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Abstract
In dynamical systems, the growth of infinitesimal perturbations is well
characterized by the Lyapunov exponents. In many situations of interest,
however, important phenomena involve finite amplitude perturbations, which
are ruled by nonlinear dynamics out of tangent space, and thus cannot be
captured by the standard Lyapunov exponents. We review the application of
the finite size Lyapunov exponent (FSLE) for the characterization of non-
infinitesimal perturbations in a variety of systems. In particular, we illustrate
their usage in the context of predictability of systems with multiple spatio-
temporal scales of geophysical relevance, in the characterization of nonlinear
instabilities, and in some aspects of transport in fluid flows. We also discuss the
application of the FSLE to more general aspects such as chaos-noise detection
and coarse-grained descriptions of signals.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to
applications’.

PACS numbers: 05.45.−a, 05.45.Pq, 47.27.ed

(Some figures may appear in colour only in the online journal)

1. Introduction

The Lyapunov exponents (LEs) {λi} and the Kolmogorov–Sinai (KS) entropy hKS are
mathematically well-established quantities [1–3]: they are intrinsic properties of a dynamical
system, invariant under change of variables and independent of the used norm. In their
definition, the limits of arbitrary resolution and asymptotic times must be imposed, this
means that LEs describe the long-time growth of infinitesimally small perturbations. In low-
dimensional systems with a single characteristic time, the LE and KS entropy are typically
sufficient for characterizing the main aspects of predictability and complexity. However, in
high-dimensional systems and in the presence of many characteristic times and scales, such
as in fully developed turbulence [4], they provide only a partial description. Such a problem is
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particularly important for complex systems such as, for instance, those relevant to geophysics.
In this respect, Lorenz already realized the necessity to go beyond the understanding of very
small perturbations [5]:

Small errors in the finer structure—e.g. the positions of individual clouds—tend to grow
much more rapidly, doubling in hours or less [ . . . ]. Errors in the finer structure, having
attained appreciable size, tend to produce errors in the coarser structures [ . . . ]. Certain special
quantities [ . . . ] may be predictable at a range at which entire weather patterns are not.

The aim of this paper is to review the applications of the finite size Lyapunov
exponent (FSLE), originally introduced to characterize predictability in turbulence [6], for the
characterization of the growth of small but non-infinitesimal perturbations in a wider context,
including signal classification, transport and mixing in fluids. At the basis of the FSLE, and
similar approaches [7–9], is the idea of relaxing the request for arbitrarily small perturbations
and thus to quantify the growth rate at any given scale reached by the perturbation. The price to
pay in this path toward the nonlinear regime is a partial loss of mathematical rigor: the FSLE,
unlike the LEs, can depend on the used variables and the used norm. Such dependence is not
necessarily negative as it typically reflects some aspects of high-dimensional systems. Some
mathematical rigor can be recovered by considering the generalization of the KS entropy to
finite resolutions in terms of the ε-entropy [10, 11].

The paper is organized as follows. In section 2, after recalling the definition of LEs,
we illustrate, by means of a simple example, the importance to go beyond the regime of
infinitesimal perturbations for predictability issues. Then we introduce the FSLE and the ε-
entropy. Section 3 is devoted to the characterization of predictability in systems with several
characteristic times and scales as found in geophysics, turbulence or high-dimensional chaotic
systems. The use of the FSLE and ε-entropy for the classification of signals is discussed
in section 4. In section 5, we present a few simple examples of systems characterized by
an unusual property, namely the growth rate of finite perturbations is larger than that of
infinitesimal ones. Applications to transport and mixing in fluids are reviewed in section 6.

2. Generalization of Lyapunov analysis to non-infinitesimal perturbations

2.1. Lyapunov exponents and infinitesimal perturbations

We start by briefly recalling the basic aspects of the LEs. For the sake of simplicity, we consider
a discrete-time dynamical system as defined by the map

x(t + 1) = G(x(t)) (1)

and assume that the motion takes place in a bounded region of IRd . We are interested in
the evolution of the separation between two trajectories, x(t) and x′(t), starting from close
initial conditions, x(0) and x′(0) = x(0) + δx(0), respectively. As long as the difference
δx(t) = x′(t) − x(t) remains small (strictly speaking, infinitesimally small, |δx(t)| → 0), it
behaves as a vector z(t) in the tangent space, and evolves as

zi(t + 1) =
d∑

j=1

∂Gi

∂x j

∣∣∣∣
x(t)

z j(t). (2)

Under a rather general hypothesis, Oseledec [1] proved that, for almost all initial conditions
x(0) at every point x(t) of the trajectory, there exists an orthonormal basis {ei(x(t))} in tangent
space such that, for large times, the vector z can be written as

z(t) =
d∑

i=1

ciei(x(t)) eλi t, (3)
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where the coefficients {ci} depend on z(0). The exponents λ1 ! λ2 ! · · · ! λd are called the
characteristic LEs. If the dynamical system has an ergodic invariant measure, the spectrum of
LEs {λi} does not depend on the initial condition x(0), except for a set of measure zero with
respect to the invariant measure.

The first LE λ1 has an important role in the issue of predictability: if the initial state is
known with accuracy δ (infinitesimal) and we ask for how long the state of the system can be
predicted within a tolerance, say % (also infinitesimal), then the exponential amplification of
the initial error implies for the predictability time

Tp(δ,%) = 1
λ1

ln
(

%

δ

)
∼ 1

λ1
. (4)

In other terms, the predictability time of infinitesimal perturbation is essentially given by the
inverse of maximal LE, but for a weak logarithmic dependence on the ratio between threshold
tolerance and initial error.

2.2. Why beyond the limit of infinitesimal perturbations: a simple example

We stress that in the definition of the LE two limits are involved: the perturbation must remain
infinitesimal (this is taken into account using the tangent vector) and time must be arbitrarily
long (for Oseledec theorem to apply). What does happen when relaxing these constraints? This
question, as illustrated by the following simple example, concerns many situations of physical
significance where these limits cannot be realized or where considering infinitesimally small
disturbances may not be only unnecessary but also misleading.

Following [12], x ∈ IR2 and y ∈ IR, we consider the discrete-time map
{

x(t + 1) = R[θ ] x(t) + c f (y(t))
y(t + 1) = g(y(t))

(5)

obtained by coupling the rotation R[θ ] by an arbitrary angle θ on the plane to a chaotic map
g via a vector-valued function f . For instance, we can take the linear coupling f (y) = (y, y)

and the logistic map at the Ulam point g(y) = 4y(1 − y). In the absence of coupling, c = 0,
equation (5) describes two independent systems: the predictable and regular x-subsystem with
λx(c=0) = 0 and the chaotic y-subsystem with λy = λ1 = ln 2. With a small coupling,
0 < c & 1, we have a unique three-dimensional chaotic system with a positive ‘global’
LE λ1 = λy + O(c). In this case, a direct application of equation (4) would imply that the
predictability time of the x-subsystem is

T (x)
p ∼ Tp ∼ 1

λy
, (6)

according to which the predictability time for x would be basically independent of the coupling
strength c, which appears to be at odds with intuition.

We stress that this paradoxical circumstance is not an artifact of the chosen example. For
instance, the same happens considering the gravitational three-body problem with one body
(the asteroid) of mass m much smaller than the other two (the Sun and one planet). If the
gravitational feedback of the asteroid on the two big bodies is neglected (restricted problem),
then the result is a chaotic asteroid while the system Sun plus planet is fully predictable. If the
feedback is taken into account (i.e. m > 0 in the example), the system becomes a fully chaotic
non-separable three-body problem. Intuition correctly suggests that if the asteroid has a very
small mass (m → 0), then it should be possible to forecast the evolution of the Sun and the
planet for very long times in spite of a positive, possibly large, LE for the whole system.

The ‘paradox’ arises from the misuse of formula (4), which is valid only for the tangent-
vector dynamics, i.e. with both δ and % infinitesimal. In other words, it stems from the
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Figure 1. (a) Error growth |δx(t)| for the map (5) with θ = (
√

5−1)/2 and c = 10−3. Dashed line
|δx(t)| ∼ eλ1t , where λ1 = ln 2, solid line |δx(t)| ∼ t1/2. Inset: evolution of |δy(t)|, dashed line
as in the main figure. The initial error, only on the y variable, is δy = δ0 = 10−10. (b) FSLE λ(δ)
versus δ for the same system, computed by using the Euclidean norm in the x-subspace. For δ → 0,
λ(δ) ( λ1 (dashed line). The solid line displays the behavior λ(δ) ∼ δ−2. Inset: predictability
time Tp(δ,%) with δ = 10−6 and varying % as from equation (13), the dashed line corresponds to
equation (4), while the solid line corresponds to the behavior (8). See section 2.3.

application of the correct formula (4) to an improper regime, because as soon as errors become
large, the full nonlinear error evolution has to be taken into account (see figure 1(a)). The
evolution of δx is given by

δx(t + 1) = R[θ ]δx(t) + c δ f (y), (7)

where, with our choice, δ f = (δy, δy). At the beginning, both |δx| and |δy| grow exponentially.
However, the available phase space for y is bounded leading to a saturation of the uncertainty
|δy| ∼ O(1) in a time t' = O(1/λ1). Therefore, for t > t', the two realizations of the
y-subsystem are completely uncorrelated and their difference δy acts as deterministic noise
in (7), which becomes a sort of discrete-time Langevin equation driven by chaos, instead of
noise. As a consequence, the growth of the uncertainty on the x-subsystem becomes diffusive
with a diffusion coefficient proportional to c2, i.e. |δx(t)| ∼ c t1/2 implying [12]

T (x)
p ∼

(
%

c

)2

, (8)

which is much longer than the time expected on the basis of tangent-space error growth (now
% is not constrained to be infinitesimal).

The above simple example illustrates the necessity to go beyond the LEs when copying
with non-infinitesimal perturbations; we will see in the course of this review that in many
circumstances the full characterization of the nonlinear growth regime is necessary to answer
physically motivated issues, of which predictability, as here, is one of the most relevant.

2.3. The finite size Lyapunov exponent (FSLE)

Before defining the FSLE, originally introduced in [6, 13] to quantify predictability in
turbulence, we mention a few other approaches to the characterization of non-infinitesimal
perturbations. Dressler and Farmer [7] introduced a generalization of the LE based on higher
order derivatives, relevant to the early stage of the nonlinear regime of perturbation growth.
Torcini et al [8] were able to analytically compute an indicator that is equivalent to the FSLE
for two simple maps showing that there are circumstances in which finite size perturbations
grow faster than infinitesimal ones (see section 5); Letz and Kantz [9] extended the analysis
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Figure 2. Sketch of the algorithm for computing the FSLE. Panels (a) and (b) correspond to the
first and second algorithms described in the text, respectively. Reproduced with permission from
[116]. Copyright 2009 World Scientific.

of these kinds of systems by introducing a scale-dependent stability indicator similar in spirit
to the FSLE but based on fixed time analysis instead of fixed scale.

The FSLE quantifies at different observation scales the average growth rate of non-
infinitesimal perturbations. Such a quantity has a less firm mathematical ground than the
LEs, and we will introduce it operatively through the algorithm for its computation. Assume
that a system has been evolved for long enough that the transient dynamics has lapsed,
e.g., for dissipative systems the motion has settled onto the attractor. Consider at t = 0
a ‘reference’ trajectory x(0) supposed to be on the attractor, and generate a ‘perturbed’
trajectory x′(0) = x(0)+δx(0). We need the perturbation to be initially very small (essentially
infinitesimal) in some chosen norm δ(t = 0)=||δx(t =0)||=δmin & 1 (typically in numerical
experiments δmin = O(10−6−10−8)). Then, in order to study the perturbation growth through
different scales, we can define a set of thresholds δn, e.g., δn = δ0(

n with δmin & δ0 & 1,
where δ0 can still be considered infinitesimal and n = 0, . . . , Ns. To avoid saturation on
the maximum allowed separation (i.e. the attractor size) attention should be paid to have
δNs < 〈||x − y||〉µ with x, y being the generic points on the attractor and µ the invariant
measure of the system. The numerical factor ( should be larger than 1 but not too large in
order to avoid interferences of different length scales: typically, ( = 2 or ( =

√
2. Now to

measure the perturbation growth rate at scale δn, we can proceed as follows. After time t0, the
perturbation has grown from δmin up to δn, ensuring that the perturbed trajectory relaxes on
the attractor and aligns along the maximally expanding direction. Then, we measure the time
τ1(δn) the error needed to grow up to δn+1, i.e. the first time such that δ(t0) = ||δx(t0)|| = δn

and δ(t0+τ1(δn)) = δn+1. The perturbation is thus rescaled to δn, along the direction x′−x (see
figure 2(a)). The procedure is repeated Nd times for each threshold, obtaining the set of the
‘doubling’ times (strictly speaking the name applies for ( = 2 only) {τi(δn)} for i = 1, . . . ,Nd

error-doubling experiments. Note that τ (δn) also depends on (. The doubling rate

γi(δn) = 1
τi(δn)

ln ( , (9)

when averaged defines the FSLE λ(δn) through the relation

λ(δn) = 〈γ (δn)〉t = 1
T

∫ T

0
dt γ =

∑
i γiτi∑

i τi
= ln (

〈τ (δn)〉d
, (10)

where 〈τ (δn)〉d =
∑

τi/Nd is the average over the doubling experiments and the total duration
of the trajectory is T =

∑
i τi. Equation (10) assumes the distance between the two trajectories
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to be continuous in time. For maps or time-continuous systems sampled at discrete times the
method has to be slightly modified defining τ (δn) as the minimum time such that δ(τ ) ! (δn.
In these cases, moreover, δ(τ ) is a fluctuating quantity, and from (10) we have

λ(δn) = 1
〈τ (δn)〉d

〈
ln

(
δ(τ (δn))

δn

)〉

d
. (11)

When δn is infinitesimal, λ(δn) recovers the maximal LE

lim
δ→0

λ(δ) = λ1. (12)

We must underline that, unlike the standard LE, when δ is finite λ(δ) depends on the chosen
norm. This is not due to an ill-definition of λ(δ) as it applies also to the mathematically
well-defined ε-entropy, see section 2.4. The dependence on the norm is a manifestation of the
fact that in the nonlinear regime the predictability time depends on the chosen observable.

A possible problem with the above-described algorithm to compute (and define) λ(δ)

is the implicit assumption of homogeneity with respect to finite perturbations. Typically, the
measure on the attractor is singular and not equally dense at all distances; this may cause an
incorrect sampling of the doubling times at large δn when rescaling the perturbation. To cure
such a problem, the algorithm can be modified to avoid the rescaling at finite δn as follows.
The thresholds {δn} and the initial perturbation (δmin & δ0) are chosen as before, but now the
perturbation growth is followed from δ0 to δNs without rescaling back the perturbation once the
threshold is reached (see figure 2(b)). In practice, after the system reaches the first threshold
δ0, we measure the time τ1(δ0) to reach δ1, then following the same perturbed trajectory we
measure the time τ1(δ1) to reach δ2, and so forth up to δNs : we thus record the time τ (δn) for
going from δn to δn+1 for each value of n. The evolution of the error from the initial value
δmin to the largest threshold δN carries out a single error-doubling experiment, and the FSLE
is finally obtained by using (10) or (11), which are accurate also in this case, according to
the continuous-time or discrete-time nature of the system, respectively. As finite perturbations
are realized by the dynamics (i.e. the perturbed trajectory is on the attractor), the problem of
the attractor inhomogeneity is no longer present.

Even though some differences between the two methods are possible for large δ, they
should give the same result for δ → 0. In most cases, numerical computations show that the
differences between the two methods are typically very tiny at all scales. It is worth noting
that the two above algorithms, being based on doubling times, cannot detect negative LEs.
In section 5, we will briefly mention a modification of the first algorithm to be used when
λ(δ) < 0.

Let us now go back to the example equation (5); figure 1(b) displays the functional shape
of the FSLE computed with the second method described. For δ & 1, a plateau at the value
of maximal LE λ1 ≈ ln 2 is recovered as from the limit (12). For finite δ, the behavior of λ(δ)

in general depends on the details of the nonlinear dynamics; here the diffusive behavior (seen
in figure 1(a)) implies λ(δ) ∼ δ−2 as suggested by dimensional analysis. Now that we have
introduced an indicator to quantify the error growth rate as a function of the error amplitude,
we can compute the predictability time from an initial error δ to a given tolerance % as

Tp(δ,%) =
∫ %

δ

d ln δ′

λ(δ′)
. (13)

Clearly, in the infinitesimal regime, λ(δ) ≈ λ1 and (13) recovers (4) but, out of the tangent
space, λ(δ) depends on the details of the dynamics and Tp can be much longer than expected
from the LE. For instance, in this case λ(δ) ∝ δ−2, so that from (13) we have Tp(δ,%) ∝ %2

as guessed on dimensional grounds in equation (8); see the inset of figure 1(b).
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We conclude this section with a final remark on the FSLE. Denoting with x(t) and x′(t) a
reference trajectory and a perturbed trajectory of a given dynamical system, respectively, and
with R(t) = |x(t) − x′(t)| their separation, we can define a scale-dependent growth rate also
using

λ̃(δ) = 1
2〈R2(t)〉

d
〈
R2(t)

〉

dt

∣∣∣∣∣〈R2〉=δ2

or λ̃(δ) = d 〈ln R(t)〉
dt

∣∣∣∣
〈ln R(t)〉=ln δ

. (14)

This way to define a scale-dependent indicator is somewhat similar to that introduced in [9].
We note, however, that λ̃(δ) is in general different from the FSLE λ(δ), as

〈
R2(t)

〉
usually

depends on
〈
R2(0)

〉
while λ(δ) depends only on δ. This difference has an important conceptual

and practical consequence, for instance, when considering the relative dispersion of two tracer
particles in turbulence or geophysical flows [14, 15] (see section 6). However, we must note
that the procedure used to define the FSLE cannot account for negative rates, while λ̃(δ) can
also be negative.

2.4. A more rigorous scale-dependent indicator: the ε-entropy

In this section, we briefly discuss the ε-entropy [10, 11] (see also [16]) which measures the
amount of information per unit time necessary to record without ambiguity a generic trajectory
of a chaotic system with ε-accuracy, and which can be related to the FSLE. Indeed, as the
FSLE generalizes the (maximum) LE to the nonlinear regime of perturbation growth, the
ε-entropy generalizes the KS entropy [2, 3] to a coarse-grained description. For systems with
only one positive LE, we expect that the two quantities should provide essentially equivalent
information. However, the ε-entropy, unlike the FSLE, has a mathematical firm ground.

Consider a continuous vector x(t) ∈ IRd (with continuous time), representing the state
of a d-dimensional system which can be either deterministic or stochastic (as the ε-entropy
is well defined also in the latter case). Discretize the time by introducing an interval τ and
consider a partition Aε of the phase space in cells with edges (diameter) " ε. The partition may
be composed of unequal or identical cells: hypercubes of side ε are typically used in practical
computations. The partition induces a symbolic dynamics, for which a portion of trajectory

X (N)(t) ≡ {x(t), x(t + τ ), . . . , x(t + (N − 1)τ )} ∈ IRNd (15)

can be coded into a word of length N, from a finite alphabet:

X (N)(t) −→ WN (ε, t) = (s(ε, t), s(ε, t + τ ), . . . , s(ε, t + (N − 1)τ )) , (16)

where s(ε, t + jτ ) labels the cell in IRd containing x(t + jτ ). The alphabet is finite for bounded
motions, which can be covered by a finite number of cells. Assuming ergodicity, from a long
time record of X (N)(t) we can estimate the probabilities P(WN (ε)) of the admissible words
{WN (ε)}, and thus compute the N-block entropies

HN = −
∑

WN (ε)

P(WN (ε)) ln P(WN (ε)). (17)

Then, following Shannon [17], the (ε, τ )-entropy per unit time, h(Aε, τ ) associated with the
partition Aε is obtained as

hN (Aε, τ ) = 1
τ

[HN (Aε, τ ) − HN−1(Aε, τ )] (18)

h(Aε, τ ) = lim
N→∞

hN (Aε, τ ) = 1
τ

lim
N→∞

HN (Aε, τ )

N
. (19)

7
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The dependence on τ is retained as in some stochastic systems the ε-entropy may depend on
it [16]. Moreover, τ can be important in practical implementations.

The (ε, τ )-entropy can be defined as a partition-independent quantity by taking the
infimum over all partitions with cells of diameter smaller than ε [10, 16]:

h(ε, τ ) = inf
A:diam(A)!ε

{h(Aε, τ )} . (20)

The infimum in definition (20) is chosen because for continuous stochastic processes, for any
ε, supA:diam(A)!ε {h(Aε, τ )} = ∞ as it recovers the Shannon entropy of an infinitely refined
partition. It should be remarked that, for ε /= 0, h(ε, τ ) depends on the actual definition of
diameter, i.e. on the used norm as for the FSLE.

For deterministic systems, the ε-entropy defined by equation (20) can be shown to be
independent of τ [18, 19]. Moreover, in the limit ε → 0, the KS entropy, hKS, is recovered

hKS = lim
ε→0

h(ε, τ ), (21)

we recall that thanks to the Pesin relation [20] we have hKS " ∑
λi>0 λi. Unlike the KS entropy,

which is a number, the ε-entropy is a function of the observation resolution ε and its behavior
as a function of ε provides information on the dynamical properties of the underlying system
[16, 21]. For systems with only one positive LE hKS = λ1 and the limit (21) is equivalent to
(12), while at finite ε the ε-entropy h(ε) and the FSLE λ(ε) provide equivalent information,
though differences between the two quantities may be present. For instance, definition (20)
implies that h(ε) is a non-increasing function of ε, while this might not be the case for the
FSLE (see, e.g., section 5).

The first possibility of computing the ε-entropy is by using for any fixed ε the symbolic
dynamics which results from an equal cell partition. Of course, taking the infimum over all
partitions is practically impossible and thus some of the nice properties of the ‘mathematically
well-defined’ ε-entropy will be lost in numerical estimations. Moreover, implementing
directly the Shannon definition is sometimes rather time consuming, and faster estimators are
necessary [21].

The (ε, τ )-entropy h(ε, τ ) is well defined also for stochastic processes. Actually, the
dependence of h(ε, τ ) on ε can give some insight into the underlying stochastic process [16];
for instance, in the case of a stationary Gaussian process with the spectrum S(ω) ∝ ω−(1+2α)

with 0 < α < 1, one has [11]

lim
τ→0

h(ε, τ ) ∼ ε−1/α . (22)

However, the above behavior may be difficult to observe mainly due to problems related to
the choice of τ [16, 22].

3. Characterization of predictability in systems with a multiscale structure

3.1. Systems with slow and fast components

We consider here systems with a multiscale structure, where the state of the system x = (X, y)

can be decomposed into a slow component X which is also the ‘largest’ one, and a fast
component y ‘small’ with respect to X . (This means for example that the typical root mean
square (rms) values of the fast variables are smaller than those of the slow ones yrms & Xrms.)
This kind of situation, though a bit idealized, is common, e.g., in geophysics where several
‘subsystems’ with different time and spatial scales can be identified, for instance, the coupled
system of the ocean and the atmosphere [23]. As a mathematical prototype of such kinds of
systems, we discuss here a model introduced by Lorenz in 1996 [24] to study the predictability
problem in the atmosphere, where indeed a multiscale structure is present. The model

8
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Figure 3. FSLE and correlation dimension computed for the Lorenz96 model ((23)–(24)) with
N = 5, K = 10 forcing F = 10, time separation c = 10 and coupling h = 1 for three values of the
amplitude separation b = 20, 50, 100. (a) λ(δ) versus δ computed using the Euclidean norm in the
full (X, y) phase space with δmin = 10−12 and δ0 = 10−6. (b) The same as (a) but rescaling δ with
the scale-separation factor b. The black and gray horizontal lines display the plateaus of λ(δ) to
λ1 = λfast ≈ 12 and λslow ≈ 0.9 ≈ λfast/c, see the text. (c) Correlation integral as a function of the
scale δ; the straight lines show the measured correlation dimensions D2 ≈ 9.8 and Dslow

2 ≈ 3.1,
see the text.

reads
dXn

dt
=Xn−1(Xn+1−Xn−2)−Xn+F− hc

b

K∑

k=1

yk,n (23)

dyk,n

dt
=cb yk+1,n(yk−1,n−yk+2,n)−c yk,n + hc

b
Xn, (24)

where n = 1, . . . , N and k = 1, . . . , K with the boundary conditions XN±n = X±n,
yK+1,n = y1,n+1 and y0,n = yK,n−1. The above system can be regarded as a one-dimensional
caricature of atmospheric motion. The slow variables Xn may be thought of as the values of
some atmospheric representative observable along the latitude circle, while the fast variables
y, which evolve with similar dynamics but are c times faster and b times smaller in amplitude
(i.e. yrms ≈ Xrms/b), can be seen as representing some convective-scale quantity [24]. The
dynamical features of the system ((23)–(24)) are completely determined by the forcing strength
F and by the system dimensionality NK; see [25] for a recent study of the model.

As discussed by Lorenz [24] (see also [26] for an early study of the above system with
the FSLE), in considering the predictability or, more in general, the error growth in a system
such as ((23)–(24)) we should distinguish questions related to the early and the late times of
the error evolution, and also specify the size of the errors we are considering. This is well
exemplified in figure 3(a) where we show the FSLE λ(δ) computed considering an initial error
uniformly spread over all the (fast and slow) components, and the error is measured using the
Euclidean norm in the full (X, y) phase space.

When the perturbation is small, δ & yrms ≈ Xrms/b; thanks to (12) the FSLE recovers the
maximal LE of the full system that is essentially controlled by the fast subsystem λ1 = λfast. On
the other hand, for larger perturbations, δ # yrms ≈ Xrms/b, after a fast decreasing related to the
saturation of the fast dynamics, the FSLE stabilizes on a second plateau essentially controlled
by the slow component, i.e. λ(δ) ≈ λslow ≈ λ1/c. Figure 3(b) displays the same data as a
function of bδ; the collapse of the three curves confirms that the slow-component-controlled
plateau establishes after the fast dynamics saturates.

We note that one could have considered the initial error present only in the fast degrees
of freedom and measured the FSLE using the Euclidean norm only in the slow components.
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With the latter procedure (not shown) one would have obtained a slightly different FSLE (as
different norms are used). However, remarkably, the two limiting plateaus for small and large
δ seem to be independent of the chosen norm. This observation suggests that the evolution
of finite-size perturbations, which is fully nonlinear for the fully coupled fast–slow system
((23)–(24)) is actually controlled by the linear dynamics of an effective lower dimensional
system. To test this idea we can, for example, measure the correlation dimension of the system
on varying the observation resolution as in [27]. The correlation dimension can be obtained
by the correlation sum [28] here estimated as

Cm,M(δ) = 1
Mm

m∑

k=1

M∑

j=1

-(δ − |x j − x(k)
' |), (25)

where we consider M points of a long trajectory sampled at discrete-time intervals (%t = 1),
and m reference points {x(k)

' } on the attractor. Figure 3(c) shows Cm,M as a function of δ.
The correlation dimension of the attractor defined by the whole system D2, given by the
scaling Cm,M(δ) ∼ δD2 for δ & yrms ≈ Xrms/b, is rather large (D2 ≈ 10). However, for
δ > yrms ≈ Xrms/b, we see a second power law Cm,M(ε) ∼ εDslow

2 with Dslow
2 ≈ 3 < D2 which

defines a sort of ‘effective dimension at large scale’.
The above results suggest that the effective dynamics at large scale can be described by

fewer degrees of freedom (3 or 4), and can be predicted for longer time than the full dynamics.
In particular, the largest LE is expected to be λslow ≈ λ1/c, as identified by the FSLE in
figures 3(a) and (b). It would be interesting to generalize the FSLE to account also for sub-
leading FSLEs, and thus to have a spectrum of LEs at large scale. Unfortunately, at present
it is not clear if and how this can be done due to some technical difficulties3. We also note
that the dimensional reduction operating for the large-scale dynamics is somehow suggesting
the possibility of building reduced models parametrizing the fast (small-scale) dynamics
as expected in systems with different characteristic times. However, the parametrization
may be delicate and modeling small/fast degrees of freedom is not, in general, an easy
task [29, 30].

The above approach can also be used for separating the fast and slow unstable modes
in coupled systems of geophysical relevance with different timescales, e.g. in the El Niño–
Southern oscillation as in [31] where the link between the FSLE and the so-called breeding
vectors is established. Kalnay and co-workers introduced the breeding method for the study of
finite amplitude perturbations [32, 33]. Such a technique, which has many similarities with the
FSLE, consists of adding an initial perturbation of size δ to a reference trajectory, integrating
forward both the perturbed and unperturbed trajectories and periodically rescaling (every time
interval %T ) the amplitude of the perturbation to the initial value δ. With a proper choice of δ

and %T (in the physically appropriate scales) it is possible to estimate, e.g., the shape of the
baroclinic instabilities [34]. Although in realistic applications, like atmospheric forecasting,
it is necessary to face a number of practical aspects, ranging from small scales modeling to
the problem of determining the initial state from incomplete observations, dynamical systems
tools, such as the FSLE, extending the study of perturbation dynamics to the nonlinear regime
have been rather useful (see, e.g., the recent review [35]).

3 For example, to compute the first and second LEs in the non-infinitesimal regime, three trajectories are needed (a
reference and two perturbed trajectories). This is not a problem in tangent space. But for finite perturbation, one needs
all the trajectories be on the attractor, and this is not guaranteed by the standard orthonormalization procedure.
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3.2. Large-scale predictability in fully developed turbulence

We start by recalling the basic aspects of predictability in turbulence; we refer to [6, 13, 36]
for more elaborate treatments [37]. Essentially, we call turbulent the state of motion of a fluid
(of viscosity ν) vigorously stirred by a force acting at a typical scale L, so that the Reynolds
number Re = UL/ν becomes very large (U being the typical large-scale fluid velocity). Under
such conditions the fluid velocity field v(x, t) is dominated by the nonlinear terms of the
Navier–Stokes equation and behaves chaotically, becoming so irregular and complex that a
statistical description is mandatory [38]. The main phenomenological features were established
by Kolmogorov in 1941 (K41) who argued that the velocity power spectrum Ev(k) develops a
power-law behavior Ev(k) ∼ k−5/3 from wave numbers corresponding to the scale of excitation
L to that of dissipation (the Kolmogorov length 0D)—i.e. in the so-called inertial range. The
−5/3-spectrum implies that 〈(δ0v)2〉 ∝ 02/3, where δ0v = (v(x + !, t) − v(x), t) · !/0 is the
longitudinal velocity fluctuation at scale 0 = |!|. Moreover, he derived from the Navier–Stokes
equations an asymptotically Re exact relation 〈(δ0v)3〉 = −(4/5)εr (where ε is the energy
dissipation rate). From these two observations, we can conjecture that, in a statistical sense,
fluctuations over a scale 0D & 0 & L behave as

δ0v ∼ 01/3, (26)

for 0 & 0D one expects δ0v ∝ 0 due to the dissipative smoothing, while for 0 > L correlations
disappear so that δ0v ≈ U . Equation (26) suggests that 〈(δ0v)p〉 ∝ 0p/3, which is close
to experimental observations but for small corrections (important at large p) which are a
manifestation of intermittency [38, 37], ignored here.

The classical theory of predictability in turbulence was developed by Lorenz [4] using
physical arguments confirmed by more refined treatments [39, 40]. Lorenz’s approach stems
from the assumption that the time needed for a perturbation at scale 0/2 to induce a complete
uncertainty on the velocity field at scale 0 is proportional to the characteristic time τ0 of the
scale 0. From equation (26), τ0 can be estimated as

τ0 ∼ 0/δ0v ∼ τL(0/L)2/3, (27)

which increases with the scale 0. The fastest characteristic time would be that associated with
the Kolmogorov length scale τ0D , which is expected to be of the order of the inverse of the
maximal LE λ1 of turbulence [41, 42].

Because of the algebraic progression (27), the time Tp to propagate an uncertainty
from, say, 0D upward to the large scale L is dominated by the slowest timescale τL, indeed:
Tp ∼ τ0d +τ20d +· · ·+τL ∼ τL ∼ L/δLv. Such a result would imply that the predictability time
Tp is Reynolds independent, apparently at odds with the fact that the maximum LE increases
with Re, i.e. λ1 ∝ τ−1

0D
∼ Re1/2, as predicted by Ruelle [41]. (Actually, small corrections to 1/2

are expected due to intermittency [42].) However, as argued in the previous sections, the LE
plays no role in the growth of large-scale perturbations, and hence there is no contradiction.
The above phenomenological considerations can be recast in dynamical systems language
using the FSLE λ(δ). (Here δ = |v − v′| now denotes velocity uncertainties.) In terms of
the FSLE, the predictability time T (δ,%) for an error δ and a given tolerance % is obtained
summing up the inverse of the error growth rate at all scales as in equation (13), which can
be much longer than the naive expectation Tp ≈ ln(%/δ)/λ1 (see equation (4) and the inset
of figure 1(b)) because, in general, larger errors are characterized by smaller growth rates,
i.e.λ(δ) is a decreasing function of δ. In particular, within the phenomenological framework of
K41 theory and Lorenz’s ideas, we can predict the behavior of λ(δ) when the perturbation is
in the inertial range δ0Dv & δ & δLv. According to Lorenz’s argument, the doubling time of
an error of amplitude δ is proportional to the turnover time τ0 of an eddy with typical velocity
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in the inverse cascade regime, for details on the numerics see [45]. The asymptotic constant
value for δ → 0 corresponds to λ1. The dashed line has slope −2. Reproduced with permission
from [116]. Copyright 2009 World Scientific.

difference δ0v ∼ δ. Rewriting equation (26) as δ0v ∼ U (0/L)1/3 and using equation (27) we
then obtain τ0 ∼ τL(0/L)2/3 ∼ τL(δ0v/U )2. In the inertial range, the FSLE λ(δ) should be
proportional to the inverse of the turnover time associated with velocity uncertainties of size
δ; hence,

λ(δ) ∼ δ−2 (28)

remarkably intermittency does not impinge the above scaling behavior as revealed by refining
the argument with the multifractal model [6, 13].

Testing the scaling (28) in direct numerical simulations (DNS) of three-dimensional (3D)
turbulence presents several difficulties and, moreover, it is currently still difficult to obtain an
extended inertial range to verify the δ−2 scaling. In figure 4, we show the results obtained in
two simpler systems: a set of ordinary differential equations (ODEs), which reproduces most
of the phenomenological aspects of turbulence (including intermittency)—namely, the shell
model [43]—and 2D turbulence in the inverse cascade regime, which can be simulated with an
extended inertial range and is essentially well described by the K41 phenomenology, without
corrections due to intermittency [44].

The shell model simulated in [6, 13], from whence data are taken, is the so-called GOY
model. It consists in a set of ODEs for the complex velocity variables un (n = 1, . . . , N)
representing velocity fluctuations in a shell of wave numbers kn < |k| < kn+1. Assuming
locality [38], the nonlinear interactions are confined to neighboring shells, and the ODEs read

(
d
dt

+ k2
n

Re

)
un = ikn

(
un+1un+2 − 1

4
un−1un+1 − 1

8
un−2un−1

)∗
+ fn , (29)

where ∗ denotes complex conjugation and fn is a forcing term (typically restricted to n = 1–3).
The coefficients in the nonlinear term (having the same structure as Navier–Stokes equations)
are chosen to conserve energy E ≡ 1/2

∑
n |un|2 in the unforced ( fn = 0), inviscid (Re → ∞)

limit. The wave numbers are geometrically spaced, kn = k02n, so that a rather small number of
variables, N ∼ log2 Re, are necessary also for high Reynolds numbers. Remarkably, the shell
model (29) displays a phenomenology similar to 3D turbulence and, in particular, it reproduces
power-law scaling, 〈|un|p〉 ∼ k−ζp

n , with exponents close to those experimentally observed for
fully developed turbulence, and thus slightly deviating from K41 ζp /= p/3 [43]. Hence, the
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GOY model represents a good theoretical laboratory for turbulence where standard methods
of deterministic chaos can be used.

The left panel of figure 4 shows the inverse of the doubling time 〈τ (δ)〉, which is
proportional to λ(δ), as a function of velocity uncertainty δ for the GOY model (29)
[6, 13]. When the perturbation is in the dissipative range, δ < δv(0D) ∼ URe−1/4, it can
be considered infinitesimal so that τ (δ) does not depend on δ being proportional to the inverse
of the maximal LE, τ (δ) ≈ τ0D ∝ 1/λ1 ∼ Re−1/2 [41]. In the inertial range, the scaling (28)
is well reproduced. The figure also shows that data obtained with different Re are fairly well
collapsed onto the same curve when the time 〈τ (δ)〉 and velocity δ are normalized using their
Kolmogorov-scale typical values, behaving as Re−1/2 and Re−1/4, respectively. The collapse
can even be improved by accounting for intermittency [6, 13], which however does not change
the scaling (28).

The right panel of figure 4 shows the FSLE as obtained in a high-resolution DNS of
the 2D Navier–Stokes equation in the inverse cascade regime [45]. As mentioned earlier,
2D inverse cascade well fits the K41 phenomenology with the scaling (26) not modified by
corrections due to intermittency [44]. In particular, this means that the algebraic organization
of the characteristic times τ (0) ∼ 02/3 (see equation (27)) should apply as well as the Lorenz
theory which is based on it. Moreover, as in 2D high Re can be reached with numerical
simulations, 2D turbulence constitutes a valid framework to further test the result (28) for
the FSLE. Indeed, we see from the figure that λ(δ) approaches a constant value for δ → 0
corresponding to the largest LE of the turbulent flow, while, at inertial range scales, the δ−2

scaling behavior is clearly detected. The large δ fall-off is due to the saturation of the error
at the largest available scale in the simulation. Remarkably, the scaling range is wider for 2D
turbulence than for shell model simulations (figure 4, left), obtained at much larger Re. Such
discrepancy originates from the absence of intermittency in 2D turbulence, which makes the
transition from the infinitesimal regime λ(δ) ≈ λ1 to the inertial range behavior λ(δ) ∼ δ−2

very sharp. Remarkably, the scaling behavior (28) was also observed in the FSLE measured
from long records of high-resolution data of atmospheric boundary layer flows by Basu
et al [46].

3.3. Macroscopic chaos

High-dimensional chaotic systems can give rise to remarkable collective phenomena: for
instance, macroscopic (global) observables can display well-defined motions even when the
microscopic elements, of which they are made up, behave chaotically and their number N
is very large [47–55]. A particularly interesting case is the mean field behavior of globally
coupled maps (GCMs) defined by the dynamics

un(t + 1) = (1 − σ ) f (un(t)) + σm(t), m(t) = 1
N

N∑

i=1

f (ui(t)), (30)

where f is the map specifying the local dynamics, N is the number of microscopic elements
and σ is the coupling strength. Collective behavior can be detected by looking at the mean
field m(t), upon varying the coupling σ and the map f (x), different types of behavior have
been found [48–50, 52–55], which can be classified as follows [53, 54].

(a) Standard chaos. m(t) fluctuates, essentially according to the Gaussian statistics with the
standard deviation O(N−1/2), around a time-independent mean value.

(b) Macroscopic (quasi-)periodicity. m(t) displays a periodic (or quasi-periodic) motion with
superimposed small fluctuations O(N−1/2).
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Figure 5. FSLE for the GCM (30) with f (x) = a(1 − |1/2 − x|) with a = 1.7, σ = 0.3 for various
N as labeled. The horizontal segments correspond to the microscopic LE λmicro ≈ 0.17 (dashed)
and the macroscopic LE λMacro ≈ 0.007 (solid). The scale δ is multiplied by

√
N to collapse the

curves. Unscaled data are shown in the inset. Data from [54].

(c) Macroscopic chaos. m(t) moves erratically with superimposed small O(N−1/2)

fluctuations suggesting chaotic collective dynamics.

Standard chaos (a) corresponds to the natural expectation based on the central limit
theorem. Behavior such as (b) and (c) is more interesting as it reveals the presence of non-
trivial correlations even when many positive LEs are present. Phenomenon (b) has also been
observed in diffusively coupled maps in high-dimensional lattices [47, 51].

At least conceptually, macroscopic chaos can be seen as a multiscale phenomenon
resembling hydrodynamical chaos emerging from (microscopic) molecular motion of fluids.
There, in spite of a huge maximal (microscopic) LE due to molecular collisions (λmicro ∼
1/τc ∼ 1011 s−1, τc being the collision time), rather different behavior may appear at the
hydrodynamical (coarse-grained) level, regular (λhydro " 0) or chaotic motions (0 < λhydro &
λmicro), as in laminar or turbulent flows, respectively. In principle, knowledge of hydrodynamic
equations makes the characterization of macroscopic behavior possible by means of standard
dynamical system techniques. However, in the generic GCM there are no systematic methods
to build up the macroscopic equations, apart from particular cases [48–50].

Whenever macroscopic chaos is an emerging property as described above, we expect that
the microscopic LE cannot be straightforwardly used to characterize the macroscopic chaos. A
possible strategy, independently proposed by [53] and [54], is to compute the FSLE following
the evolution of mean-field perturbations |δm(t)|. In the limit of infinitesimal perturbations
δ → 0, λ(δ) → λmax ≡ λmicro, while on scales δ ∼ O(N−1/2) the macroscopic character
of mean-field motion should show up. Figure 5 shows λ(δ) versus δN1/2 for a case with
macroscopic chaos [54]. We observe two plateaus: one at small scales where λ(δ) → λmicro

and one at large scales λ(δ) ≈ λMacro which defines the ‘macroscopic’ LE. It is important to
observe the collapse of the curves (compare with the inset) and that the macroscopic plateau
becomes more and more resolved and extended on large values of δ

√
N at increasing N. We can

thus argue that the macroscopic motion is well defined in the thermodynamics limit N → ∞.
The emerging scenario is that at a coarse-grained level, δ 2 1/

√
N, the system can

be described by an ‘effective’ hydro-dynamical equation (which in some cases can be low-
dimensional), while the ‘true’ high-dimensional character appears only at high resolution,
δ " O(N1/2), providing further support to the picture which emerged in the previous
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subsections, e.g. recall figure 3. The proper characterization of macroscopic motion thus
requires first to perform the thermodynamic limit (N → ∞) and only then to explore the
tangent dynamics by considering infinitesimal perturbations [53, 54]. This view is supported
by the collapse in figure 5. However, we should mention that recently it has been proposed
that collective motion can be completely characterized via the Lyapunov spectrum by looking
at those exponents which correspond to Lyapunov vectors spread over all the degrees of
freedom; see [55, 56]. It would be very interesting to explore whether these two approaches
can be reconciled.

4. Scale-dependent characterization of systems

An interesting issue is to understand whether a given experimental signal, such as the time
series of a certain observable, originates from a deterministic chaotic or a stochastic dynamics,
of course, without knowing the system that generated it. Despite much effort [22, 57–64], this
longstanding problem is still largely unsolved; for a thorough discussion see [65, 66].

In principle, if we were able to measure the maximum LE (λ) and/or the KS entropy
(hKS) from a given signal, we could ascertain whether the time series has been generated
by a deterministic law (λ, hKS < ∞) or a stochastic process (λ, hKS → ∞). Unfortunately,
several practical limitations make the determination of hKS and λ [63] problematic. However,
part of these restrictions can be, to some extent, circumvented by adopting a scale-dependent
description of a given signal in terms of the behavior of quantities such as the (ε, τ )-entropy
per unit time, h(ε, τ ) (see section 2.4), or the FSLE, λ(ε) (for uniformity of notation, within
this section the argument of the FSLE is denoted ε instead of δ). When these quantities are
properly defined, so that λ = limε→0 λ(ε) and hKS = limε→0 h(ε), they can, in principle, be
used to answer the question about the deterministic or stochastic character of the dynamical
law that generated the signal. In addition, being defined at each observation scale ε, they give
us the opportunity to recast the question about the noisy or chaotic character of a signal at
each observation scale, as discussed in the following.

For any finite ε, the ε-entropy (for blocks of length m)

hm(ε, τ ) = 1
τ

[(Hm+1(ε, τ ) − Hm(ε, τ ))] (31)

and the FSLE λ(ε) are finite and positive for both stochastic and deterministic chaotic signals.
To simplify the discussion here we have not considered the problem of reconstructing the
phase-space dynamics through the embedding (see, e.g., [66]); for a detailed treatment see
[22, 62]. Of course, to ascertain the ‘nature’ of the signal we should look at the ε → 0
behavior of the ε-entropy, or equivalently of the FSLE. However, in practical situations, we
have a lower resolution cutoff ε1 > 0, depending on the number of data and the dimensionality
of the dynamics [63], below which we are blind on the behavior of these quantities. At any
finite scale, including ε1, entropy and the FSLE are always finite, so that we are unable to
decide whether they will extrapolate to infinity or stay constant in the limit ε → 0.

As proposed in [22], a way to circumvent these difficulties is to classify the character
of a signal as deterministic or stochastic according to the following criterion: when in some
range of length scales the entropy hm(ε) (or the FSLE λ(ε)) displays a plateau at a constant
value, we can call the signal deterministic on those scales. In contrast, if hm(ε) (or λ(ε))
increases at decreasing ε, the signal will be considered stochastic on those scales, and the
dependence on ε used to characterize it (for instance for bounded independent random
variables hm(ε) ∼ ln(1/ε) [67]). Such a definition is free from the necessity to specify a
model for the system which generated the signal, so that we are no longer obliged to answer
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Figure 6. Left: the map F(x) for % = 0.4 is shown with the superimposed approximating (regular)
map G(x) obtained by using 40 0-slope intervals. Right: λ(ε) versus ε for the chaotic map ((32)–
(33)) with % = 0.4 (◦) and the noisy map (35) (#), with 104 intervals of slope dG/dy = 0.9 and
noise intensity σ = 10−4. The straight lines indicate the LE λ = ln(2.4) and the diffusive behavior
λ(ε) ∼ ε−2. See [22] for details.

the ‘metaphysical’ question: whether the system which generated the data was deterministic
or stochastic?

The distinction between chaos and noise based on (ε, τ )-entropy (or the FSLE)
complements previous attempts based on the correlation dimension D2, where a finite value
of D2 was regarded as a signature for the deterministic nature of the signal [68], which is
not completely satisfactory [58]. As an illustration of the above ideas, we briefly discuss the
scale-dependent description of signals originating from two systems displaying large-scale
diffusion [22]. First, consider the map (figure 6 left)

x(t + 1) = [x(t)] + F (x(t) − [x(t)]) , (32)

where [u] denotes the integer part of u and F(y) is given by

F(y) =
{
(2 + %)y if y ∈ [0 :1/2[
(2 + %)y − (1 + %) if y ∈ ]1/2:1] .

(33)

The above system is chaotic, with LE λ = ln |F ′| = ln(2 + %), and generate large-scale
diffusion [69], i.e. for large time t the separation between two trajectories diffuses, i.e.
〈(x(t) − x′(t))2〉 ≈ 4Dt, with D being the diffusion coefficient. As a consequence, the ε-
entropy h(ε) or, equivalently, the FSLE λ(ε) behaves as

h(ε) ≈
{

λ for ε < 1
D
ε2

for ε > 1
. (34)

As a second system, consider the noisy map

x(t + 1) = [x(t)] + G (x(t) − [x(t)]) + σηt, (35)

where ηt is a time-uncorrelated noise with the uniform distribution in the interval [−1, 1] and
σ is a free parameter controlling its intensity. As shown in figure 6 (left), now the deterministic
component of the dynamics G(y) is chosen to be a piecewise linear map approximating F(y)

in (33). In particular, we can choose |dG/dy| " 1, so that without noise (σ = 0) the map (35)
is non-chaotic.
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We can now compare the behavior of λ(ε) in the two systems at varying scale ε. (The
ε-entropy provides equivalent information and it is not shown here, see [22].) From a data
analysis point of view, one should compute the FSLE by reconstructing the dynamics via
embedding [66]; however, being interested only in discussing the resolution effects, one
can directly compute it by integrating the evolution equations for two (initially) very close
trajectories. In the case of noisy maps, one should use two different realizations of the noise
[22]. Figure 6 (right) shows the behavior of λ(ε) for both systems (32) and (35): we can
distinguish three ranges of scales with different regimes. On the large length scales, ε 2 1,
we observe diffusive behavior (λ(ε) ∼ ε−2) in both models. On intermediate (small) length
scales σ < ε < 1 both models show chaotic deterministic behavior, because the entropy and
the FSLE are independent of ε and larger than zero. Finally, we can see stochastic behavior for
the system (35) on the smallest length scales ε < σ , while (32) still displays chaotic behavior.

It is thus obvious that if we are asked to define the character of the signal generated by
these two systems, our answer would change a lot depending on the smaller cutoff ε1 (we
can reach by analyzing a finite amount of data) being smaller or larger than σ or 1. Adopting
a scale-dependent classification scheme gives us the freedom to call deterministic the signal
produced by (35) when observed in σ < ε < 1, refraining from accounting for its ‘true’ nature,
i.e. its ε → 0 behavior. Practically, this means that, on these scales, (32) can be considered as
an appropriate model for (35). On the other hand, for both systems we can call the behavior at
large scales (ε > 1) stochastic.

5. Linear versus nonlinear instabilities

The stability properties of generic systems are typically controlled by the tangent space
dynamics (i.e. by infinitesimal perturbations). In this section, we briefly discuss systems for
which, due to higher order corrections, the growth rate associated with finite-size perturbations
is larger than that of infinitesimal perturbations (i.e. larger than the standard maximal LE, i.e.
λ(δ) > λ1 for some δ). When this happens and, furthermore, λ1 is (vanishing) negative,
we have odd situations in which close trajectories diverge from each other despite their
(marginal) stability in tangent space. Systems of such kind can generate, especially when
spatially coupled, behavior very similar to chaos, even though technically speaking they
are non-chaotic (λ1 " 0). We mention for example the phenomenon dubbed stable chaos
[70–73], namely the presence of irregular transients (characterized by negative LE and thus
not to be confused with chaotic transients [73]) that are exponentially long with the number
of coupled degrees of freedom. Moreover, spatially extended systems characterized by growth
rates of finite-size perturbation larger than the infinitesimal ones are characterized by peculiar
propagation [8, 74, 75] and synchronization [76–80] properties which make them behave
similarly to cellular automata [73]. Another class of systems where irregular dynamics arises
in spite of their marginal stability (λ1 = 0) is represented by regular polygonal billiards [81,
82] belonging to the world of so-called pseudochaos [83]. Such marginal stable systems [84]
can give rise to seemingly chaotic behavior. For instance, Letz and Kantz [9] showed that
finite-size instabilities of the type discussed above appear at scales of the order of the inverse
of the number of edges in the polygon. In systems of such kind the large-scale properties can
be indistinguishable from those of the chaotic ones, and genuine large-scale transport can be
observed [85, 86].

The FSLE is a natural candidate to quantify these nonlinear instabilities as it probes
the nonlinear stability properties of a system. We start comparing the behavior of two one-
dimensional maps, xt = f (xt−1), for which the growth rate of non-infinitesimal perturbations
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Figure 7. FSLE λ(δ) versus δ for (a) the tent map, (b) the Bernoulli shift map and (c) the
stable map (42). The continuous lines in (a) and (b) are the analytical expressions (39) and (41),
respectively. The maps are shown in the insets. Reproduced with permission from [75]. Copyright
2001 American Physical Society.

was analytically estimated in [8]. The first example is the tent map f (x) = 1 − 2|x − 1/2|,
whose LE can be easily computed as

λ = lim
δ→0

〈
ln

∣∣∣∣
f (x + δ/2) − f (x − δ/2)

δ

∣∣∣∣

〉
=

∫ 1

0
dx ρ(x) ln | f ′(x)| = ln 2, (36)

where ρ(x) is the invariant density, which is uniform in the unit interval (ρ(x) = 1). Relaxing
the request δ → 0 in (36), we can estimate the FSLE as

λ(δ) =
〈
ln

∣∣∣∣
f (x + δ/2) − f (x − δ/2)

δ

∣∣∣∣

〉
= 〈I(x, δ)〉 , (37)

where (for δ < 1/2) I(x, δ) is given by

I(x, δ) =






ln 2 x ∈ [0 :1/2 − δ/2[ ∪ ]1/2 + δ/2:1]

ln
|2(2x − 1)|

δ
otherwise .

(38)

The average (37) yields, for δ < 1/2,

λ(δ) = ln 2 − δ, (39)

in agreement with the numerically computed λ(δ) (see figure 7(a)). In this case, the error
growth rate decreases for finite perturbations, which is somehow the typical behavior. The
situation is different for the Bernoulli shift map f (x) = 2x mod 1 for which, by using the same
procedure as before, we easily find that λ = ln 2, and for δ not too large

I(x, δ) =





ln

[
(1 − 2δ)

δ

]
x ∈ [1/2 − δ/2, 1/2 + δ/2]

ln 2 otherwise.
(40)

As the invariant density is uniform, the average of I(x, δ) gives

λ(δ) = (1 − δ) ln 2 + δ ln
(

1 − 2δ

δ

)
. (41)

In figure 7(b), we show the analytic FSLE compared with the numerically evaluated one.
In this case, we have that λ(δ) ! λ for some δ > 0. Such behavior relates to the discontinuity
at x = 1/2 which causes trajectories residing on the left (resp.) right of it to experience very
different histories irrespective of the original distance between them.

Finally, in figure 7(c) we show the FSLE for the map

f (x) =






bx 0 " x < 1/b

1 − c(1 − q)(x − 1/b) 1/b " x <
b + c

bc

q + d
(

x − b + c
bc

)
b + c

bc
" x " 1,

(42)
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with b = 2.7, d = 0.1, q = 0.07 and c = 500. For c → ∞, the map (42) reduces to
the discontinuous map studied in [71]. Interestingly, this map has a negative LE but has a
positive growth rate (positive FSLE) for perturbations of finite size (i.e. λ(δ) > 0 > λ1 for
δ ! δ∗ ≈ 10−2). Note for this behavior to be present, the slope c must be large enough [74].

We remark that the FSLE λ(δ) in figure 7(c) was measured modifying the first algorithm
presented in section 2.3, which cannot be used when λ1 " 0. Here, λ(δ) is measured by
taking two trajectories at an initial distance δn; after one time step the distance δ between the
trajectories is measured. Then one of the two trajectories is rescaled at a distance δn from
the other, keeping the direction of the perturbation unchanged, and the procedure is repeated
several times and for some values of δn. Then we averaged ln(δ/δn) over many different initial
conditions. For δn → 0, this is nothing but the usual algorithm for computing the maximal
LE [87]. As already discussed, this method suffers from the problem that when δn is finite, we
cannot be sure to correctly sample the measure.

We mention that Letz and Kantz [9] considered a system of diffusively coupled maps of
type (42) and studied their stability properties in terms of an indicator similar to the FSLE
(i.e. able to quantify the growth rate of non-infinitesimal perturbations) and obtained results
similar to those of figure 7(c). The increased sensitivity to finite perturbations is crucial for
establishing (exponentially) long disordered transients in coupled systems of maps such as
(42), as reviewed in [73].

We conclude this brief discussion by mentioning that instances of systems with λ(δ) >

λ(0) have been found also in continuous-time systems (i.e. ODEs). It is worth citing that
non-monotonic behavior of λ(δ) similar to that of the Bernoulli map (figure 7(b)) has recently
been found in a toy model for the climate [88]. In particular, there maxima of the FSLE have
been connected to the switching between ‘metastable states’. Other examples of systems where
finite size instabilities play an important role can be found in the context of neural networks
[73, 89].

6. Transport and mixing in fluid flows

The study of transport and mixing properties of small impurities advected by fluid flows is of
theoretical interest and great practical importance, e.g., in geophysics and engineering. From a
dynamical system point of view investigating the transport of tracer particles—the Lagrangian
view of transport—amounts to study the dynamics

dX(t)
dt

= u(X(t), t), (43)

where u(x, t) is the Eulerian velocity field; here Brownian fluctuations are ignored for
simplicity. Particularly interesting is the study of the relative dispersion [90, 91], i.e. of
the separation R(t) = X (2)(t) − X (1)(t) between two tracers whose evolution,

dR
dt

= u(X (1)(t) + R(t), t) − u(X (1)(t), t) = δRu(X (1), t) , (44)

depends on the properties of the Eulerian velocity field across different scales. For typical
velocity fields, in the asymptotics of very small and very large separations (far from any
boundaries), the behavior of the relative dispersion is clear. When the initial separation R(0) is
very small, tracers evolve in a smooth velocity field and (Lagrangian) chaos will typically be
present [92, 93] with exponential amplification of the particle separation. Therefore, at time
short enough that R(t) is (infinitesimally) small, we expect

〈R2(t)〉 ∼ 〈R2(0)〉eL(2)t, (45)
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where L(2) ! 2λ1 is the generalized LE of order 2 [93], the maximal LE λ1 ≈ ln[R(t)/R(0)]/t
controlling the typical behavior. On the other hand, at separation larger than the correlation
length of the Eulerian velocity field, the tracers evolve essentially with independent velocities
and thus their separation behaves diffusively

〈R2(t)〉 ( 4Dt, (46)

with the diffusion coefficient determined by the large-scale features of the velocity field.
Between these two asymptotic regimes the behavior of 〈R2(t)〉 depends on the specific

features of the velocity field over the scales. It is rather natural to approach a scale-dependent
description in terms of the FSLE and we can indeed define an effective scale-dependent
diffusion coefficient as [94]

D(R) = λ(R)R2 . (47)

For example, in the above two asymptotics we have λ(R) ≈ λ1 for very small R and
λ(R) ∝ D/R2 at large scales, so that D(R) ∼ λ1R2 and D(R) ∼ D, respectively.

As shown in the following, this kind of approach to the study of relative dispersion is
particularly useful when investigating flows with a multiscale structure, like in turbulence,
as with the FSLE the detection of the scale is somehow ‘automatically’ obtained (see the
discussion of equation (14)). The proper identification of the scale via the FSLE is also
very useful in the presence of boundaries, where observing asymptotic regimes may not be
possible, or be spoiled by averaging at fixed times, which may lead to spurious regimes due to
interference between different scales.

6.1. Relative dispersion in closed systems

Consider the transport of tracers in a closed domain of size, say, LB by a velocity field with
the typical length scale 0u. In the simple case of laminar (one-scale) flows with LB 2 0u,
one expects the following scenario. Until R & 0u, the relative motion is characterized by
the exponential regime (45) (with λ(R) ( λ1), then when 0u & R & LB there should be
the diffusive regime (46) (with λ(R) ∼ R−2). Finally, when R $ LB the average separation
must approach a constant value 〈R2(t)〉 ≈ const, while λ(R) quickly decreases toward zero.
Actually, by assuming exponential relaxation to the uniform distribution inside the domain,
which is expected to be true for a vast class of systems, it is possible to show that [94]

λ(R) ∝ R∗ − R
R

, (48)

where R∗ ≈ LB is the average separation between two randomly chosen points.
In figure 8, we show the behavior of the relative dispersion between tracers evolving in the

velocity field generated by M = 4 point vortices in a disc (see [14, 94] for details). Tracers are
advected by the time-dependent velocity field generated by the vortices and behave chaotically
for any M > 2. The velocity characteristic scale is not imposed by hand, but depends on M and
on the energy of the vortex system. Essentially, with M = 4, 0u is of the order of the average
inter-vortex distance and thus 0u ∼ LB, so that the diffusive regime is absent. Moreover,
due to intermittency in the particle separation, when considering many particle pairs there
are situations in which, at the same time, some pairs may be still in the exponential regime,
while others have reached the boundaries. Such intermittency causes the seemingly anomalous
superdiffusive behavior 〈R2(t)〉 ∝ tν (with ν > 1) observed in figure 8(a), when we average at
fixed times. Conversely, the FSLE, ‘selecting’ the correct scale, displays only the exponential
regime (the plateaux at small R) and the saturation (48). Features similar to those shown
in figure 8 were observed also in the experimental data in a convective cell [95]. We also
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Figure 8. (a) 〈R2(t)〉 versus t for tracers evolving in a disc with velocity given by four point
vortices; see [94, 14] for details. The dashed line is the power law 〈R2(t)〉 ∼ t1.8. (b) FSLE for the
same model and parameters. The horizontal line indicates the LE (λ ( 0.14) and the dashed curve
is the saturation regime (48) with R∗ = 0.76. Reprinted with permission from [14]. Copyright
2000 American Institute of Physics.

mention that the FSLE has been used to characterize the relative dispersion in experiments on
two-dimensional turbulent flows in the Batchelor regime [96] and also to study the Lagrangian
trajectories of drifters in the (semi-closed) Adriatic sea [97].

6.2. Relative dispersion in turbulence

We now briefly discuss the application of the FSLE to relative dispersion in turbulence where
the classical theory proposed by Richardson predicts [98] (see also [90, 91])

〈R2(t)〉 ∼ t3, (49)

for R within the inertial range (see section 3.2). It is interesting to note that when Richardson
derived (49) he did not know the Kolmogorov scaling (26). Actually, he obtained the law
for the relative dispersion using a diffusion equation for the probability distribution of pair
separation with a diffusion coefficient D(R) depending on the separation, i.e.

∂

∂t
p(R, t) =

3∑

i=1

∂

∂Ri

(
D(R)

∂

∂Ri
p(R, t)

)
. (50)

From a collection of a variety of experimental data Richardson proposed D(R) ∼ R4/3,
from which the scaling law for 〈R2(t)〉 can be easily obtained. Of course, a posteriori, the
assumption D(R) ∼ R4/3 is nothing but a consequence of Kolmogorov scaling (26); indeed,
we can estimate D(R) ∼ (δRu)R ∼ R4/3. Richardson’s approach to the problem is thus tightly
linked to the idea of devising a scale-dependent description of the relative dispersion, in the
same spirit we have discussed above within the FSLE framework. In particular, note that,
thanks to (47), the Richardson law (49) means λ(R) ∼ R−2/3 for the FSLE.

In spite of the fact that the law (49) was proposed in 1926, still nowadays both experiments
and numerical simulations have difficulties in demonstrating it without ambiguity [91]. One
of the main sources of difficulties is the presence of intermittency widening the crossovers
between the behavior (49) and that expected at small and large scales. Moreover, in the
evolution of the separation between two tracers the dependence on the initial separation R(0)

typically lasts for very long times, independently of the presence of intermittency.
The comparison between the traditional (fixed time) statistics and the (fixed scale) FSLE

reveals interesting features [99–101]. In particular, figure 9(a) shows 〈R2(t)〉 versus t obtained
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Figure 9. Relative dispersion in numerical simulations of 3D turbulence data from [99]. (a) Average
separation 〈R2(t)〉 normalized with the Kolmogorov length η as a function of the normalized time
t/τη (where τη is the timescale associated with the Kolmogorov scale). Data refer to four different
initial separation as labeled; note the dependence on the initial separation and the absence of a clear
t3 range, indicated by the solid line. (b) FSLE λ(R) versus R for the same data with the dotted and
solid lines displaying the exponential λ(R) = λ1 ≈ 0.11 regime and the Richardson prediction
λ(R) ∝ R−2/3. Note that the curves obtained by different initial conditions collapse fairly well
onto the same curve. Courtesy of G Boffetta and A S Lanotte.

in high-resolution DNS [99]: the dependence on the initial condition is rather evident and
the expected t3 scaling is practically never recovered. Such unpleasant behavior is due to the
contamination, at a given t, of different regimes (e.g. exponential in the dissipative range and
power law in the inertial range). The above trouble disappears only in the case of an enormous
inertial range (say 8–10 decades). However, as shown in figure 9(b) the computation of the
FSLE is more revealing. First, the dependence on the initial condition essentially disappears as
it provides information on the scale at which it is computed. Second, part of the contamination
between different regimes is removed so that the R−2/3 regime implying the Richardson law
(49) can be detected. Clearly, wider inertial ranges, going to higher Reynolds numbers, are
mandatory to find more convincing evidence of the Richardson law. We mention that recently
exact analytical expressions for the FSLE have been found for some models of tracer dispersion
in one and two dimensions [102].

As a historical note we recall that to describe relative dispersion in turbulence, Batchelor
proposed an alternative approach [103]. In particular, he replaced the separation-dependent
diffusion coefficient (D(R) ∼ R4/3) with a time-dependent one D(t) ∼ t2. As is easily seen by
using dimensional analysis, both models predict (49). However, they predict different shapes of
the pdf p(R, t). Numerical results suggest the basic validity of the Richardson approximation
[99, 101].

We conclude by mentioning that, in [15], the FSLE has been measured on the trajectories
of constant-density atmospheric balloons, which were monitored via the satellite EOLE [104].
This study found some evidence of R−2/3 scaling as expected for a turbulent atmosphere,
which was not clear by the traditional measurement of the relative dispersion.

6.3. Detection of mixing structures in geophysical flows

An interesting application of the FSLE has been put forward for the characterization of mixing
in geophysical flows dominated by coherent structures such as the polar vortex [105, 106],
and the ocean surface [107–109], where coherent structures can be important for biological
activity [110–112].
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Figure 10. Map of the local FSLE computed backward (negative values) and forward (positive
values) in time for an area of the central Atlantic Ocean close to the Canary islands; see [110] for
a related study. The maxima and minima of the field, which appear as curves, are good proxies of
the coherent structures of the flow. Courtesy of C Lopez.

In quasi-two-dimensional geophysical flows, as occur in the atmosphere and the ocean, it
is well known that mixing and stirring are mainly ruled by chaotic advection and, particularly,
by hyperbolic lines (i.e. material lines which are locally the most attracting or repelling, see
[106, 113]), while the edges of elliptic coherent structures (essentially vortices) constitute
barriers to the transport. In general, locating such structures in unsteady flows is not an easy
task and traditional criteria based on Eulerian quantities, such as the Okubo–Weiss parameter,
do not work properly. It was observed [105, 106] that local measurements of the FSLE (i.e.
without averaging) can be used to find ‘good’ proxies of the hyperbolic lines and thus to map
mixing at appropriate length scales. In particular, the idea is to map a given velocity field by
measuring, e.g., on a spatial grid defined at an appropriate resolution, the time τ f ,b needed
for particle pairs having an initial separation R0 to reach a separation (R0 both while going
forward and backward in time. In this way one can estimate the forward and backward local
FSLE at each location x for a given instant of time t:

λ f ,b(x, t, R0, () = 1
τ f ,b

ln ( . (51)

When ( is large enough the extrema of the forward and backward local FSLE (51) are good
candidates for the unstable and stable manifolds, respectively, of the flow under consideration
(see, e.g., figure 10). Although no rigorous results are at present available, in [105, 106]
it was shown that the above strategy can provide good proxies of the Lagrangian coherent
structures important for tracer mixing and transport in the polar vortex and also in model flows,
where it was compared with more rigorous approaches [113, 114]. Furthermore, the method
was applied to data obtained by numerical models and surface data on the Mediterranean sea
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[107, 108] and found to provide robust results against measurement noise and resolution details
[109]. The use of such an FSLE map was, for instance, very useful for linking the motion
of sea birds to Lagrangian structures [111], or establishing the lifetime of phytoplankton
niches [112].

The advantage of the FSLE is clearly that it can be easily measured from data. However,
a systematic characterization of Lagrangian coherent structures requires more detailed
approaches. In this direction, a promising treatment, based on differential geometry, has
been recently proposed in [115].

7. Conclusions

In this review, we have discussed the application of the finite size Lyapunov exponent (FSLE),
which generalizes the maximal Lyapunov exponent (LE) to the nonlinear regime, that is to the
dynamics of perturbation out of the tangent space. The necessity to understand and characterize
the nonlinear regime of perturbation growth naturally arises whenever predictability issues
concerning realistic systems (involving possibly many different timescales) are considered. In
such systems the standard LEs indeed only account for the linear stability and thus are relevant
only for the first stages of growth of perturbations which are initially very small (and dominated
by the fastest degrees of freedom only). Also, when characterizing experimental signals,
practical limitations in the number of data and resolution impose the adoption of a scale-
dependent description that can be approached in terms of the FSLE and the ε-entropy, which
generalizes the KS entropy to coarser resolutions. The linear stability analysis is sometimes
insufficient for understanding properties such as the propagation of perturbations in spatially
extended systems, which can be controlled by nonlinear instabilities (see section 5 and [73]
for a thorough review). Finally, a scale-dependent indicator such as the FSLE can be very
useful in the description of relative dispersion in fluid flows, which is essentially determined
by the multiscale structure of the advecting velocity field. Moreover, it provides good proxies
for identifying the Lagrangian structures relevant to mixing.

We hope that this discussion will stimulate further research on the characterization of
the nonlinear stability analysis. In particular, it would be important to establish mathematical
rigor for FSLE, possibly generalizing it beyond the maximal growth rate, in such a way as to
be able to define an FSLE spectrum.
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[51] Chaté H and Manneville P 1996 Physica A 224 348
[52] Losson J, Vannitsem S and Nicolis G 1998 Phys. Rev. E 57 4921
[53] Shibata T and Kaneko K 1998 Phys. Rev. Lett. 81 4116
[54] Cencini M, Falcioni M, Vergni D and Vulpiani A 1999 Physica D 130 58
[55] Takeuchi K, Ginelli F and Chaté H 2009 Phys. Rev. Lett. 103 154103
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