ · u = 0 , (2)

where p is the pressure field and f is the external energy source, 〈f · u〉 = ε.
The Navier-Stokes equations are solved on a (three-periodic) cubic grid of

size N3. Forcing is realized by keeping constant the spectral content of the two
smallest wavenumber shells [3]. Viscosity is chosen by requiring a Kolmogorov
lengthscale η ≈ ∆x (∆x being the grid spacing): this choice ensures that
the small-scale velocity dynamics is well resolved. We used a fully dealiased
pseudospectral algorithm with 2nd order Adam-Bashforth time-stepping.

Point particles are seeded homogeneously and with velocities equal to the
local fluid velocity of a thermalized configuration. After a transient of about
half large scale eddy turn over time the Lagrangian dynamics becomes station-
ary, and measurements are performed. We follow 15 sets of inertial particles
with Stokes numbers in the range [0.16 : 3.5] and for each set, we store at
high-frequency the position, the velocity of the particles, the velocity of the
carrier fluid. Fluid tracers (St = 0), evolving as dx(t)/dt = u(x(t), t) , are
also followed for comparison. A summary of relevant physical parameters is
given in Table 1.
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Table 1. Parameters of our DNS. Microscale Reynolds number Rλ, root-mean-
square velocity urms, energy dissipation ε, viscosity ν, Kolmogorov lengthscale
η = (ν3/ε)1/4, integral scale L, large-eddy Eulerian turnover time TE = L/urms,
Kolmogorov timescale τη, total integration time Ttot, duration of the transient regime
Ttr, grid spacing ∆x, resolution N3, number of trajectories of inertial particles for
each Stokes Nt dumped at frequency τη/10, number of particles Np per Stokes
dumped at frequency 10τη, total number of advected particles Ntot. Typical errors
on all statistically fluctuating quantities are of the order of 10%.

Rλ urms ε ν η L TE τη Ttot Ttr ∆x N3 Nt Np Ntot

185 1.4 0.94 0.00205 0.010 π 2.2 0.047 14 4 0.012 5123 5 · 105 7.5 · 106 12 · 107

105 1.4 0.93 0.00502 0.020 π 2.2 0.073 20 4 0.024 2563 2.5·105 2 · 106 32 · 106

65 1.4 0.85 0.01 0.034 π 2.2 0.110 29 6 0.048 1283 3.1·104 2.5 · 105 4 · 106

3 Results

Here we briefly recall recent results on the statistical properties of accelera-
tion [7]. The main signature of inertia on acceleration can be appreciated from
Fig. 1 (left), where we show the normalized root mean squared acceleration,
arms =

√
〈|a|2〉/3. As the Stokes number increases a sharp decrease of arms

can be observed (particularly for small St values). At changing the Reynolds
number, we find an overall dependence very similar to that observed for trac-
ers [4]. Let us now understand how this fall off is generated. In Fig. 1 (right)
we plot the root mean square fluid acceleration conditioned on the particle
positions, Dtu(X(t), t). For small Stokes numbers such quantities collapse
onto the curve of the particle acceleration. This tells us that the fast fall off
of acceleration for small St can be fully explained in terms of the “preferen-
tial concentration” of particles: particles do not sample uniformly the space.
Indeed they tend to be ejected from vortex filaments, which are characterized
by high acceleration [5].

However, at larger Stokes number the conditional acceleration tends to
recover the value it has in the case of tracers, meaning that as St increases -
in the range here explored-, an homogeneous sampling of the small scale flow
structures is recovered (see also [1]). Therefore preferential concentration is
not the only mechanisms influencing particle acceleration statistics. For this
we note that the particle equation of motion (1) can be formally solved as
V (t) =

∫ t
−∞ e−(t−s)/τsu(X(s), s) ds which tells us that inertia plays a role

similar to that of an exponential low-pass filter for the fluid velocity. Of course
this is not exactly true because particle trajectories are different from those
of tracers. We can define a filtered fluid velocity along tracers trajectories, i.e.
uF (t) =

∫ t
−∞ e−(t−s)/τsu(x(s), s) dsand compute the acceleration aF = d

dtu
F .

By averaging |aF |2 along the tracer trajectories we eliminate any effect of
preferential concentration and focus on the effect of filtering. As one can see
from 1 (right), for large St, one has a fairly good agreement between the arms

of the inertial particles and the root mean squared acceleration computed on
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Fig. 1. (left) Normalised acceleration variance arms/(ε3/ν)1/4 vs. St at varying the
Reynolds number: Rλ = 185 (!); Rλ = 105 (◦); Rλ = 65 ($). (right) Acceleration
variance, arms (!), vs. St, compared with the fluid acceleration at particle position,
〈(Du/Dt(X(t), t)2〉1/2 ($) and with the root mean square acceleration of filtered
tracer trajectories, aF

rms (◦). Data in this figure refer to Rλ = 185.
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Fig. 2. (left panel) Acceleration probability distribution function for a subset of
Stokes values (St = 0, 0.16, 0.37, 0.58, 1.01, 2.03, 3.31 from top to bottom, respec-
tively) and for the case Rλ = 185. (right panel) The two more external curves
correspond to the acceleration pdf for St = 0.16 (!) and the pdf of the fluid trac-
ers acceleration measured at the same position of the inertial particles, Du

Dt (solid
line). The two inner curves are the acceleration pdf for the highest Stokes number,
St = 3.31, (◦) and the pdf of the filtered fluid acceleration (solid line). All curves
are normalised to unit variance.

filtered (over a time window τ) tracer trajectory. This shows that, for those
values of St, the main role of inertia is to act as a filter for the high-frequency
(intense) fluctuations of the fluid acceleration.

In Fig. 2 we show the acceleration probability density functions for some
particular St values. It is evident that the effect of increasing St does produce
a tendency for the acceleration pdfs to have lower and lower tail. Thanks to
the previous observations, one is tempted to interpret this steepening of the
pdf’s tails as due to the combined effect of preferential concentration and fil-
tering. Figure 2 demonstrates that this is indeed correct. Here we compare
the normalised pdf of the particle acceleration with that of the fluid tracers
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conditioned to be at particle positions (for a small St value) and the filtered
tracer acceleration for a large St value. As one can see the agreement between
the entire functional form of the acceleration pdf is striking and confirms
the relevance of preferential concentration or filtering in the two opposite
limiting case of, respectively, small or large St value. Besides the phenomeno-
logical picture for the behaviour of the acceleration, one may be interested
in assessing how much our simplified model, represented by (1), do indeed
describe physical reality. For the sake of this comparison we refer to recent
experiments reported in [6]. A first observation is that in experiments it is
impossible to deal with an exactly monodispersed phase, i.e. the radii of the
particles (droplets) is distributed around some mean value. As a consequence
this implies that the particles will not have the same Stokes number but a
distribution peaked around a mean value. However experiments [6] were so
accurate that the variance of the particle size distribution was precisely con-
trolled and the particles could almost be regarded as monodisperse. Indeed
we do find an excellent agreement between experimental and numerical pdf
for the acceleration (see Fig. 3) at comparable Stokes numbers.

As a side note, the huge database that we have collected, in principle,
allows us to make predictions also for polydispersed solution. If the solution is
polydispersed one would measured, e.g. for the acceleration, the convolution
of the acceleration measured for a give Stokes with the relative probability
to find such a Stokes particle. Analysis in this direction has beet attempted
in [8].
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Fig. 3. Comparison between experimental acceleration pdf (•) at 〈St〉 = 0.09 ± 0.03
from [6] and numerical data (solid line) at St = 0.16 from [7, 8].
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4 Conclusions

We presented results on the statistical properties of acceleration for inertial
particles in turbulent flows. We have shown that for small St values the pre-
dominant effect can be associated to a tiny change in the space distribution of
particles (not anymore uniform) which, however, does produce a remarkable
effect on both the variance and the tails of the acceleration pdfs. At large St
values filtering effect are instead capable to explain the asymptotic behaviour
of the acceleration. Present results do compare nicely (see Fig. 3) with recent
state-of-the-art experimental measurements [6]. In the future it will be inter-
esting to assess the relevance of finite density effect or of the back-reaction of
the particle on the fluid itself.
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