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Turbulence drives microscale patches of motile
phytoplankton
William M. Durham1,2, Eric Climent3, Michael Barry1, Filippo De Lillo4,5, Guido Boffetta5,

Massimo Cencini6 & Roman Stocker1

Patchiness plays a fundamental role in phytoplankton ecology by dictating the rate at which

individual cells encounter each other and their predators. The distribution of motile phyto-

plankton species is often considerably more patchy than that of non-motile species at sub-

metre length scales, yet the mechanism generating this patchiness has remained unknown.

Here we show that strong patchiness at small scales occurs when motile phytoplankton are

exposed to turbulent flow. We demonstrate experimentally that Heterosigma akashiwo forms

striking patches within individual vortices and prove with a mathematical model that this

patchiness results from the coupling between motility and shear. When implemented within a

direct numerical simulation of turbulence, the model reveals that cell motility can prevail

over turbulent dispersion to create strong fractal patchiness, where local phytoplankton

concentrations are increased more than 10-fold. This ‘unmixing’ mechanism likely enhances

ecological interactions in the plankton and offers mechanistic insights into how turbulence

intensity impacts ecosystem productivity.
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Patchiness in the distribution of phytoplankton has long
intrigued fishermen and scientists alike, because it generates
hotspots of organisms at higher trophic levels1,2 and

modulates species diversity3, rates of fish recruitment4 and
population stability5. While phytoplankton patchiness at large
spatial scales is driven by reproduction, growth is too slow to
generate structure at scales t1 km vis-à-vis the homogenizing
effect of turbulence6,7. Below this bottleneck scale, patchiness
generated by locally enhanced growth is transferred to
progressively smaller scales by turbulent stirring.

Whereas traditional plankton sampling techniques that utilize
nets and bottles average over scales of metres, new technologies,
including high-resolution fluorometers8,9, underwater imaging10,11

and syringe arrays12, offer vastly improved resolution of plankton
distributions, and have revealed that the microscale (B1–10 cm)
distribution of motile phytoplankton species (for example,
dinoflagellates) is often considerably more patchy than the
distribution of non-motile species (for example, diatoms)10–12.
However, the mechanisms that underlie this observation have
remained elusive. Here we show that phytoplankton motility, when
occurring in a turbulent flow, generates intense patchiness, far
exceeding that of randomly distributed, non-motile populations.

Results
H. akashiwo motility within a steady vortex flow. Following the
tradition of using a vortical flow as a first proxy for small-scale
turbulence13, we exposed the motile, harmful algal bloom
forming phytoplankter H. akashiwo to a steady vortex pair
created via cavity flow (Fig. 1a,b; Methods). Video microscopy
revealed that motile cells formed dense patches (Fig 1c,

Supplementary Movie 1). In addition to swimming into
downwelling regions, as previously predicted14,15 and observed
in pipe flow16, they accumulated inside the vortices’ cores,
showing that individual vortices can trigger striking patches of
motile phytoplankton. In contrast, killed cells remained randomly
distributed (Supplementary Fig. S2), demonstrating that motility
was an essential ingredient of patchiness.

Motility is a pervasive trait of phytoplankton. For example,
90% of species forming harmful algal blooms can swim17.
Motility allows cells to reside near the surface during daylight
hours to enhance light acquisition while accessing deeper waters
with more nutrients and lower predation risk at night18,19. To
migrate through the water column, many species rely on a
stabilizing torque that biases their swimming in the vertical
direction20,21. This stabilizing torque competes with the viscous
torque exerted on cells by fluid shear (specifically, the spatial
gradients in fluid velocity that contribute to vorticity), which acts
to overturn cells. The resulting directed motility is termed
gyrotaxis, and the gyrotactic reorientation timescale, B—the
characteristic time a perturbed cell takes to return to its vertical
equilibrium orientation, k—provides a measure of how unstable
the cell is to shear20–22.

Gyrotactic motility within simulated flow fields. The hypothesis
that the observed patchiness (Fig. 1c) originated from the cou-
pling of motility and the shear in the vortical flow is strongly
supported by a mathematical model of gyrotactic motility21

(Methods). When parameterized with the measured swimming
properties of H. akashiwo, this model yields cell distributions in
close agreement with experiments (Fig. 1c,d; Supplementary
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Figure 1 | Motility produces patchy phytoplankton distributions in a vortical flow. (a) An upward flow of a phytoplankton suspension (straight cyan
arrows) past a central chamber was used to generate two counter-rotating vortices (curved red arrows). H. akashiwo cells, illuminated by a laser sheet,
were imaged along the central plane (green rectangle). (b) The flow field u! along the central plane of the chamber. Arrows denote fluid velocity and
grey-scale intensity represents velocity magnitude. (c,d) Spatial distribution of phytoplankton cells in the central plane of the chamber from c experiments
and d simulations. Cell concentrations were normalized by the mean concentration (Supplementary Methods). As H. akashiwo directs its motility opposite
to gravity, cells that were able to escape the flow collected on the device’s upper boundary: we thus used a nonlinear colourmap to simultaneously visualize
these surface aggregations and those within the vortex cores. In a control experiment, killed cells remained randomly distributed (Supplementary Fig. S2).
Asterisks denote dimensional variables and gravity acts in the –z direction.
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Fig. S4; Supplementary Movies 1 and 2). However, will patches of
cells also occur in turbulent flow, where individual vortices are
short-lived and the action of many vortices tends to disperse
patchiness? To find out, we seeded a direct numerical simulation
(DNS) of isotropic, homogeneous turbulence with up to 3.2" 106

cells, whose motility was governed by the same model of
gyrotaxis, and followed their trajectories until their spatial

distribution reached a statistical steady state (Methods). We
found that turbulence drives intense patchiness in the distribution
of motile phytoplankton (Fig. 2b,c; Supplementary Movie 3),
whereas non-motile cells follow the flow and remain randomly
distributed (Fig. 2a).

While marine turbulence is comprised of fluid motion at
many scales, phytoplankton cells (B1–100 mm) only experience
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Figure 2 | Turbulence generates small-scale patchiness in the distribution of motile phytoplankton. (a–c) The positions of 300,000 cells swimming in a
DNS of turbulent flow for three [C, F] regimes. The 150,000 phytoplankton with the largest concentration (corresponding to f¼0.5) are shown
in blue, the remaining cells in red. Motile cells (b,c) exhibit strong patchiness, whereas non-motile cells (a) remain randomly distributed. (d) Three-
dimensional Voronoi tessellation used to calculate the local cell concentration. Each cell is assigned the polyhedron that includes all points whose distance
to that cell is smaller than its distance to any other cell. The inverse of the polyhedron’s volume is the cell concentration. The region shown corresponds to
the green box in c. Cell colours are as in a–c, with cells in blue belonging to regions of higher cell concentration than cells in red. (e) The patch
concentration enhancement factor, Q, measures the concentration of the most aggregated fraction f of cells relative to that of a non-motile (random)
distribution, revealing that motility can drive the formation of patches with concentrations orders of magnitude larger than that of non-motile cells. (f) The
cell concentration within patches, Q (here for the 10% most aggregated cells, f¼0.1), increases with the non-dimensional swimming speed, F, and peaks at
intermediate stability numbers, CB1. The white line denotes the [C, F] parameter space inhabited by a species with B¼ 5 s and V¼ 1,000mm s$ 1

swimming in a turbulent flow with e¼ 10$6 (pink square) and 10$9 (pink triangle) m2 s$ 3, and circular markers indicate 10-fold changes in e. Black circles
and open squares are [C, F] values at which simulations were performed. Open squares correspond to essentially random distributions (Qo0.01).
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the shear from small scales where fluid viscosity dissipates energy.
The characteristic size and shear rate of these dissipative
scales are proportional to the Kolmogorov length scale, ZK¼
(n3/e)1/4B0.1–10 mm, and Kolmogorov shear rate, oK¼
(e/n)1/2B0.01–10 s$ 1, respectively, where n is the kinematic
viscosity of seawater and e the rate at which turbulent energy is
dissipated23–25. Two dimensionless parameters then control the
cells’ fate: the swimming number, F¼VC/VK, measuring the
swimming speed VC relative to characteristic small-scale fluid
velocities VK¼ ZKoK¼ (ne)1/4 (the Kolmogorov velocity), and
the stability number, C¼BoK, measuring how unstable upward
swimming cells are to overturning by shear. We note that while
most turbulent energy is dissipated by fluid motion with length
scales larger than ZK (ref. 23) the Kolmogorov scales remain
the appropriate parameters for dimensionless analysis
(Supplementary Fig. S8; Supplementary Methods).

Through coupling with turbulence, motility can increase local cell
concentrations by one or more orders of magnitude. To quantify local
cell concentrations, we used a three-dimensional Voronoi tessella-
tion26 (Fig. 2d; Supplementary Methods). The fraction f of cells
having the largest local concentration were defined as patches and
used to compute the patch concentration enhancement factor,
Q¼ (C—CP)/CM, where C is the mean cell concentration within
patches, CP is its counterpart for a random (that is, non-motile)
distribution of cells (which also harbours fluctuations in cell
concentration), and CM is the overall cell concentration. Thus, Q is
a dimensionless measure of the increase in the local cell concentration
due to motility. We found that motility can profoundly affect patch
intensity. For example, the 10% most aggregated motile cells (f¼ 0.1)
for C¼ 1 and F¼ 2.68 were nearly 10 times (Q¼ 8) more
concentrated than the 10% most aggregated non-motile cells
(Fig. 2e). For the 1% most aggregated cells (f¼ 0.01), the
enhancement is 450-fold (Q¼ 51). As patches are continuously
born by motility and killed by turbulent dispersion, each cell
transiently samples regions with high concentrations of conspecifics,
on average spending a fraction of time f in regions where the local
concentration is Q-fold larger than that of a random distribution.

The patchiness intensity depends on both phytoplankton
physiology and environmental conditions. Fast swimming cells
(large F) with intermediate stability (CB1) form the most
concentrated patches (Fig. 2f). Owing to the incompressibility of
the fluid, cells can form patches only if they swim across
streamlines to converge within specific regions of the flow: they
do so most effectively when their speed is large and their
stabilizing torque strikes a balance between producing a
swimming direction that is highly unstable and isotropic
(C441) and one that is very stable and uniformly upwards
(Coo1; Supplementary Fig. S9)22.

Motility-driven unmixing generates strong patchiness for
conditions that commonly occur in the ocean. The reorientation
timescale, while known only for a handful of species16,20,21,27–29,
generally spans the range BB1–10 s, which, for typical turbulent
dissipation rates (e¼ 10$ 8–10$ 6 m2 s$ 3), corresponds to
CB1. Phytoplankton swimming speeds30,31, VCB100–
1,000 mm s$ 1, are often comparable to or larger than the
Kolmogorov velocities, VKB300–1,000 mm s$ 1, associated with
these dissipation rates, suggesting F can often be of order unity.
Thus, we expect that phytoplankton routinely inhabit regions of
the [C, F] parameter space where patchiness is intense (Fig. 2f).
Importantly, our results indicate that phytoplankton do not need
to swim faster than the speed of large-scale turbulent fluctuations
to defy the homogenizing effect of turbulent dispersion, as
previously suggested10, they only need to swim at speeds
comparable to Kolmogorov fluctuations.

Which feature of turbulence is responsible for patchiness? In
contrast to steady vortical flow, where multiple mechanisms

produce patches15, in turbulent flow we found a consistent,
strong correlation between cell location and downward flow
velocity (Fig. 3d), suggesting that patchiness results from a
dominant mechanism: cell focusing in local downwelling regions.
This result generalizes previous observations of gyrotactic
focusing in laminar downwelling flows21 and is rationalized by
a theoretical analysis of the compressibility of the cell velocity
field v¼uþFp (the superposition of flow velocity, u, and
swimming velocity, Fp, where p is the swimming direction and
all velocities are non-dimensionalized by VK). As v has non-
vanishing divergence, = & v¼F= & p¼ $CFr2uz (for Coo1;
where uz is the vertical component of u; Methods), patches form
(= & vo0) where r2uz40, or equivalently in downwelling flow
(uzo0), because r2uz and uz are negatively correlated
(Supplementary Fig. S7; Methods). Both of these predictions are
in good agreement with simulations (Fig. 3d; Supplementary Fig.
S6), suggesting our analytical results offer a rational, mechanistic
framework to interpret how motile phytoplankton form patches
in disordered flows.

Motility substantially decreases the distance between neigh-
bouring phytoplankton cells, altering the topology of their
distribution. We found that the probability p(r) that a pair of
cells reside less than a distance r from each other is enhanced for
ro10ZK and this enhancement is 4100-fold for ro0.2ZK (for
C¼ 0.68, F¼ 3; Fig. 3a). For e¼ 10$ 6 m2 s$ 3 (ZKB1 mm), this
translates to a 4100-fold increase in the probability that a
conspecific resides within B200 mm of a given cell. Whereas non-
motile cells are randomly distributed in three-dimensional space,
with p(r)Br3, for motile cells we found that p(r)BrD with Do3
(Fig. 3a,b), signifying that the cell distribution is not volume-
filling, but instead occupies a lower-dimensional fractal set32.
Fractal clustering of particles in fluids is well known, for example
in particles floating on fluid surfaces33 and water droplets in
clouds34, and arises as a consequence of an effective
compressibility, which here stems from the ability of cells to
swim across streamlines. Our analysis of the divergence of v
correctly predicts the patchiness topology: weakly compressible
flows are expected to produce particle distributions residing on a
fractal set of codimension D¼ 3 $ a(CF)2, where a is a constant
and Coo1 (Methods and Falkovich et al.34). This relation
successfully captured the behaviour of the fractal dimension D
computed from simulations for Co1 (Fig. 3c), confirming that
the interaction of motility and turbulent flow results in an
effective compressibility, which generates patchiness.

Discussion
Patchiness generated by motility-driven unmixing may have a
multitude of consequences for phytoplankton. On the one hand,
patchiness may be advantageous during times of sexual
reproduction, as it reduces distances between conspecific cells
and could increase the local concentration of phytoplankton-
exuded toxins that stifle competitors35. On the other hand,
patchiness could be detrimental because it sharpens competition
for nutrients36 and enhances grazing by zooplankton37,38, whose
finely tuned foraging strategies allow them to retain their position
within centimeter-scale prey patches2. The interaction of motility
and turbulence could thus be an important determinant of the
relative success of different phytoplankton species and provide a
mechanistic basis to help decipher the powerful role turbulence is
known to exert on plankton community composition39.

Unlike passive mechanisms that generate patchiness, such as
turbulent stirring, motility-driven unmixing stems from active
cell behaviour, opening the intriguing possibility that phyto-
plankton could regulate their small-scale spatial distribution by
adaptively adjusting their position in [C, F] space (Fig. 2f).
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Cells could regulate F by modulating swimming speed and
C by altering flagellar stroke20, overall shape40 or chloro-
plast position41. Individuals could then actively increase
encounter rates with conspecifics, without need for chemical
communication, by swimming faster and tuning stability such
that CB1, or minimize predation risk by slowing down and
avoiding the intermediate stability regime. Regardless of whether
this mechanism is adaptive or static, these results suggest that
small-scale patchiness is a corollary of vertical phytoplankton
migration, and that motility-driven patch formation may thus be
as common as the species that migrate through the water column.
Future field and laboratory experiments may reveal the tradeoffs
of directed motility in a turbulent ocean and how it shapes the
fate of those at the bottom of the marine food web.

Methods
Phytoplankton culturing and preparation. H. akashiwo was grown by
inoculating 2 ml of exponential phase culture into 25 ml of sterile f/2 medium, then
incubating at 25 !C under continuous fluorescent illumination (70mE m$ 2 s$ 1)
for 21 days. The culture used in experiments was prepared by diluting 75 ml of the
21-day old culture with 500 ml of f/2 media to achieve a final cell concentration of
B2.5" 104 cells ml$ 1. This concentration strikes a balance between maximizing
the number of cells within the central plane (Fig. 1a, green box) and avoiding the
bioconvective instabilities that arise when cell concentration exceeds a critical
threshold21. In control experiments (Supplementary Fig. S2), cells were killed using
ethanol (10% v/v) before their introduction into the device.

Experimental vortex apparatus. Two counter-rotating vortices were generated
within a custom-made transparent acrylic device (Fig. 1a and Supplementary Fig.
S1). A 0.3 ml s$ 1 flow of a H. akashiwo culture was driven through each of the two

vertical channels of the device using a syringe pump (Harvard Apparatus, PHD
2000) loaded with two syringes (Monoject, 140 ml). A random distribution of cells
was initialized within the central cavity of the device (Fig. 1a, green box) by
clamping one of the two flexible tubes (Cole Parmer C-Flex, ID 3 mm) that convey
flow to the device, which induced a unidirectional flow through the central cavity.
Once the tube was unclamped, vortical flow was restored and the experiment
began.

A laser sheet, generated using a continuous wave 8 mW Helium-Neon laser
(Uniphase, model 1105 P) and a plano-concave cylindrical lens (Thorlabs, 20 mm
focal length), illuminated cells along a 1.6-mm thick central plane ($ 0.8 mm
oy!o0.8 mm, where the asterisk denotes a dimensional variable) where the flow
was nearly two-dimensional due to symmetry. All images were captured at 20 Hz
with a CCD (charge-coupled device) camera (PCO 1600, Cooke) attached to a
dissecting microscope (SMZ1000, Nikon).

Simulations of gyrotaxis within the experimental flow field. To model the flow
within the experimental device, we solved the three-dimensional Navier-Stokes
equations with the finite element software COMSOL Multiphysics (Burlington,
MA), using the experimental device’s exact geometry and imposed flow rates.
Gyrotactic motility was modelled by integrating the equation for the evolution of
the swimming direction of a bottom-heavy spherical cell21

dp
dt!
¼ 1

2B
k$ðk & pÞp½ * þ 1

2
ðx!"pÞ ð1Þ

where p is the unit vector along the swimming direction, x! ¼=! " u! is the fluid
vorticity, t! is time, k¼ [0,0,1] is a unit vector in the vertical upwards (þ z!)
direction, and B is the gyrotactic reorientation timescale, the characteristic time a
perturbed cell takes to return to vertical if x! ¼ 0. The first term on the right hand
side describes the tendency of a cell to remain aligned along the vertical direction
due to bottom-heaviness, while the second term captures the tendency of vorticity
to overturn a cell by imposing a viscous torque on it. We neglect the effect of cells
on the flow. The cell position, X! ¼ (x! , y! , z!), was computed by integrating the
velocity resulting from the superposition of the swimming velocity, VC p, and the
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flow velocity, u! :

dX!

dt!
¼VCpþu!ðX!Þ: ð2Þ

Cell positions and swimming directions were initialized at random locations
within the device and randomly on a unit sphere, respectively. Reflective boundary
conditions were applied at all solid boundaries. The swimming speed, VC, of each
cell was drawn from a probability distribution obtained from H. akashiwo cells
swimming within the central plane of the experimental device in the absence of
flow. Cell trajectories were obtained from movies recorded at 20 Hz using
automated software (PredictiveTracker; Ouellette et al.42). To estimate the three-
dimensional swimming velocity from its measured (x! , z!) projection, we assumed
isotropy in x! and y! to obtain VC¼ (2vx

!2þ vz
!2)1/2 where vx

! and vz
! are the

instantaneous cell swimming speeds in the x! and z! direction, respectively. The
resulting probability density for the cell swimming speed has a mean of 75 mm s$ 1

(Supplementary Fig. S3). All 70,000 cells used in the simulation had a gyrotactic
reorientation parameter of B¼ 2 s, based on a previous estimate for H. akashiwo27.

Simulations of gyrotaxis within isotropic turbulence. We solved the three-
dimensional Navier-Stokes equations in a fully periodic cubic domain of size
LB¼ 2p with M mesh points using a pseudo-spectral method with a vector
potential representation to ensure fluid incompressibility43. To eliminate aliasing
errors, we used the 2/3 dealiasing technique, which sets the largest 1/3 of all wave
numbers to zero after each computation of the nonlinear terms in the Navier-
Stokes equation44, such that the largest resolved wavenumber is kmax¼ (1/3)M1/3.
Statistically stationary turbulence was sustained by applying homogeneous,
isotropic, time-uncorrelated Gaussian forcing over a narrow shell of small
wavenumbers45, which produces integral-scale fluid fluctuations (that is, the size L
of the largest eddy) on the order of the domain size.

Once the velocity field had reached a statistical steady state, gyrotactic cells were
initialized with random position in the domain and with orientations randomly
distributed over the unit sphere. We seeded the simulation box with 300,000–
3,200,000 cells depending on the Taylor Reynolds number Rel (Supplementary
Table S1; Supplementary Methods). Cell trajectories were integrated using the non-
dimensional form of equations 1 and 2,

dp
dt
¼ 1

2C
k$ðk & pÞp½ * þ 1

2
ðx"pÞ; ð3Þ

dX
dt
¼FpþuðXÞ; ð4Þ

where time was non-dimensionalized by 1/oK, lengths by the Kolmogorov length
scale ZK and velocities by the Kolmogorov velocity VK¼oKZK. Dimensionless
parameters are F¼VC/VK and C¼BoK (oK is the Kolmogorov vorticity scale). At
each time step of the simulation, the local fluid flow properties (x and u) at the
particle locations were calculated using a tri-linear interpolation from the
computational mesh points.

Previous studies have demonstrated that the trajectories of passive tracer
particles integrated via this numerical scheme accurately capture both the
velocity46 and the acceleration47 statistics of the underlying DNS-derived flow.
Moreover, previous studies on clustering of inertial particles48 have demonstrated
the efficacy of this method to resolve sub-Kolmogorov scale fractal aggregations,
which we also observed for gyrotactic swimmers.

All analyses were performed after cells had reached a statistically steady
distribution, which requires B30–50 Kolmogorov time scales (1/oK), corre-
sponding in our simulations to 1–2 integral time scales (the characteristic timescale
of the largest eddies in the flow).

Theoretical prediction of accumulation in downwelling regions. In general,
the cell velocity field, v¼ uþFp, and its divergence, = & v, depend on the history of
the trajectory of individual cells and can only be calculated statistically. However, in
the limit of a large stabilizing torque (Coo1) the cell orientation quickly reaches
equilibrium with the local fluid vorticity, such that v can be directly calculated
using the instantaneous flow field. Assuming Coo1, the solution to equation 3 is

p + ðCoy ; $Cox ; 1Þ; ð5Þ

to leading order in C. This predicts that cells swim upwards with a deviation
proportional to C from the vertical. Imposing the incompressibility of the flow
(= & u¼ 0) and applying the definition of vorticity, substitution of equation 5 into
equation 4 yields

= & v¼ $CFr2uz ; ð6Þ

where uz is the vertical component of fluid velocity, normalized by the Kolmogorov
velocity, VK. Equation 6 predicts that the cell velocity is compressible and that
aggregations form in regions where r2uz40. This prediction was confirmed in the
DNS simulations by calculating /r2uzS, defined as the mean of r2uz at the
position of the cells (Supplementary Fig. S6). We found that /r2uzS reaches a
maximum for CB1 and increases monotonically with F, which mirrors the
dependence of the aggregation intensity on C and F (Figs 2f and 3b;

Supplementary Fig. S6), indicating that cells form patches in regions where
/r2uzS is large.

The prediction that cells collect where r2uz40 generalizes prior observations
that gyrotactic cells tend to collect in downwelling flows21, because regions of the
flow wherer2uz40 tend be highly correlated with regions of downwelling (uzo0).
This correlation can be demonstrated either by analysing the results from the DNS
(Supplementary Fig. S7) or via theoretical analysis. The latter is briefly outlined
here. By recasting the Navier-Stokes equations as an energy balance one can write25

$ e¼ $ v =uj2
!""# ¼ v u &r2ui

#
¼ 3v uzr2uzi

#
; ð7Þ

where all variables are dimensional (asterisks omitted for brevity), e is the average
energy dissipation rate and the last equality assumes isotropic flow. We can then
rewrite the averaged quantity in the last term as:

uzr2uzi
#

¼
Z1

$1

du u r2uz uz ¼ uij
#

PðuÞ; ð8Þ

where /r2uz|uz¼ uS is a conditional average and P(u) is the probability
density distribution of a single component of the flow velocity field at a fixed point,
which for turbulent flows is well approximated by the following Gaussian
distribution25:

PðuÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pu2

rms

p exp $ u2

2u2
rms

% &
: ð9Þ

Using a closure theory that assumes homogeneous, isotropic turbulent flow49,
the conditional average in equation 8 can be approximated, to leading order, as

hr2uz juz ¼ ui + $ e
3vu2

rms
u: ð10Þ

Equation 10 is obtained by using a linear approximation for the conditional
average and substituting equation 9 into equation 8 and the result into equation 7
(ref. 49). The relation in equation 10, which shows good agreement with our
simulations (Supplementary Fig. S7) predicts that, on average, regions with positive
r2uz are correlated with downwelling flow (uzo0), and vice versa.

These two predictions, that is, that cells collect where r2uz40 and that
r2uzB$ uz, taken together, indicate that an effective compressibility in the cell
velocity field (produced by the cells’ motility) results in the formation of patches
within downwelling regions, rationalizing the results from the turbulence
simulations.

Theoretical prediction of D. In the previous section we showed that the cell’s
velocity field v has non-vanishing divergence in the limit of a strong stabilizing
torque (Coo1). In this limit, cells behave as passive tracers transported by a
weakly compressible flow, v¼ uþ dw with = &w¼ $r2uz and d¼CF
(equation 6). It has been previously shown that tracers in weakly compressible
flows (doo1) tend to form transient clusters of fractal codimension (3$D)pd2

(refs 34,50–52). Thus for gyrotactic swimmers with Coo1, the fractal dimension is
predicted as

D¼ 3$ aðCFÞ2; ð11Þ
where a is a constant that depends on the flow. This result is in good agreement
with our simulations for Co1 (Fig. 3c).
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SUPPLEMENTARY INFORMATION 

Supplementary Figures 

  
Supplementary Figure S1 | Schematic of the experimental device. The device 
extends 18 mm in the y* direction (i.e., into the plane). The central plane is denoted 
with the dashed blue box. Not drawn to scale. 
 
 
 
 

 
Supplementary Figure S2 | A histogram of cell concentration from experiments 
using dead cells reveals no aggregations. Cell concentrations were normalized using 
the same method as in Fig. 1c. 
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Supplementary Figure S3 | Probability density function of the three-dimensional 
swimming speed, VC, of Heterosigma akashiwo. The three-dimensional swimming 
speed was estimated assuming VC = (2vx

*2 + vz
*2)1/2, where  vx

* and vz
*

 are the 
instantaneous swimming speeds in the x and z direction, respectively. 
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Supplementary Figure S4 | Measurements of divergence. The two-dimensional 
divergence of the y*-averaged cell velocity (�*·v*) in experiments (a) and from a 
model that simulates gyrotactic motility within the experimental flow (b) bear strong 
resemblance to one another, suggesting that the similar accumulation patterns in both 
(Fig. 1c,d) are borne by the same processes. In contrast, the divergence of the y*-
averaged fluid flow velocity (�*·u*) exhibits a divergence of approximately zero 
within the central plane (c), except within the corner regions where the spatial 
sampling of the simulated velocity field is not sufficient for accurate differentiation. 
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Supplementary Figure S5 | The normalized box probability index, N, as a 
function of (a) the cell stability number, <, and (b) the predicted scaling (see Section 
4 of Supplementary Methods). Results obtained using ReO = 62. 

 
 
 

 
Supplementary Figure S6 | The non-dimensional Laplacian of the vertical 
component of the velocity of the fluid, �2uz, averaged over the position of 300,000 
cells, as a function of the stability number < for different swimming numbers ). 
Grey symbols show <�2ux> and <�2uy> for comparison. Results obtained using ReO = 
62. 
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Supplementary Figure S7 | The average of the dimensional Laplacian of the 
vertical component of the fluid velocity conditioned on the vertical velocity value, 
<�2uz|uz = u>, as a function of the dimensional local vertical velocity, u (asterisks are 
omitted for brevity). The straight line shows the theoretical prediction (Eq. 10). The 
DNS data (red circles) were obtained by sampling the flow (ReO = 62) at random 
locations in the domain.  
 
 

 
Supplementary Figure S8 | The aggregation intensity is only weakly dependent 
on the Taylor Reynolds number, ReO. The effect of ReȜ on (a) D and (b) N. 
Regardless of the ReȜ, the maximum level of aggregation occurs at a < ~ 1, 
confirming that cell aggregations originate at the Kolmogorov scale. All results 
shown are for ) = 1/3. 
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Supplementary Figure S9 | Turbulence can inhibit the vertical migration of 
phytoplankton. (a-f), The trajectories of 100 cells swimming in a turbulent flow at 
three different stability numbers, <. Although vertical migration is difficult to discern 
in the raw trajectories (a,c,e) due to advection by the flow, when the latter is 
subtracted (b,d,f) it is clear that turbulence progressively hampers vertical migration 
as < increases. (g) The erosion of vertical migration was quantified by the average 
vertical projection of the swimming direction, <pz>, of 105 cells. Very stable cells (< 
<< 1) always swim vertically (<pz> = 1), whereas progressively more unstable cells 
(increasing <) lose the ability to vertically migrate. In addition, vertical migration is 
favored by large swimming speeds ()), as fast swimming cells quickly traverse 
regions of locally enhanced shear, reducing the time over which they can be be 
reoriented by flow. Panels a-f each show the two-dimensional projection of 
trajectories randomly distributed in the flow over 20 Kolmogorov timescales. 
Trajectories in (a,c,e) show movement due both advection and motility (dX/dt = u(X) 
+ )p), while trajectories in (b,d,f) have been postprocessed to show movement due to 
motility only (dX/dt = )p). For visualization purposes the starting point of each 
trajectory has been translated to the origin. ReȜ = 62 for all panels.   
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Supplementary Table 
 

ReȜ M Number 
of cells  Ȝ/KK  

36 643 300,000 11.7 
62 1283 300,000 15.7 
101 2563 2,400,000 19.5 
123 5123 3,200,000 21.7 

 
Supplementary Table S1 | Parameters of the direct numerical simulations of 
turbulence.  ReȜ is the Taylor Reynolds number, M is the number of nodes in the 
computational mesh, and Ȝ/KK is the Taylor scale normalized by the Kolmogorov 
scale.  

 

Supplementary Methods 
 
 
1. Analysis of experimental measurements 
Histograms of cell concentration within the region illuminated by the laser sheet (Fig. 
1c and Supplementary Fig. S2) were obtained by identifying the (x*, z*) positions of 
the centroids of individual cells over a period of 4.4 min (5,300 images) and 3.8 min 
(4,540 images) for the swimming and killed cell treatments, respectively. To obtain 
the normalized cell concentration, the cumulative number of cells residing within 114 
ȝm u 114 ȝm bins over the entire experimental time was divided by the mean number 
of cells per bin within the region defined by -4 mm < x* < 4 mm and -1.6 mm < z* < 
1.6 mm, away from the device’s solid boundaries. 
 
To calculate the two-dimensional cell velocity, v* = (vx

*, vz
*), within the central plane -

and its in-plane divergence, �*·v* = �vx
*/�x* + �vz

*/�z* (Supplementary Fig. S4a), we 
reconstructed 3.6×105 trajectories of individual cells swimming within the central 
plane (-4 mm < x* < 4 mm, -0.8 mm < y*  < 0.8 mm, -2 mm < z*  < 2 mm) over time 
and space, using automated software (PredictiveTracker, ref. 42). The trajectories had 
an average length of 0.49 s (9.8 time points). Cell trajectories were used to obtain the 
Eulerian velocity field by calculating the mean cell velocity within 114 ȝm × 114 ȝm 
bins in (x*, z*) space. An average of 1,515 velocity measurements were obtained for 
each bin. The velocity profile in Fig. 1b was obtained by tracking dead phytoplankton 
cells. 
 
While the flow velocity, u* = (ux

*, uy
*, uz

*), within the device is three-dimensional, by 
symmetry we predict that uy

 *
 = 0 at every point within the plane, y* = 0, and similarly 

that uy
* averaged over a slice that symmetrically spans y*=0, -0.8 mm < y* < 0.8 mm 

(i.e. the laser illuminated ‘central plane’), equals zero. Therefore, the divergence of 
the y-averaged flow within the central plane is expected to be zero (�*·u*) = �ux

*/�x* 

+ �uz
*/�z* = 0, due to the flow’s incompressibility. In contrast, the divergence of the 

cell velocity field in the central plane is non-zero (�*·v*) = �vx
*/�x* + �vz

*/�z* � 0) and 
its sign can be used to diagnose regions of the flow where cells converge (�*·v* < 0), 
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increasing the local cell concentration, from regions where cells diverge (�*·v* > 0), 
decreasing the local cell concentration. The divergence field was calculated via 
numerical differentiation of the velocity field and was smoothed with a two-
dimensional Gaussian filter (with standard deviation of 0.1 mm) to reduce noise 
(Supplementary Fig. S4a). 
 
2. Analysis of simulations of gyrotactic motility within experimental flow field 
The histogram of cell concentration for the simulations (Fig. 1d) was computed by 
sampling the x* and z* positions of the cells in 100 ȝm × 100 ȝm bins within the 
region -1 mm < y* < 1 mm, at intervals of 1 s. The cumulative counts over a 
simulation period of 2 min were divided by the mean cell concentration in the center 
region (-4 mm < x* < 4mm and -1.6 mm < z* < 1.6mm) to obtain normalized cell 
concentrations.  
 
The divergence field for the simulations (Supplementary Fig. S4b) was computed in a 
manner analogous to what done for the experiments: for trajectories residing in the 
region of the device defined by -1 mm < y* < 1 mm, the x* and z* velocities were 
sampled in 100 ȝm x 100 ȝm bins. The cell velocity field was constructed using the 
mean velocity from each bin; the two-dimensional divergence, �*·v* = �vx

*/�x* + 
�vz

*/�z*, was computed from this velocity field using two-dimensional Gaussian 
filtering (with standard deviation of 0.05 mm) to reduce noise. An average of 386 
velocity measurements was recorded in each bin.  
 
The divergence field of the flow within the center plane (�*·u*  = �ux

*/�x* + �uz
*/�z*, 

Supplementary Fig. S4c) was obtained by averaging (ux
*, uz

*) over -1 mm < y* < 1 
mm and calculating the derivatives numerically without smoothing. 
 
3. Quantification of cell aggregation intensity in DNS simulations 
To quantify the patchiness generated the interaction of gyrotactic motility with 
isotropic turbulence, we used three different aggregation metrics: the patch 
concentration enhancement factor, Q (Fig. 2e,f), the correlation fractal dimension, D 
(Fig. 3b,c; ref. 32), and the normalized box probability index, N (Supplementary Figs. 
S5 and S8b; ref. 53). Three different metrics were used to ensure that conclusions 
were not sensitive to the particular choice of metric. All three metrics indicate that 
maximal aggregation intensity occurred at intermediate stability (i.e., < ~ 1) and 
increased monotonically with increasing swimming speed (i.e., increasing )). 
 
Calculation of Q. Three-dimensional Voronoi tessellations of the particle distributions 
were obtained using the software Voro++ 26, which accounted for the triply periodic 
boundaries of the computational volume (the Voronoi tessellation shown in Fig. 2d 
uses non-periodic boundaries, as only a small segment of the full computational 
domain is shown). The Q value presented for each [<, )] pair was computed as the 
average value from eighteen snapshots of the instantaneous positions of 100,000 cells, 
each separated in time by at least 10 Kolmogorov timescales.  
 
Calculation of D. The probability p(r) (Fig. 3a) was obtained by computing the 
pairwise Euclidean distance between K = 300,000 cells in each of |100 snapshots of 
the particle distribution, each separated in time by more than 20 Kolmogorov 
timescales. In each snapshot, p(r) was calculated as p(r) = g(r)/K2, where g(r) is the 
total number of pairwise distances less than r. Applying the definition p(r)~rD, we 
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calculated D as the slope of d(log[p(r)])/d(log[r]) for r/KK ��  1 using the average p(r) 
from the snapshots. 
 
Calculation of N. The computational domain was partitioned into boxes of length / | 
3KK. The number of cells residing in each box, n, was used to obtain the box 
occupancy function, f(n). While the mean of f(n), b = <n>, is a constant (equal to the 
mean cell number density), the standard deviation of f(n), V = (<n2> í <n>2)1/2,  
depends on the manner in which cells are distributed, with more patchy distributions 
having larger V. If cells are randomly distributed throughout the domain, the standard 
deviation is that of a Poisson distribution, VP = b1/2. To measure the particle 
distribution’s deviation from Poisson, we calculated N = (V – VP)/b (ref. 53): for N > 
0, the distribution of cells is more patchy than a random distribution (Supplementary 
Figs. S5 and S8b). To control for statistical fluctuations, this metric was calculated 
every 2 Kolmogorov time scales and N was taken as the average over more than 103 
Kolmogorov time scales.  
 
4. Theoretical prediction of N 
The theoretical prediction of the fractal dimension D (section 8.2) can be related to 
the normalized box probability index N (ref. 54). Briefly, with the assumption that 
cells are randomly (Poisson) distributed over the fractal set of dimension D < 3 (and 
hence not uniformly distributed over the volume), one finds that the box probability 
f(n) (the probability to have n cells in a box of size /) is related to the box probability 
on the fractal set fF (n), which is given by a Poisson distribution with mean bF rescaled 
as bF = b (LB/ȁ)3–D , where LB is the size of the domain.  
 
Similarly, the variance of n, V 2, can be related to b as54. 

V 2  n2 � n 2  b 1� b /
LB
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.                                   (S1) 

Applying the definition of N and via a Taylor expansion of D–3, one finds  

N |
3� D� �b1/2

2
ln LB

/
§
©̈

·
¹̧

.                                   (S2) 

Substitution of Eq. (11) into Eq. (S2) yields the prediction N v ()<)2 (for < << 1), 
which is in agreement with simulations (Supplementary Fig. S5b). 
 
5. Cell aggregation in flows with variable Taylor Reynolds number, ReȜ 
 
The range of length scales within a turbulent flow is quantified by the Taylor 
Reynolds number, ReȜ = urmsȜ/Ȟ, where Ȝ = urms(15Ȟ/İ)1/2 is the Taylor length scale 
and urms is the root mean square fluid velocity. Larger ReȜ correspond to a greater 
separation between the size of integral-scale fluctuations, L, and the size of 
Kolmogorov-scale fluctuations, KK. We calculated turbulent flows for four different 
Taylor Reynolds numbers, ranging from 36 to 123, by varying the number of mesh 
points M from 643 to 5123 to ensure that the Kolmogorov scale KK was fully resolved 
(i.e. kmaxKK t 1) in each case (Supplementary Table S1). In all simulations, the 
separation between forcing and dissipation scales was sufficient to produce the 
universal characteristics of a homogeneous isotropic turbulent flow. Data shown in 
Figs. 2 and 3 were obtained at ReO = 62. 



 
10

 
We found that the aggregation intensity (as measured by N and D) was only weakly 
dependent on ReȜ for the parameters we tested (Supplementary Fig. S8), suggesting 
that motility-driven unmixing can overcome turbulent dispersion in a broad range of 
natural phytoplankton habitats, from pycnoclines (ReȜ § 20) to deep chlorophyll 
maxima (ReȜ § 150) (refs. 55,56). Furthermore, the finding that maximal aggregation 
occurs at < ~ 1 is robust to changes in ReȜ within the range tested (Supplementary 
Fig. S8), provides further substantiation that motility-driven unmixing is controlled by 
the velocity gradients at the Kolmogorov scale.  
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