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ABSTRACT We present an analysis of the ef-
fects of global topology on the structural stability of
folded proteins in thermal equilibrium with a heat
bath. For a large class of single domain proteins, we
computed the harmonic spectrum within the Gauss-
ian Network Model (GNM) and determined their
spectral dimension, a parameter describing the low
frequency behavior of the density of modes. We
found a surprisingly strong correlation between the
spectral dimension and the number of amino acids
in the protein. Considering that larger spectral
dimension values relate to more topologically com-
pact folded states, our results indicate that, for a
given temperature and length of protein, the folded
structure corresponds to a less compact folding, one
compatible with thermodynamic stability. Proteins
2004;55:529–535. © 2004 Wiley-Liss, Inc.

Key words: thermal fluctuations; spectral dimen-
sion; topological instability; Gaussian
Network Model (GNM)

INTRODUCTION

The role of geometry has recently been considered as a
factor of primary importance for the study of several
physical properties of proteins and other biological macro-
molecules. In particular, since the topology of the folded
state is known to influence the folding properties of the
protein,1–8 a great deal of work has been devoted to the
study of those theoretical aspects that describe the net-
works of links among amino acids in folded proteins.9–11

Furthermore, relevant features of protein conformations
seem to follow the geometrical principles of the optimal
packing problem12,13 and mathematical concepts from
graph theory have been interestingly applied to identify
flexible and rigid regions of folded states.14

Starting from the primary, linear structure (the se-
quence of amino acids), a protein evolves during the
folding process until it reaches a final state (native state)
whose geometrical shape is crucial to the function of the
protein itself. However, the problem of the geometrical
arrangement of proteins in their native states cannot be
regarded as a purely static issue. Indeed, a massive
accumulation of experimental data collected from X-ray,
NMR and neutron spectroscopy has revealed that protein
native states are dynamic structures wherein amino acids
constantly move around their equilibrium positions. This
motion crucially involved in protein function,15,16 is usu-
ally examined and investigated through normal modes
analysis17 (NMA) or essential dynamics.18 However, the

study of collective motion of large scale proteins is gener-
ally difficult due to limited access to realistic all-atom
NMA,19 and simplified or approximate approaches are
usually welcome. Tirion20 first proposed the possibility of
replacing, in protein normal mode computations, compli-
cated empirical potentials with Hookian pairwise interac-
tions depending on a single parameter. This approach
stems from the observation that low-frequency dynamics,
which are mainly associated with protein-domain motion,
are generally insensitive to the finer details of atomic
interactions. Much of the subsequent literature12–26 has
confirmed the success of simple harmonic models in the
study of the slow vibrational dynamics of large biological
macromolecules, and they have become a viable alterna-
tive to heavy and time-consuming all-atom NMA. This
success results from the striking agreement of predictions
with experiments, the presence of few adjustable parame-
ters and the fast and easy numerical implementation on
computers. For these reasons, harmonic models are also
utilized for the systematic analysis of large data sets of
proteins.

The topological stability of macromolecules is far from
being a purely mechanical problem as it closely involves
thermodynamics. Indeed, the relevant thermodynamic
potential that must be minimized in order to find a stable
configuration is not energy but free energy. This is due to
the interaction of molecules with the environment (schema-
tized as a thermal bath), which is generally not negligible,
especially for biological macromolecules that have a stable
phase in the solvent. In particular, water is a very efficient
medium for the transfer of thermal energy on the micro-
scopic scale (i.e. oscillations and molecular rotations).

With these considerations in mind, in this work we
apply NMA as an approach to investigate the influence of
the global native state topology on the thermal stability of
proteins.

Vibrational thermal instability is a well-known topic of
study in solid state physics. Since the initial classical
analysis by Peierls,27 it has been recognized that equilib-
rium with a thermal bath can dramatically influence the
possible topological arrangements of large geometrical
structures. Up to now, the most striking consequence of
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Peierls’ instability has concerned low-dimensional crys-
tals: for one- and two-dimensional lattices, the mean
square displacement of a single atom at a finite tempera-
ture diverges at the thermodynamic limit, i.e. with an
increasing number of atoms. When the displacement ex-
ceeds the order of magnitude of the lattice spacing, the
topological arrangement of the lattice is unstable and the
crystal becomes a liquid. For real structures, formed by a
finite number of units and far from the thermodynamic
limit, the divergence sets a maximal stability size, which is
negligible for one-dimensional lattices and typically meso-
scopic for two-dimensional lattices.

However, thermal instability is present not only in
crystals but also in structurally inhomogeneous systems,
such as glasses, fractals, polymers and non-crystalline
structures. Here, the problem is much more complex.
Generalizing the Peierls approach to mesoscopic disor-
dered structures, we are able to apply this argument to the
thermal stability of macromolecules. In this article, we
describe how this can be done in the case of proteins; we
predict the existence of a critical stability size depending
on a global topological parameter (the spectral dimension)
and compare our predictions with experimental data.

Theory

In a recent paper28 generalizing the Peierls result, we
showed that thermodynamic instability also appears in
inhomogeneous structures and is determined by the spec-
tral dimension d� . The parameter d� 29 is defined according
to the asymptotic behavior of the density of harmonic
oscillations at low frequencies. More precisely, using g(�)
to denote the density of modes with frequency �, then

g��� � �d� �1 (1)

as � 3 0. The spectral dimension is the most natural
extension of the usual Euclidean dimension d to disor-
dered structures as far as dynamic processes are con-
cerned. It coincides with d in the case of lattices, but in
general, it can assume non-integer values between 1 and 3.
The spectral dimension represents a useful measure of the
effective connectedness of geometrical structures on a
large scale, because large values of d� correspond to high
topological connectedness. Moreover, it characterizes not
only harmonic oscillations, but it also relates to diffusion,
phase transitions and electrical conductivity, allowing a
variety of both experimental and numerical methods for
its determination.30,31 The relevance of d� in connection
with the anomalous density of vibrational modes in pro-
teins has also been considered in refs. 32 and 33.

In the case of thermal instability, we demonstrated that,
for d� � 2, the mean square displacement �r2� of a structural
unit (an atom, molecule or supra-molecular structure,
according to the studied case) of a system composed of N
elements, diverges in the limit N3 �. Using T to represent
the temperature of the heat bath, kB the Boltzmann
constant, and � the interaction energy scale, the diver-
gence is given by the asymptotic law

�r2� 	
kBT

�
N2/d� �1 (2)

when d� 
 2. When d� � 2, the mean square displacement
diverges logarithmically, �r2� 	 kBT/�ln(N), as in the case
of the Peierls result for a two-dimensional crystal. Notice
that the divergence in �r2� is only determined by d� . Now, at
any given temperature T, there will exist a threshold value
N(T) beyond which �r2�1/2 exceeds the typical spacing
between the nearest neighbors, making the solid structure
unstable. Therefore, at a large enough value of N, the solid
will experience a structural reorganization that can lead to
either a homogeneous liquid phase at sufficiently high
temperatures or a disordered three-dimensional solid,
which is homogeneous on a large scale and inhomogeneous
on a small scale. In general, the threshold values of N are
very small with respect to the typical order of magnitude of
macroscopic systems comparable to the size of large com-
plex macromolecules such as biopolymers.

This poses an intriguing question concerning proteins.
Indeed, to exploit their biological function proteins must
keep a specified geometric and topological arrangement
and cannot afford even partial large-scale geometric fluc-
tuations such as happen to swollen polymeric chains in a
good solvent.34 This makes thermodynamic stability cru-
cial and suggests a possible correlation between spectral
dimension and length in protein chains.

Vibrational stability in proteins has been analyzed with
the Gaussian network model (GNM) proposed by Bahar et
al.35 and widely applied because it yields results in agree-
ment with principal X-ray spectroscopy experiments. This
approach generally considers proteins to be elastic net-
works whose nodes correspond to the positions of the
alpha-carbons (C�) in the native structure, and the interac-
tions among nodes are modelled as harmonic springs. The
only information required to implement the method is
knowledge of the native structure. Two parameters are
introduced, the spring constant and the interaction cut-off,
which turn out to be related whenever the model is applied
to fit experimental data. The GNM can be defined by the
quadratic Hamiltonian equation

�
i

pi
2

2M �
�

2 �
ij

ij��ri � �rj�
2 (3)

where the first term represents the kinetic energy of the
system, � represents the strength of the springs that are
assumed to be homogeneous, Ri and �ri represent the
equilibrium position and the displacement with respect to
Ri of the i-th C� atom, respectively. The model is eventu-
ally defined by the contact matrix  with the following
entries: ij � 1 if the distance �Ri � Rj� between two C�

atoms, in the native conformation, is below the cutoff R0,
while ij � 0 otherwise.

The harmonic spectrum for each structure is given by
the set of eigenvalues {�0, �1, …, �N �1} of the Kirchhoff
matrix (or valency-adjacency matrix), �ij � � ij � �ij¥l�i

il. Notice that the first eigenvalue, �0, vanishes and
corresponds to the constant eigenvector related to the
trivial uniform translation.

The comparison between experimental data and pre-
dicted GNM results is obtained via X-ray crystallographic
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B-factors, measuring the mean square fluctuation of C�

atoms around their native positions

Bi�T� �
8�2

3 ��ri � �ri�,

with � � � indicating the thermal average. In the GNM
approximation, this average is easily carried out, because
amounts to a Gaussian integration, and B-factors can be
expressed in terms of the diagonal part of the inverse of the
matrix �:35

��ri � �rj� �
3kBT

�
���1�ij

Knowledge of the eigenvectors and eigenmodes of matrix
� allows computation of the GNM B-factors using the
following formula:

Bi�T� �
8�2kBT

� �
k

�ui�k��2

�k
2 ,

where i is the residue index, the sum runs over all non-zero
frequencies �k and ui(k) indicates the i-th component of
the k-th eigenmode.

Comparison with crystallographic data is crucial for
setting the correct values of the parameters R0 and � (see
Methods and Results).

METHODS

We present a GNM harmonic analysis performed over
the data set of protein native structures with different
sizes downloaded from the Brookheaven Protein Data
Bank. The purpose of the analysis is basically to investi-
gate whether there exists a correlation between the spec-
tral dimensions of native structures and the lengths of
naturally occurring proteins and, if so, to verify whether
the correlation can be explained in terms of the abovemen-
tioned stability criterion determined by eq. (2).

Our representative statistical sample, listed in Tables I
and II, was selected according to the following criteria.
First, we only considered proteins with stable large-scale
geometries. This excluded multiple-domain proteins,
wherein domains can undergo relative motion, giving rise
to larger geometric fluctuations. Moreover, we considered
only proteins not bonded to fragments of DNA, RNA or
other substrates because such structures cannot be de-
scribed with sufficient accuracy in terms of a simple
harmonic model with only two effective parameters. Fi-
nally, we chose proteins that uniformly represent a wide
length interval ranging from 100 to 3600 residues to test
our prediction.

The diagonalization of the Kirchhoff matrix �ij to obtain
its eigenvalues {�1

2, …, �n
2} and eigenvectors was per-

formed with the standard numerical packages.36

The value of the interaction cut-off for generating the
contact matrix  was set to R0 � 7 Å, as is customary in
such studies. The cut-off choice, which affects the overall
GNM performance, is generally tested through the correla-
tion coefficient �37

� �
¥ij �Bi � �Bi���Xj � �Xj��

�¥ij �Bi � �Bi��
2�Xj � �Xj��

2 ,

between experimental (Xi) and theoretical (Bi) B-factors.
The sum runs over a number of protein residues, and �B�
and �X� indicate the average values. Our data set contains
only those protein structures with a coefficient � greater
than 0.5 (see last columns of Tables I and II). This should,
in principle, ensure that GNM correctly reproduces C�

fluctuations for each selected protein. However, since we
studied two different cut-offs, we decided to include even
those few structures, such as 9RNT, 1A47, and 1CDG, that
have � � 0.5 for one cut-off, and those with � 
 0.5 for the
other one. The few instances of agreement between B-
factors from GNM and crystallography are shown in
Figure 1, where we display the best and the worst cases
with respect to the coefficient �.

For each protein, the optimal value of the spring con-
stant � was obtained through a least-square fitting to the
experimental B-factors, which yielded the formula

kBT
�

�
1

8�2

¥i BiXi

¥i Bi
2

The values of kBT/�, besides being an essential ingredient
for the application of the GNM method, are also an
indication of the protein global flexibility and allow for a
direct comparison among the structures considered.

The spectral dimension d� was estimated via a power-law
fitting to the low-frequency behavior of the cumulated
density of modes G(�), namely the integral of g(�). Indeed,
due to relation (1), G(�) � �d� � 1 at small arguments (see
Fig. 2). The harmonic spectra, obtained within the GNM,
for three proteins with sizes, small, medium and large,
respectively are plotted in Figure 2, where low-frequency
regions clearly exhibit the expected power-law behavior
whose exponent is the spectral dimension d� .

RESULTS AND DISCUSSION

Our statistical analysis for the whole data set of proteins
and cut-offs with R0 � 7 Å is summarized in Table I, where
we report the spectral dimension and its corresponding
error, our estimate for kBT/�, and the correlation coeffi-
cient. To test the accuracy of our results, we have repeated
the same analysis at a slightly different cut-off, namely at
R0 � 6 Å, which yields a smaller but still significant
correlation between experimental and theoretical B-
factors (Table II). Error for d� -values, in both tables, was
estimated to account for uncertainty due to the choice of
fitting region for the power-law, because the slope of the
linear fit (see Fig. 2) can change with variation of this
region. Furthermore, error bars also take into account the
correlation value � which indicates how GNM can faith-
fully reproduce the low-energy deformation of a given
protein structure.

Relation (2) establishes a rather strong constraint be-
tween the spectral dimension and the maximum size Nmax

a protein can achieve. Since the stability is assumed to fail
when the fluctuation �r2�1/2 attains the same order of
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TABLE I. List of Processed Native Protein Structures
and Characteristics (I)

PDB code Length dA ErrorB KBT/� Correl. (�)

9RNT 104 1.62 0.05 1.657 0.474
1BVC 153 1.56 0.01 0.392 0.698
1G12 167 1.89 0.01 0.793 0.584
1AMM 174 1.71 0.06 0.003 0.720
4GCR 185 1.73 0.04 0.001 0.711
1KNB 186 1.88 0.01 1.104 0.699
1CUS 197 1.86 0.01 0.914 0.731
1IQQ 200 1.84 0.01 0.480 0.626
2AYH 214 1.86 0.02 0.539 0.773
1AE5 223 1.93 0.02 0.952 0.531
1LST 239 1.77 0.01 0.982 0.647
1A06 279 1.78 0.03 2.184 0.623
1NAR 289 1.81 0.01 0.602 0.696
1A48 298 1.72 0.01 0.664 0.549
1A3H 300 1.90 0.02 0.719 0.553
1SBP 309 1.74 0.02 0.641 0.757
1A5Z 312 1.74 0.01 2.111 0.574
1A1S 313 1.89 0.01 1.068 0.600
1ADS 315 1.79 0.03 0.500 0.687
1A40 321 1.90 0.04 0.524 0.546
1A54 321 1.86 0.03 0.601 0.516
1A0I 332 1.71 0.03 1.109 0.826
3PTE 347 1.79 0.01 0.366 0.840
1A26 351 1.82 0.01 1.369 0.635
1BVW 360 1.87 0.02 0.652 0.639
8JDW 360 1.94 0.01 1.293 0.607
7ODC 387 1.92 0.01 0.859 0.620
1OYC 399 1.93 0.01 1.056 0.697
1A39 410 1.97 0.01 1.113 0.656
16PK 415 1.82 0.03 0.630 0.590
1DY4 441 1.88 0.02 0.785 0.614
1BU8 446 1.95 0.01 0.859 0.632
1AC5 483 1.87 0.01 1.091 0.709
1LAM 484 1.97 0.01 0.488 0.583
1CPU 495 1.92 0.02 0.620 0.729
3COX 500 1.92 0.02 0.491 0.670
1A65 504 2.09 0.01 1.042 0.606
1SOM 528 2.00 0.02 1.585 0.653
1E3Q 532 1.97 0.01 1.577 0.623
1CRL 534 2.00 0.01 0.969 0.652
1AKN 547 1.87 0.01 1.737 0.667
1CF3 581 2.01 0.03 1.154 0.639
1EX1 602 2.01 0.03 1.193 0.598
1A14 612 2.10 0.09 0.865 0.524
1MZ5 622 2.02 0.04 0.750 0.705
1CB8 674 1.92 0.02 1.164 0.630
1HMU 674 1.92 0.02 0.907 0.684
1A47 683 2.02 0.04 0.646 0.529
1CDG 686 1.98 0.02 1.074 0.593
1DMT 696 1.96 0.02 1.204 0.536
1A4G 780 1.98 0.03 0.591 0.567
1HTY 1014 2.07 0.05 0.646 0.766
1KCW 1017 2.05 0.03 2.130 0.638
APP1 1021 1.93 0.02 0.805 0.576
1KEK 2462 2.07 0.05 1.263 0.730
1B0P 2462 2.08 0.09 0.319 0.810
1K83 3494 2.01 0.01 2.030 0.659
1I3Q 3542 1.97 0.01 2.435 0.758
1I50 3558 1.98 0.02 2.236 0.701
Ad represents the structures’ corresponding spectral dimensions esti-
mated by GNM with cut-off R0 � 7 Å.
BError in determining spectral dimension.

TABLE II. List of Processed Native Protein Structures and
Characteristics (II)

PDB code Length d�A ErrorB KBT/� Correl. (�)

9RNT 104 1.43 0.08 0.209 0.549
1BVC 153 1.36 0.02 0.186 0.626
1G12 167 1.61 0.04 0.412 0.599
1AMM 174 1.55 0.09 0.113 0.802
4GCR 185 1.48 0.09 0.002 0.689
1KNB 186 1.70 0.01 1.104 0.699
1CUS 197 1.71 0.03 0.453 0.693
1IQQ 200 1.57 0.02 0.199 0.625
2AYH 214 1.68 0.01 0.222 0.756
1AE5 223 1.66 0.02 0.396 0.537
1LST 239 1.59 0.01 0.441 0.707
1A06 279 1.52 0.01 0.907 0.621
1NAR 289 1.54 0.01 0.257 0.731
1A48 298 1.46 0.01 0.235 0.546
1A3H 300 1.71 0.01 0.342 0.414
1SBP 309 1.62 0.03 0.301 0.718
1A5Z 312 1.57 0.02 0.914 0.539
1A1S 313 1.70 0.01 0.523 0.643
1ADS 315 1.56 0.02 0.204 0.611
1A40 321 1.57 0.01 0.199 0.604
1A54 321 1.57 0.03 0.232 0.543
1A0I 332 1.60 0.01 0.492 0.799
3PTE 347 1.66 0.01 0.180 0.840
1A26 351 1.60 0.03 0.602 0.613
1BVW 360 1.73 0.02 0.297 0.527
8JDW 360 1.71 0.01 0.550 0.537
7ODC 387 1.54 0.01 0.301 0.586
1OYC 399 1.74 0.01 0.472 0.659
1A39 401 1.78 0.02 0.473 0.643
16PK 415 1.67 0.04 0.277 0.591
1DY4 441 1.84 0.02 0.357 0.535
1BU8 446 1.76 0.01 0.331 0.538
1AC5 483 1.60 0.02 0.482 0.646
1LAM 484 1.75 0.01 0.204 0.623
1CPU 495 1.67 0.01 0.235 0.546
3COX 500 1.72 0.01 0.202 0.571
1A65 504 1.86 0.03 0.421 0.701
1SOM 528 1.63 0.02 0.560 0.610
1E3Q 532 1.67 0.02 0.570 0.533
1CRL 534 1.81 0.01 0.448 0.648
1AKN 547 1.71 0.01 0.800 0.641
1CF3 581 1.73 0.05 0.473 0.560
1EX1 602 1.73 0.01 0.401 0.544
1A14 612 1.86 0.02 0.373 0.538
1MZ5 622 1.68 0.02 0.274 0.740
1CB8 674 1.66 0.02 0.425 0.627
1HMU 674 1.67 0.01 0.334 0.652
1A47 683 1.75 0.01 0.236 0.376
1CDG 686 1.76 0.01 0.402 0.454
1DMT 696 1.73 0.09 0.484 0.549
1A4G 780 1.99 0.09 0.244 0.554
1HTY 1014 1.70 0.07 0.267 0.739
1KCW 1017 1.82 0.01 0.918 0.581
APP1 1021 1.83 0.05 0.299 0.572
1KEK 2462 1.90 0.04 0.439 0.664
1B0P 2462 1.94 0.02 0.118 0.695
1K83 3494 1.90 0.04 0.781 0.631
1I3Q 3542 1.94 0.02 0.883 0.691
1I50 3558 1.96 0.05 0.816 0.653
Ad represents the structures’ corresponding spectral dimensions esti-
mated by GNM with cut-off R0 � 6 Å.
BError in determining spectral dimension.
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magnitude as the mean distance between non-consecutive
amino acids (about 7 Å), one can assume that

2
d�

� 1 �
b

ln�Nmax�
.

The proportionality constant b depends on the mean
amino acid spacing, the spring elastic constant � and the
temperature T. However, this dependence is expected to be
very weak (i.e. only logarithmic), and this allows for
comparison among different proteins without computation
of the specific parameters. It should be stressed that eq.
(9), based solely on thermodynamic stability, can actually
be regarded as an upper bound prediction only.

Figure 3 verifies the prediction drawn form the thermo-
dynamic stability argument and shows the final result of
our analysis. We plot the quantity 2/d� versus 1/ln(N) as
suggested by relation (9). Indeed, if eq. (6) holds, we should
obtain a straight line crossing the y-axis at 1 for a zero
abscissa.

As matter of fact, our data are well fitted by a straight
line, but there is an offset with respect to eq. (6):

2
d�

� a �
b

ln�N�
.

For a cut-off R0 � 7 Å, the best-fit values of the parameters
are a � 0.63, b � 2.61, with a correlation coefficient of 0.73.

Fig. 1. Comparison between experimental B-factors and mean square
fluctuations of C� by GNM for structures 1A47 (lowest correlation) and
3PTE (highest correlation) at cut-off R0 � 7Å, and structures 9RNT
(lowest correlation) and 3PTE (highest correlation) at cutoff R0 � 6Å.
Heavy solid line refers to crystallographic data, while thin and dashed
lines refer to GNM approximation.

Fig. 2. Log-log plot of GNM-harmonic spectrum of three proteins with
different sizes, 1IQQ (N � 200), 1KCW (N � 1017) and 1K83 (N � 3494).
On the vertical axis, we report the cumulated distribution G(�) of
vibrational modes. Low frequency regions clearly exhibit a power-law
behavior, and dashed lines indicate the best-fit of the power-law, whose
exponent is the spectral dimension.
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For the cut-off R0 � 6 Å, we obtained the values a � 0.63,
b � 3.40, with a correlation of 0.72. Interestingly, the
linear behavior predicted by eq. (9) was confirmed for two
different cut-offs with a correlation larger than 0.7, provid-
ing evidence of the repeatability of the result.

CONCLUSIONS

We applied GNM to investigate the influence of native
state topology on thermodynamic stability for a set of
folded proteins with sizes ranging from 100 to 3600.
Employing GNM is appropriate in this type of study
because such a model correctly accounts for the topological
features of the native protein conformations. Our results
show that the spectral dimension d� , which is sensitive to
the large-scale topology of a geometric structure, is one
parameter governing the low-energy fluctuations of a
given protein structure. As a consequence, one can derive
an instability criterion for proteins, based only on topologi-
cal considerations, which is analogous to Peierls’ criterion
developed for ordered crystalline structures. The criterion
easily predicts the non-trivial logarithmic dependence of
the spectral dimension on the length of a protein. This
further confirms the lack of universality for the spectral
dimensions of proteins,32 an issue addressed in previous
studies.24 We verified that such a logarithmic dependence
is really observed, within statistical and systematic error,
for the whole set of selected proteins. Furthermore, the
dependence is robust because it applies even with alter-
ation of the interaction cut-off, which is the most critical
parameter to GNM applicability. We can conclude that the
relation between spectral dimension and length of proteins
is not a consequence of a particular cut-off choice, provid-
ing that a significant correlation is maintained between
experimental and theoretical B-factors. We verified that,
at a larger cut-off value, the scaling behavior (10) is
preserved, although the spectral dimension grows due to
the increase of the average connectivity of the elastic
network.

The result expressed by eq. (10) requires some com-
ments.

Eq. (10) is in agreement with the upper bound repre-
sented by eq. (9), supporting the relevance of topological
thermal instability as a constraint to protein geometry.
More importantly, not only is the upper bound satisfied,
but the experimental points lie on a straight line parallel
to the upper bound line of eq. (9). This suggests a more
fundamental role of topological stability: the protein tends
to arrange topologically in such a way to reach the
minimum value compatible with stability constraints. In
other words, for any fixed length, it tends to the most
swollen state, which remains stable with respect to ther-
mal fluctuations.

An interesting point is the meaning of the offset a � 1,
which is predicted to be 0 according to eq. (9). Its positive
value could have different explanations, but its universal
nature (it is a “protein-independent” because is a global
shift) must be due to a very general mechanism. A rather
obvious reason is the contribution of anharmonic interac-
tions at finite temperatures; a more intriguing one could be
an effective longer range interaction due to the presence of
bound water molecules around the external amino acids,
which could change the effective form of the interaction
matrix . This hypothesis is also suggested by the physical
interpretation of b as an anomalous dimension exponent,
typically related to renormalized interactions.38 However,
the most intriguing evidence relies on the regression
coefficient. Independent of the physical origin of b, its high
value strongly supports the existence of a thermodynamic
stability threshold, dependent on the topology of the folded
state for the size of proteins.
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